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ABSTRACT: Electrospray ionization (ESI) is widely used as an
ionization source for the analysis of complex mixtures by mass
spectrometry. However, different compounds ionize more or less
effectively in the ESI source, meaning instrument responses can vary
by orders of magnitude, often in hard-to-predict ways. This
precludes the use of ESI for quantitative analysis where authentic
standards are not available. Relative ionization efficiency (RIE)
scales have been proposed as a route to predict the response of
compounds in ESI. In this work, a scale of RIEs was constructed for
51 carboxylic acids, spanning a wide range of additional
functionalities, to produce a model for predicting the RIE of
unknown compounds. While using a limited number of compounds,
we explore the usefulness of building a predictor using popular
supervised regression techniques, encoding the compounds as combinations of different structural features using a range of common
“fingerprints”. It was found that Bayesian ridge regression gives the best predictive model, encoding compounds using features
designed for activity coefficient models. This produced a predictive model with an R2 score of 0.62 and a root-mean-square error
(RMSE) of 0.362. Such scores are comparable to those obtained in previous studies but without the requirement to first measure or
predict the physical properties of the compounds, potentially reducing the time required to make predictions.

■ INTRODUCTION

Electrospray ionization (ESI) is an ionization technique
commonly employed prior to mass spectrometric (MS)
analysis. The high sensitivity and low ion fragmentation of
the technique, along with its suitability for coupling to liquid
chromatography (LC), have led to its widespread adoption for
complex mixture analysis in a wide variety of fields, including
food sciences, environmental sciences, metabolomics, and
proteomics. However, the responses of compounds to ESI are
difficult to predict and can vary by many orders of magnitude
depending on the compound structure.1 This leads to issues
for quantitative analysis where authentic standards are not
available, as is common in environmental analysis.
Since the introduction of ESI, an effort has been made to

quantify the effect of ion source parameters and analyte
properties on mass spectra.2−5 This work was important for
establishing the impact of matrix effects on the signal acquired
from an ESI source but only focused on the effect of changes in
the concentration for one analyte and not on variations
between analytes.
One method to overcome the issues surrounding quantita-

tive ESI analysis is to construct relative ionization efficiency
(RIE) scales, first introduced by Leito et al.6 and investigate
which chemical or structural features influence the instrument

response.6−11 If the parameters that dictate RIE could be fully
understood, then the chemical properties of an entirely novel
analyte could be used to predict the response of that
compound in MS. The majority of previous studies aiming
to predict RIE use either measured or calculated physical
properties. For example, Henriksen et al.12 found that the
octanol−water partition coefficient (log P) was a much better
predictor of instrument response than pKa, due to the
requirement for compounds to reside in the surface layer of
an ESI droplet to ionize. However, when a mixture of solvents
was used (as often is for chromatographic separations), the
trend with log P was significantly weaker. Chalcraft et al.13 and
Hermans et al.14 corroborated the importance of log P, along
with the significance of molecular volume, in their papers
investigating ionization efficiencies for MS coupled to
separation processes: capillary electrophoresis (CE) and LC.
The aim of such papers has been to determine the chemical
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and physical factors that influence ionization efficiency. Since
no single parameter is sufficient to characterize the complex
processes occurring during ionization, multivariate analysis is
more appropriate and is commonly used.12

In the previous studies presented, the measurement or
calculation of physicochemical properties is essential to
correlate the RIE value with the compound structure. In this
study, we have bypassed this step by using a molecular
fingerprint of each compound to build the RIE scale. Molecular
fingerprints are a way of encoding the structure of a molecule.
The most common type of fingerprint is a series of binary
digits (bits) that represent the presence or absence of
particular substructures or functionalities in the molecule.
These can be rapidly created from the simplified molecular-
input line-entry system (SMILES) string of a chemical
structure. This method has previously been used to predict
electron impact ionization (EI) mass spectra.15 In this study,
we have combined the fingerprints with measured RIE values
to construct a negative-mode RIE scale containing 51
carboxylic acids, a common functional group targeted in
negative-mode ESI, with a wide range of structures and
additional functionalities. Rather than using multiple linear
regression, we have tested a series of machine learning
regression models and compared their predictive power for
different fingerprints and model combinations.

