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Abstract

Wave propagation in magnetically structured atmospheres is a thoroughly studied, yet practically inexhaustible,
well of investigations in the field of solar magneto-seismology. A simple but powerful example is the examination
of wave behavior in a magnetic slab. Our previous study used an analytical approach to derive the general
dispersion relation for magnetoacoustic waves in a magnetic slab of homogeneous plasma, which was enclosed in
an asymmetric magnetic environment. In the present study, we focus on the analysis of wave propagation in
various limiting cases applicable to solar and space plasma physics or astrophysics. The thin- and wide-slab
approximations, as well as the limits of low and high plasma β values, are considered. Utilizing the fact that in a
weakly asymmetric slab the dispersion relation can be decoupled, the behavior of quasi-sausage and quasi-kink
modes is studied in further analytical and numerical detail, and their avoided crossings are described. The results
highlight how asymmetry influences the wave properties, e.g., the phase speed of eigenmodes, depending on the
ratios of external to internal densities and magnetic fields on the two sides. Notably, the phase speeds of surface
modes will converge to different values for the quasi-sausage and quasi-kink modes in the wide-slab limit, and
cutoff frequencies are introduced with respect to both surface and body modes, in thin as well as wide slabs,
beyond which the solutions become leaky. These obtained properties of MHD wave behavior could be measured
with suitable high-resolution instruments in the future.

Unified Astronomy Thesaurus concepts: Solar atmosphere (1477); Solar prominences (1519); Solar filaments
(1495); Magnetohydrodynamics (1964); Solar oscillations (1515); Solar coronal seismology (1994); Solar coronal
waves (1995); Solar magnetic bright points (1984); Plasma astrophysics (1261)

1. Introduction

The existence of magnetohydrodynamic (MHD) waves in the

solar atmosphere was predicted long before their actual detection

(Uchida 1968; Habbal et al. 1979). Contrary to the historically

theoretical character of solar MHD research, nowadays, a wide

variety of both space-based and ground-based instruments capable

of unprecedented spatial and temporal resolution is available.

Alfvén (see, e.g., Jess et al. 2009), fast (Morton et al. 2012), and

slow MHD waves (Freij et al. 2016) have been detected in the

various features (e.g., coronal loops, prominences, sunspots) of the

solar atmosphere and interpreted as oscillations in cylindrical (e.g.,

Aschwanden et al. 1999) or slab-like magnetized plasma

configurations (Allcock et al. 2019). This, in turn, motivates

further analytical and numerical modeling in order to gain a better

understanding of solar phenomena. This is the aim of solar

magneto-seismology (SMS), which extends the scope of

examinations by means of MHD waves from the corona (coronal

seismology) to the lower parts of the magnetically coupled solar

atmosphere (Erdélyi 2006a, 2006b; Banerjee et al. 2007).
Specifically, the study of slab geometry has a long history in

SMS. A comprehensive discussion of the topic in a form

popular today was given in three seminal articles of Roberts

(1981a, 1981b) and Edwin & Roberts (1982). They revealed

the details of linear wave propagation in a nongravitational, (in)

compressible, inviscid, and ideal plasma. Their analysis found

that the presence of a single interface may, under appropriate

conditions, give rise to both the slow and the fast magnetoa-

coustic surface modes (Roberts 1981a). By introducing another

interface, they constructed the model of a magnetic slab, which
they examined first in field-free (Roberts 1981b) and then in a
magnetic environment (Edwin & Roberts 1982). Some key
steps and results in constructing and developing these slab
models are summarized in Allcock & Erdélyi (2018),
Zsámberger et al. (2018), and Allcock et al. (2019).
The classical model, as one may label it now, described by