■ EXPERIMENTAL SECTION

Experimental Procedure. Mass spectra were obtained on
an ultrahigh-resolution mass spectrometer (QExactive Orbi-
trap, Thermo Scientific). The heated ESI parameters used were
the defaults for a 20 μL min−1 flow rate: a sheath gas flow rate
of 19 (arb.), aux gas flow rate of 6 (arb.), a capillary
temperature of 250 °C, and an aux gas heater temperature of
113 °C. Data were collected for the 57 compounds shown in
the Supporting Information (Table S1). All samples were
dissolved with 80:20 water/methanol as the solvent. Standard
solutions of each compound with benzoic acid were made up
at five concentrations between approximately 2 and 20 μmol
dm−3. Spectra were collected for 3 min (344 data points), and
the average intensity of the deprotonated molecular ion peak
(and any significant fragmentation peaks) was obtained using
the “XCalibur Qual Browser” software. Where fragmentation
did occur, the sum of the intensities of the molecular ion peak
and fragmentation peaks was taken for each concentration.
Calculation of RIE. RIE is calculated by taking the ratio of

the response of the analyte to the response of a reference
compound, in this case, benzoic acid, as shown in eq 1.7,16

RIE(B1, B2) is the RIE of compound 1 relative to compound 2,
R1 and R2 are the responses of compounds 1 and 2, and c1 and
c2 are the concentrations of compounds 1 and 2, respectively
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However, in more recent work, RIE has been calculated by
instead taking the ratio of the concentration−response curve
gradients according to eq 2.17,18 In this work, RIE was
calculated according to eq 2
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Calibration curves were plotted for each compound from the
intensity of the signal at five different concentrations. A straight
line of best fit was obtained by linear regression, giving an
equation in the form y = mx + c for the best-fit line of each
compound. The regression lines were not forced through the
origin. The ratio of gradients from concentration−response
curves of the reference compound and the compound of
interest was used to give RIE. This is demonstrated in the
Supporting Information (Figure S1), which shows the
procedure for calculating the RIE for azelaic acid, using
benzoic acid as the reference compound.

Predicting Physical Properties. Our initial investigations
into predicting RIE focused on multiple linear regression
against several predicted physical properties (as listed in the
Supporting Information Table S1). Predicted values were
obtained from four sources. Boiling point and melting point
were calculated using the U.S. Environmental Protection
Agency’s EPI suite, a tool designed to predict a range of
physical properties of compounds that has been reviewed by a
panel of the EPA’s Independent Science Advisory Board.19

log P and pKa values were calculated using the ChemDraw
Prime 16.0 software. Molecular volume and topological polar
surface area (TPSA) were calculated using the Molinspiration
website, an online tool used for predicting the bioactivity of
compounds based on their structure.20 The UManSysProp tool
was used to calculate the liquid “subcooled density” of the
compounds at 298.15 K. Since most of the compounds
analyzed are solid at room temperature, the “subcooled liquid
density” refers to a prediction of that compound’s density if it
were a liquid at room temperature.21 UManSysProp is a tool
designed to aid in the prediction of the behavior of compound
and aerosol properties.

Molecular Fingerprints and Machine Learning. A
molecular fingerprint for each compound was generated using
the UManSysProp package for python in tandem with the
Python wrapper for the openbabel package (Pybel).21,22 The
molecular structure of each compound was inputted to Pybel
as a SMILES string. This parsing by Pybel allowed the
UManSysProp package to generate a fingerprint for each
compound. A selection of fingerprint types are available within
UManSysProp including “composition”, “Stein and Brown”,
“Nannoolal primary”, “Nannoolal secondary”, “Nannoolal
interactions”, “evaporation”, “Girolami”, “Schroeder”, “Le
Bas”, “UNIFAC”, and “AIOMFAC”. Full details of the
fingerprints can be found in the UManSysProp source code
as made available via a GitHub repository (https://github.
com/loftytopping/UManSysProp_public.git). Each fingerprint
is constructed by counting the occurrence of specific
functionalities within the molecule and recording them into
a python dictionary. The simplicity of these fingerprints means
that they are easier to attain than the physical properties of
each compound, particularly when using the Pybel and
UManSysProp packages to generate the fingerprints directly
from SMILES strings for each compound. However, the
downside of using such fingerprints is that there is no
distinction between structural isomers. For example, both 3,4-
dihydroxybenzoic acid and 2,3-dihydroxybenzoic acid would
have identical fingerprints.
The scikitlearn package was used for constructing and