Edwin & Roberts was symmetric about the center of the slab.
However, the solar atmosphere is a highly inhomogeneous
medium with plenty of structuring, in which one cannot expect
perfect symmetry to be present in the environment of MHD
waveguides. Therefore, it was an important step forward in
theoretical modeling when, as a generalization of classical
models, Allcock & Erdélyi (2017) introduced asymmetry into
the slab geometry by examining a magnetic slab that is
embedded in a nonmagnetic but asymmetric environment. A
further generalization of the model was reached by dividing up
the internal region into an arbitrary N number of homogeneous
slabs, as detailed by Shukhobodskaia & Erdélyi (2018) and
Allcock et al. (2019). In our previous paper (Zsámberger et al.
2018), we have explored the complexity and applicability of
the slab model to a greater extent, by further generalizing the
slab model in a different manner, through embedding it in a
magnetically asymmetric environment. We derived the general
dispersion relation for linear perturbations and explored the
fundamental effects of asymmetry on the nature of eigenmodes.
We also carried out an application to magnetic bright points
(MBPs) in the incompressible limit in order to demonstrate
how powerful the analytical insight may be.
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In the current paper, after a brief summary of the general
results obtained in Zsámberger et al. (2018) necessary for the
present work, we turn our attention to limiting cases that may
be applicable to a number of solar and plasma-astrophysical
structures. We suggest a few examples of such features that can
be considered for magneto-seismological studies using the
asymmetric slab model; however, the applicability of the model
has to be evaluated on a case-by-case basis. First, the
approximation of the equilibrium as a thin and then as a wide
slab is explored. Afterwards, the effect of the relationship
between plasma parameters and the magnetic field is
considered by examining the limits of zero (i.e., cold plasma),
low, high, and infinite plasma β values. Finally, we explore the
interesting phenomenon of avoided crossings shown by quasi-
sausage and quasi-kink surface modes in response to varying
key equilibrium parameters, such as, e.g., density or magnetic
field strength ratios between the slab and its environment.

2. MHD Waves in an Asymmetric Magnetic Environment

We investigate the magnetic waveguide model comprised of
an unbounded, three-dimensional, inviscid, and ideal plasma
embedded in equilibrium magnetic field ( ) ẑB x0 , where ẑ is the
unit vector in the vertical direction. In order to make the
influence of the magnetic asymmetry itself clear, only
magnetoacoustic waves are studied, and therefore, the effects
of gravity and background bulk motions are not considered.
The volume is divided by two surfaces of discontinuity,
defining three domains of uniform plasma, with different
densities ρ, pressures p, temperatures T, and magnetic field
strengths B, across the domains:

⎧

⎨
⎪

⎩⎪
( ) ∣ ∣ ( )=

< -
<
<

N x

N x x

N x x

N x x

,

,

,

1
1 0

0 0

2 0

where Ni denotes any of the physical parameters listed above,

namely Ni=constant (for i=0, 1, 2). An illustration of this

equilibrium configuration can be found in Figure 1.
Disturbances in the slab and its environment are governed by

the ideal MHD equations. By performing a linearization and
constraining the study to plane-wave solutions propagating in
the z-direction (i.e., along the slab), we determined that each
domain (i=0, 1, 2) is governed by an ordinary differential

equation of the form

ˆ ˆ ( ) - =v m v 0, 2x i x
2

where v̂x is the amplitude of the x-component of the velocity

perturbation introduced, and

( )( )

( )( )
( )

w w
w

=
- -
+ -

m
k v k c

v c k c
. 3i

Ai i

Ai i Ti

2
2 2 2 2 2 2

2 2 2 2 2

Here, ω is the angular frequency of the waves, and k is the z
component of the wavenumber vector. The characteristic
speeds in the plasma are the Alfvén speed, r m=v BAi i i ,
where μ is the permeability of free space; and the sound speed,

g r=c pi i i , where γ is the adiabatic index. μ and γ are
uniform across all domains, as the plasma composition is
assumed to be the same in the entire configuration. The third
characteristic speed,

( )=
+

c
v c

v c
, 4Ti

Ai i

Ai i

2
2 2

2 2

is the so-called cusp or tube speed of a given domain, which is

a subsonic and sub-Alfvénic speed.
For physically real solutions that are evanescent outside the

slab, following Zsámberger et al. (2018), we found the
dispersion relation to be
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2
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2 2 2

2
2 2

0 0
2

0
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2

2
1

2 2

1

1

2
2

2 2
0

0

where ( )t = m xtanh0 0 0 . It is apparent that the full dispersion

relation does not decouple into separate solutions for sausage or

kink modes, as it would in the symmetric case. Accordingly,

the eigenmodes show mixed properties, which is why we refer

to them as quasi-sausage and quasi-kink modes (see also

Allcock & Erdélyi 2017). If the asymmetry is weak, i.e., the

pressures, densities, and magnetic field strengths do not differ

too strongly on the two sides of the slab, the dispersion relation

Figure 1. The equilibrium: a magnetic slab, ∣ ∣ x x0 (medium orange color), sandwiched between two, semi-infinite uniform magnetized plasmas, x<−x0 and
x>x0 (light and dark orange). The blue arrows illustrate the magnetic fields, ẑB0 , ẑB1 , and ẑB ,2 and the dashed black lines outline the boundaries of the slab.
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decouples into two equations:

⎜ ⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎞

⎠
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r w

r
r w
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k v
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0, 6
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2
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2 2 0
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2
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2 2
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2

2

2
2

2 2

0 0 0

where the substitution of ( )m xtanh 0 0 describes quasi-sausage

modes and ( )m xcoth 0 0 gives quasi-kink mode solutions. In the

following sections, these dispersion relations will be further

examined in limits that are often used in solar or plasma

astrophysics.

3. Thin-slab Approximation

In the thin-slab approximation, the wavelength, λ, of the

waves is much greater than the width of the slab:

l »x kx 10 0 . This limit may have both photospheric or

coronal applications, if we describe them in Cartesian rather

than cylindrical geometry. Such a description may be

applicable to various solar phenomena, such as prominences

(see Arregui et al. 2012), sunspot light bridges and light walls

(Yuan et al. 2014; Yang et al. 2016, 2017), MBPs (Utz et al.

2009; Liu et al. 2018), or any thin and magnetized plasma-

astrophysical object that is sandwiched between uniform,

homogeneous but asymmetric magnetized semi-infinite plasma

environments as a first approximation.

3.1. Surface Modes

We have only considered perturbations that are evanescent

outside the slab, but it should be noted that surface modes are

evanescent inside the slab as well, mostly perturbing regions

close to the slab boundaries.

3.1.1. Quasi-sausage Surface Modes

First, let us examine quasi-sausage surface modes, which are

described by the component of Equation (6) containing the odd

( )m xtanh 0 0 function. Supposing that, in this limit, m0x0 = 1,

it follows that »m x m xtanh 0 0 0 0. Substituting this into

Equation (6), the dispersion relation for quasi-sausage surface

modes becomes

⎡
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⎢

⎤
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0
2

0

The frequency w = k vA
2 2

0
2 would be a trivial solution not

considered here (for reasons, see Zsámberger et al. 2018). One

group of solutions might occur when the phase speed of the

waves approaches the cusp speed: w  k cT
2 2

0
2 . Substitution of

this approximation into Equation (7), after some algebra, yields
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This wave solution is a slow quasi-sausage surface mode
when w  k cT

2 2
0
2 from above as kx 00 (the slab becomes

thinner). The condition for its existence is, without any further
information on the values of characteristic speeds on either side
of the slab, the following:

( )

- >  <

- >  <

c c c c

c c c c

0 and

0 . 9

T T T T

T T T T

1
2

0
2

0
2

1
2

2
2

0
2

0
2

2
2

The effect on further possible characteristic speed orderings
on this group of solutions is examined in Appendix A.
A different type of quasi-sausage mode solution approaches

one of the external sound speeds in the thin-slab limit. For
example, if we take the approximation w  k c2 2

2
2, the

solutions are given by

⎡
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⎢
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2

This surface wave solution exists when c2<cT1 or

( ) ( )< <c v c c vmin , max ,A A1 1 2 1 1 , because outside these

bounds, the waves would become leaky. Naturally, the same

type of solution can be found if the indices j=1, 2 are

swapped.
Let us now consider the case with an isothermal external

environment, i.e., when the external sound speeds are the same,
= =c c ce1

2
2
2 2, the solutions are derived by substituting

w » k ce
2 2 2 into Equation (7), yielding

⎡
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2

for <v v c,A A e1 2 and <c c c,e T T1 2. Supposing that =vA1
2

=v vA Ae2
2 2 , then ρ1=ρ2=ρe has to be true as well, which

leads back to Equation 16(a) of Edwin & Roberts (1982). If the

external plasma environment is nonmagnetic, this case further

reduces to Equation (32) of Allcock & Erdélyi (2017).

3.1.2. Quasi-kink Surface Modes

Let us now consider quasi-kink mode solutions, which are
governed by the ( )m xcoth 0 0 part of the decoupled dispersion
relation (Equation (6)). In the limit of m0x0 = 1,

3
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( )» -m x m xcoth 0 0 0 0
1. Substituting this into Equation (6), the

dispersion relation for quasi-kink modes becomes
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One kind of these modes might approach one of the external

Alfvén speeds in the thin-slab approximation. We can obtain

this solution by substituting the limit w  k vA
2 2

1
2 into

Equation (12):
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where, now,
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This mode exists as a trapped perturbation when <v cA T1
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the solution further simplifies to