testing the predictive models based on the laboratory data.23

Scikitlearn allows for the simple use of a range of machine
learning techniques within the python programming language.
A selection of the model types available in the package were
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tested: linear regression, Bayesian ridge regression, decision
tree regression, multilayer perceptron (MLP) regression,
passive aggressive regression, random forest regression,
stochastic gradient descent (SGD) regression, and Epsilon-
support vector regression (SVR). Prior to constructing the
models, the fingerprint values were scaled through the “Robust
Scaler” that comes as part of the scikitlearn package. Scaling is
often required for a good fit for many model types and can
decrease the time required for training.24 A range of scalers
were trialed, and while the scalers made little impact on the
model scores, the Robust Scaler produced a more standard
distribution of fingerprint parameters and so was chosen for
use. To determine the best parameters for each model,
validation curves were constructed where the model score was
calculated while varying each parameter. The parameter value
that gave the best R2 score was then used.
Model Validation. Once a machine learning model is built,

it must be tested by providing the model with a test set of data.
In this case, the model is tested by predicting the RIE for
compounds for which the RIE is known and comparing the
predicted RIE to the measured value. To prevent overfitting of
models, they should be tested on a different set of data than
the model training set. Often, this validation will be done by
splitting the data into training data (used to build the model)
and test data (used to test the model after it is built). However,
this approach becomes untenable when only a small amount of
data is available, as the training set becomes too small to build
a reliable model.25 For this reason, the models built in this

work all used leave-one-out cross validation (LOOCV). This
method aims to test the predictive capability of a model built
using all of the available data. For n compounds, the model is
run n times. Each time the model is run, a different compound
is selected as the “test set”, and the model is trained on the
remaining n − 1 compounds.26 A list of predicted values for
each compound is then compiled, where all of the other
compounds were used to train the model each time. An overall
score for the model can then be determined by calculating the
R2 using eq 3 and the root-mean-square error (RMSE) using
eq 4. It is these R2 and RMSE values, obtained from LOOCV
with the model applied to each molecule in turn, that are used
to assess the quality of each model-fingerprint combination.
These metrics are used to evaluate the quality of an RIE
prediction from a model trained on all of the available data
previously used in LOOCV, for an entirely novel compound.
Scikitlearn calculates R2 using eq 3, where yi is the RIE of

compound i, ŷi is the predicted RIE based on the model, and y̅i
is the average RIE. From this formula, a negative R2 value is
possible and corresponds to a model that predicts worse than
simply taking an average RIE value and applying that as the
“predicted RIE” each time

R
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Figure 1. Scale of measured log relative ionization efficiencies (log RIEs), relative to benzoic acid. A table of log RIEs can be found in the
Supporting Information, Table S1.
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Many of the previous investigations into predicting RIE have
relied on R2 as an indicator of model quality. However, it has
been noted that R2 alone is not sufficient for assessing the
quality of predictive models, particularly those validated with
LOOCV.27,28 As a result, the root-mean-square error (RMSE)
values have also been quoted for models produced in this
investigation. RMSE was obtained by taking the square root of
the mean-squared error (MSE) metric output from the
Scikitlearn package

y y

n
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( )
i

n

i i0
1 2

samples

samples

=
∑ − ̂=

−

(4)

The code used to test all of the available models, along with
the code utilizing just Bayesian ridge regression, has been made
available via a GitHub repository (https://github.com/
AlfredMayhew/RIE-Prediction).

■ RESULTS AND DISCUSSION

The measured log RIE values for 51 compounds are illustrated
in Figure 1 (and the values are given in the Supporting
Information Table S1). Data for the remaining six compounds
were not used due to poor linearity in the calibration curves.
The measured log RIE values range between −2.59 and 1.46,
covering 4 orders of magnitude.
To initially compare the results with previous RIE prediction

scales, we compared subsets of compounds to the calculated
physical properties listed in the Experimental Section. There
are clear correlations between the RIE of linear dicarboxylic
acids and molecular mass, log P, and pKa (R