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎤

⎦

⎥
⎥

( )

( )

w
r

r r

= - -

´ - + -

k v
v

v

kx

c

v

c

v

1 1
2

1
1

1
1 . 14

Ae
A

Ae

Ae Ae

2 2 2 0
2

2

2

0 0
2

2

2
2

2
1

1
2

2

2

In the case of an isothermal external environment, i.e.,

= =c c ce1
2

2
2 2, and so ρ1=ρ2=ρe, the obtained solution

leads back to the one for the symmetric slab (Equation 18(a) of

Edwin & Roberts 1982).
An asymmetric equivalent for a different type of kink-mode

solution can be found as well, namely, for those that approach
one of the external cusp speeds. With the substitution
w  k cT
2 2

1
2 , Equation (12) becomes
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This solution is a trapped oscillation when <c cT T1
2

2
2 or

( ) ( )< <v c c v cmin , max ,A T A2
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2

1
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2
2

2
2 . When the two external

cusp speeds are the same, this case reduces to Equation 18(b) of

Edwin & Roberts (1982). An asymmetrized generalization of

Edwin & Robertsʼs (1982) Equation (19), the approximation

for the case when v vAe A0 is of the order of kx0, can also be

obtained:
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if vA1 = vA2 is also satisfied. If, conversely, vA2 = vA1, the

solution becomes
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r r
r r r
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When = =v v vA A Ae1
2

2
2 2 holds, this approximation may be given

as

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )w = +k v

R

v

v
kx1

1
, 18Ae

A
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where

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

( )
r
r r

= +
-

R
2

1 1
190

1 1

1

is the measure of the density asymmetry used in Zsámberger

et al. (2018).
Equations (8)–(11) and (13)–(15) show us that the overall

structure of the solutions in the thin-slab limit of an asymmetric
magnetic slab remains similar to those in the symmetric case.
This actually confirms how powerful the initial model of a
symmetric slab is, which may be seen as a practical tool when
interpreting MHD wave observations. While analytical approx-
imations of the solutions can still be given, wave dispersion in
the asymmetric configuration, however, becomes more com-
plex. The differences in environmental equilibrium parameters
can introduce cutoff frequencies, beyond which the oscillations
become leaky. In general, Equations (8)–(15) also reveal that
surface waves in the magnetic slab are quite sensitive to the
relative magnitudes of external densities compared to the
internal one, which is why they can be shown to possess
avoided crossings (see Section 7).

3.2. Body Modes

Still in the thin-slab approximation, let us now examine the
existence and characteristics of body waves. First of all, the
dispersion relation itself can be rewritten without the use of
hyperbolic functions. As opposed to surface waves, where m0

2

was positive, in the case of body waves, <m 00
2 . Defining

≔ - >n m 00
2

0
2 , the dispersion relation (Equation (5)) now

becomes
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Here, not only the full but also the decoupled counterpart of
the dispersion relation (Equation (6)) may be expressed with
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the tangent and cotangent functions as

⎜ ⎟
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Finding body-mode solutions generally requires different
considerations than those used above for surface modes,
because assuming that m x 00 0 as the slab becomes thinner
( kx 00 ) will not describe every possible wave mode
(Roberts 1981b). Let us prescribe therefore that m0x0 should
remain bounded as kx 00 tends toward zero. Considering the
dispersion relation for quasi-sausage body waves, the expres-
sion ( )n n xtan0 0 0 needs to remain finite. This necessitates that
n0x0 converge to the roots of ( ) =n xtan 00 0 , that is, n0x0=jπ
(for j=1, 2, 3K). Substituting ( ( ) )w n» +k c kx1T

2 2
0
2

0
2 into

the definition of n0 and multiplying by x0, we can find the
values of ν as follows:

( )( )

( )
( )

n
= - =

- -
+

n x m x
c c v c

c v c
. 22T A T

A T

0
2

0
2

0
2

0
2 0

2
0
2

0
2

0
2

0
2

0
2

0
2

Due to the condition on the values of n x0
2

0
2, this also equals

j
2π2. Substituting this expression and rearranging the equation

yields ν for every (integer) j:

( )( )

( )
( )n

p
=

- -
+

c c v c

c v c j
. 23j

T A T

A T

0
2

0
2

0
2

0
2

0
2

0
2

0
2 2 2

We have thus found that there are countably many quasi-
sausage body-mode solutions, with a different number of nodes
inside the slab, which we will call harmonics in the direction of
structuring, or, in short, harmonics. The situation so far is
algebraically analogous to that in the asymmetric slab in a field-
free environment (Allcock & Erdélyi 2017). This type of
description so far does not deal with the influence that the
difference in external equilibrium parameters has on the slab
system. There are two possibilities to provide an approximation
that considers the effects of external magnetic asymmetry. For
example, it is conceivable that either of the external sound or
Alfvén speeds being higher than cT0 may introduce a cutoff
frequency, which prevents the phase speed from converging to
the cusp speed in the limit of a thin slab.

In the dispersion relation for body modes, Equation (21), the
coefficients n m m, ,0

2
1
2

2
2 all must simultaneously have positive

values. In adherence to these requirements, there are three
possibilities for slow body-mode waves to exist:

[ ( ) ( )]

[ ( )

( ) ( )] ( )

< <
c c v c v

v c v

c v c v

max , min , , min ,

min min , ,

max , , max , , 24a

T A A

A

A A

0 1 1 2 2

ph 0 0

1 1 2 2

[ ( )]

[ ( ) ( ) ] ( )

<
<
c c v v

c v c v c

max , min ,

min min , , max , , , 24b

T A

A A T

0 1 1 ph

0 0 1 1 2

[ ( ) ] ( )< <c v c v c cmin min , , , . 24cT A T T0 ph 0 0 1 2

An additional fourth category could be defined by swapping the

i=1, 2 indices in condition 24(b). We will, however, not deal

with this case in further detail, as it does not describe a

qualitatively different type of body mode, and one need only

swap the same indices in the description of the solution curves

that belong to condition 24(b) in order to obtain the solutions

for such a mirrored situation. The same will be true for the

phase-speed bands allowing the existence of fast body modes

in the thin-slab approximation, as well as the bands of both

slow and fast body waves in the wide-slab limit.
Proceeding from here, one possibility is to use Equation (22)

and only accept the solutions while they are in either one of the
phase-speed bands delineated in Equations 24(a)–(c). Another
approach, which we will follow now, is to use an approx-
imation that bounds the solutions to remain in the above-
mentioned bands. One must, however, remember that in the
extremes of the thin-slab limit, solutions can become leaky, in
which case, the approximation described can only serve as a
guideline as to the general shape of the solution curves.
In this vein, it is possible to provide an approximate

expression in all three cases, which highlights the fact that the
phase speed of the wave perturbations in the long-wavelength
approximation converges either to the internal cusp speed, or in
a different ordering of speeds, to a value with a slight offset
from this speed:

[ ] [ ( ) ] ( )w n n» + + >k c f kx1 , where 0. 25T
2 2

0
2

0
2

The exact offset speed value given by f depends on which band

of body waves one examines, i.e.,

[ ( ) ( )]

( ) ( )

=
-

f c c v c v

c

max , min , , min ,

for case 24 a , 26a

T A A

T

0 1 1 2 2

0

[ ( )] ( ) ( )= -f c c v cmax , min , for case 24 b , 26bT A T0 1 1 0

( ) ( )=f 0 for case 24 c . 26c

Substituting the appropriate form of ω2 into Equation (22) gives

us the applicable expression for ν for every (integer) j:
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p
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+ +

c f c v c f
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This may then be substituted into Equation (25) to obtain the

approximate phase-speed solutions. The corresponding quasi-

kink mode may be found applying similar considerations, with

the notable difference being that, here, ( )n n xcot0 0 0 has to

remain finite, and so ( )p -n x j0 0
1

2
is required (for j=1,

2, 3 K). The values of νj are, in this case,

( )
[( ) ][ ( ) ]
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=
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2

Substituting this expression back into Equation (25), it is now

possible to obtain an approximation for the phase speed (and

dispersion) of the slow quasi-kink body modes. Just like the

quasi-sausage modes, these waves also approach the speed

limit +c fT0 bounding from below as the slab becomes

thinner.
The fast body modes, when they exist, behave similarly to

the slow body modes in the thin-slab approximation. Three
bands of phase speeds potentially containing body-mode
solutions can be distinguished:

[ ( ) ( ) ( )]

[ ( ) ( )] ( )< <
c v c v c v

v c v c v

max max , , min , , min ,

min max , , max , 29a

A A A
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[ ( ) ] ( )

<
<
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c v c

max max , , min ,

min max , , 29b

A A

A T

0 0 1 1 ph

1 1 2
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( ) ( ) ( )< <c v v c cmax , min , . 29cA T T0 0 ph 1 2

The question, whether the plasma β ( ( )( )b g= c v2 A0
2

0
2 ) is

low ( <c vA0 0) or high ( <v cA0 0), determines where the fast-

mode phase speeds converge to in a thin slab. Let us denote

( )c vmax , A0
2

0
2 by vmax

2 and ( )c vmin , A0
2

0
2 by vmin

2 . Then, we may

have two main cases with the same formula:

⎡
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( )

w
n

n» + + + >k v f u
kx

1
1

, where 0.