2 of 0.73, 0.68, and
0.90, respectively), as shown in the Supporting Information
(Figures S2−S4). This result is in agreement with Henriksen et
al. who noted that RIE increased with increasing log P and that
for “some compounds (primarily carboxylic acids) [response]
decreases at lower pKa values”.12 A correlation was also
observed between the measured RIE in para-substituted
benzoic acids and the electron-withdrawing character of
substituents, as defined by the Hammett parameter (σp) (see
the Supporting Information Figure S5).29 These results show
that the measured RIE values are consistent with the previous
work and so are a useful data set to develop the molecular
fingerprint method. However, no single parameter was suitable
for the prediction of RIEs when structures become more
complex and multiple functionalities are included.
Multiple linear regression attempts to overcome the

complexity by including multiple physical properties. However,
when we performed multiple linear regression against the
seven predicted physical properties (boiling point, melting
point, log P, pKa, molecular volume, TPSA, and subcooled
density), the R2 value for correlation between the measured

and predicted RIEs was only 0.38. The magnitude of the
coefficients for each parameter in the linear regression (given
in the Supporting Information Table S2) can give insight into
the relative importance of each physical property on ionization,
though the relatively low R2 of predictions obtained means that
caution should be applied in such investigations. A larger
magnitude means that a parameter is given a larger weighting
in the linear regression model and so potentially has more of
an impact on RIE. log P was found to be a major predictive
factor (confirming findings previously mentioned), along with
subcooled density. It does not seem intuitive that the density
should have such a large influence on the RIE, but this
significance may be due to a further property that dictates the
liquid density. For example, the density of a liquid is influenced
by intermolecular interactions, and such interactions will also
influence ionization. Previous investigations into the density as
a predictor of RIE have only been performed in the recent
literature insofar as density is being used to calculate surface
tension14 and the use of solid density as a parameter.10,30

Alymatiri et al.30 noted the effect of solid density on ionization
but found that increased density resulted in increased RIE. The
negative sign of the coefficient for subcooled density shown in
Table S2 would indicate that the reverse is true in our study.
The low R2 obtained by multiple linear regression likely

resulted from the wide range of structures and functionalities
present in our set of compounds, and so a fingerprint machine
learning approach was investigated.

Machine Learning Models. Initially, the models were run
on the entire set of compounds for which data was available.
However, it was found that RIE was predicted very poorly for
compounds with low RIE and that the predictions of the
model as a whole were significantly improved by removing the
data for compounds with an RIE < 0.1 (i.e., 3,3-dimethylacrylic
acid, p-hydroxybenzoic acid, sorbic acid, PABA). The removal
of these compounds means that the developed model is only
applicable for predicting the response of compounds with an
RIE > 0.1 (log RIE > −1).
While investigating the predictive capability of different

model and fingerprint combinations, it was found that using
log RIE as an input parameter resulted in far better model
scores than simply using RIE. This is due to log RIE showing a
more standard distribution than RIE, where the distribution is
skewed toward low values. The best R2 score obtained using
the RIE values was 0.39 (from the aiomfac fingerprint with an
MLP model). This increased to 0.62 (using the aiomfac
fingerprint with a Bayesian ridge regression model) by simply
converting RIE values to log RIE prior to model training. The
same improvement does not come about by the conversion of
RIE values to log RIE after model training, indicating that the
closer predictions are a result of improvements in the model.

Table 1. R2 Scores for a Selection of Fingerprint-Model Combinations for the log RIE Predictionsa

composition Nannoolal primary Nannoolal secondary Le Bas UNIFAC AIOMFAC

linear regression −0.046 −2.8 × 1022 −0.19 −0.068 −3.2 × 1023 −8.3 × 1022

Bayesian ridge −0.090 0.42 −0.078 −0.026 0.60 0.62

decision tree −0.21 0.32 −0.37 0.44 0.30 0.27

MLP −0.61 −0.38 −0.033 −0.37 −0.080 −0.30

passive aggressive −3.5 0.16 −1.3 −1.6 0.090 −0.18

random forest 0.37 0.12 −0.073 0.43 0.069 0.16

SGD −0.066 −0.0025 −0.085 −0.16 0.030 0.038

SVR −43 0.078 −0.56 −92 −0.51 −0.41
aNote that R2 is calculated using eq 3; hence, the R2 can be negative, indicating a prediction worse than using the average log RIE value.
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Table 1 shows the calculated R2 scores for a selection of the
model-fingerprint combinations. The RMSE values for the
same selection of model-fingerprint combinations are given in
the Supplementary Information (Table S3).
Bayesian ridge regression models combined with the aiomfac

(R2 = 0.62, RMSE = 0.362) or UNIFAC (R2 = 0.60, RMSE =
0.375) fingerprints gave the best scores. The AIOMFAC and
UNIFAC fingerprints are similar, with AIOMFAC being based
on UNIFAC, but with more parameters. The best predictive
model results are compared to the measured RIE values in
Figure 2.
One advantage of the Bayesian ridge regression model is the

ability to obtain the coefficients used by the model for each
parameter. This gives an idea as to the relative importance the
model places on each functionality. From these coefficients
(given in the Supporting Information Table S4), it is revealed
that the Bayesian ridge regression model places high
importance on aromatic groups, double bonds, and oxygenated
groups. Any functionalities not represented in the test set of
compounds are disregarded by the model, with a coefficient of
0. Interestingly, the “carboxylic acid” functionality gave a
coefficient of 0, despite mono-, di-, and triacids all being
present in the set of 51 compounds. This poses an issue for
basing predictions off this training set as the model has no
recognition of the need for acidic hydrogen for ionization to
occur because all compounds in the training set have this
functionality. This problem would likely be solved with the
inclusion of compounds with other types of acidic hydrogen

atoms or those with no acidic hydrogen that do not ionize in
negative-mode ESI.
Some fingerprint types consistently produce poor models.

For example, the Nannoolal secondary fingerprint fails to
produce any model with a score greater than 0. This indicates
that the fingerprint does a poor job at representing the
compounds and fails to pick out the relevant structural
properties that dictate RIE, which were picked out by other
fingerprint types. Alternatively, some model types, such as
MLP, do not produce good scores regardless of the fingerprint
used.

Comparison to Previous Work. The prediction of
log RIE values obtained in this work is of comparable quality
to other papers aiming to predict RIE. For example, Oss et al.
obtained an R2 of 0.67 for analysis of their validation set by
multiple linear regression.7 Kruve and Kaupmees obtained an
R2 of 0.77 for a group of 61 compounds in different solvents.31

Liigand et al. obtained R2 values of between 0.55 and 0.81 for
predictions in different biological matrices; the reported RMSE
values of between 0.36 and 1.31 also compare favorably to our
obtained RMSE.32 All of these studies used multiple linear
regression to produce predictions, whereas here we have
shown that predictions of similar quality can be obtained
without the need to measure or predict the physical properties
of the compounds.
As a further test of the technique, the measured RIE values

presented by Kruve et al.18 were used as inputs to the different
models, representing the molecules with each fingerprint type.

Figure 2. Predictions produced by Bayesian ridge regression with compounds represented as aiomfac fingerprints. The solid black line = 1:1
(perfect predictions would lie along this line). The dotted black lines = 2 × RMSE from the 1:1 line.
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This data was chosen as it was also focused on negative-mode
ESI and determined RIE for a higher number of compounds
(62 compounds). To make their predictions, Kruve et al.
sorted compounds into separate “bins” based on their
functionality, performed multiple linear regression on each
bin, and then combined the predictions to obtain an R2 of 0.83
between measured and predicted log RIEs. By using a Bayesian
ridge regression model and representing compounds as
UNIFAC fingerprints, we were able to predict log RIE without
the need for the binning of compounds (which would become
untenable if compounds with multiple functionalities were
included in the data set). The measured log RIE and our
predicted log RIE showed a good correlation, with an R2 = 0.68
(RMSE = 0.648). The data from Kruve et al. spans a much
wider range of measured log RIE values (−2.46 to 3.49),
indicating that the model is able to provide reasonable
predictions over a large range of log RIE values. However,
Kruve et al. also make use of compounds with a more limited
range of functionalities, perhaps accounting for the quality of
predictions obtained.

■ CONCLUSIONS

Through the use of molecular fingerprints in tandem with
machine learning techniques, predictions comparable to those
made by other studies can be made on a set of carboxylic acids
with a diverse range of functionalities. The best predictions
were made by encoding the compounds as aiomfac fingerprints
and performing Bayesian Ridge Regression. The technique
outlined here provides a route to constructing predictive
models for eventual use in quantitative ESI analysis.
Further work is needed to develop more useful fingerprints

for ESI prediction, taking into account additional molecular
properties, and allowing isomers to be differentiated. Addi-
tionally, the predictive models developed in this work have
only been applied to carboxylic acids, so they would likely not
predict RIEs well for species not containing this functionality.
Work into the transferability of RIE scales between

instrument setups and solvent systems offers a promising
insight into potential practical uses of RIE scales, with
laboratories calibrating their ESI−MS setups with a series of
readily available compounds to allow them to apply RIE scales
to their own research.16,31 Further work is needed to build on
the method developed in this work, including analyzing a larger
data set, incorporating a chromatographic separation step,
investigating a wider range of functionalities, and applying the
technique to positive-mode ESI.
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