30

2 2
max

2

0
2

The exact values of the lower and upper speed boundaries, f

and u, depend on which band of allowed solutions one

examines. In case of conditions 29(a) to 29(c), we have

[ ( ( ) ( )] ( )= -f v c v c v vmax , min , , min , , 31aA Amax 1 1 2 2 max

[ ( ) ( )]

[ ( ( )] ( )

= - -
= -

u c v c v f v

f v c v v

min max , , max , ,

max , min , , 31b

A A

A

1 1 2 2 max

max 1 1 max

[ ( ) ]

( )

= - -
=

u c v c f v

f

min max , , ,

0, 31c

A T1 1 2 max

( ) ( )= -u c c vmin , , 31dT T1 2 max

respectively. For the quasi-sausage modes, as before,

( )n n xtan0 0 0 needs to remain finite, so n0x0 must converge to

the roots of ( ) =n xtan 00 0 . Substituting the prescribed form of

ω2 into the condition that n0x0=jπ (for j=1, 2, 3 K) allows

us to determine the possible values of ν for each of the

harmonics in the direction of stratification:

The quasi-kink mode under the same ordering of characteristic
speeds may be shown to have coefficients of the form

Substituting these coefficients into the dispersion relation given
by Equation (30) provides the approximations for the solutions
of permitted wave propagation. This holds when the external
sound speeds are greater than the external Alfvén speeds. If the
opposite is true, ( )  ¥n xtan 0 0 needs to be true for quasi-
sausage modes, ( )  ¥n xcot 0 0 must hold for quasi-kink
modes, and the coefficients j and j−1/2 in the above
expressions have to be modified accordingly.

Generally speaking, both types of fast body waves have
countably many harmonics in the direction of structuring in the
phase-speed band where they may exist. It may be noted that
although the effect of density ratios ρ0/ρ1 and ρ0/ρ2 cannot be
seen explicitly in the calculations of this subsection, they have
an indirect influence on the propagation of body waves, as they

determine the values and relations of the characteristic speeds
in- and outside the slab.
The investigation of the thin-slab approximation has thus

revealed that the introduction of magnetic asymmetry results,
on the one hand, in important contributions to the dispersion of
both surface- and body-mode waves and, on the other hand, in
the appearance of cutoff frequencies. Beyond these frequen-
cies, the solutions would become leaky, and therefore, when
searching for trapped oscillations in the asymmetric waveguide,
certain bands of phase speed must be discarded. Unlike the
symmetric case, when there is one band of slow body modes,
complemented by one or two bands of fast body modes, the
cutoff frequencies in the asymmetric case might even result in
the existence of two bands of slow-mode solutions and three
bands of fast-mode solutions for body waves. It can be said
that, in general, the solutions are qualitatively analogous to the
kink or sausage mode solutions of the symmetric case, while
their exact quantitative description is more complex in the
asymmetric case. Approximations can still be given for both
surface- and body waves; however, thin-slab solutions for the
latter will not always exist as trapped waves.

4. Wide-slab Approximation

Let us now examine the waves propagating in a wide slab
placed in an asymmetric magnetic environment. In solar
physics, such a system could represent an approximation of
the global stratification of the atmosphere, e.g., the triad of the
photosphere, the interface region, and the corona. The wide-

slab approximation can also be used to model high-frequency

waves present in light bridges of sunspots or elongated MBPs.

In the wide-slab limit, the width of the slab is much greater
than the wavelength of the waves examined, in short, kx0 ? 1.
For example, only about one-third of MBPs have noncircular
shapes (Bovelet & Wiehr 2003), and under appropriate
circumstances, they can be regarded as magnetic slabs (for
details see Zsámberger et al. 2018). These bright concentrations
of magnetic flux in the photosphere are only a few hundred
kilometers across (Solanki et al. 2010); therefore, for any
perturbations with wavelength λ = 300 km, an MBP with a
width of 2x0≈100 km can be regarded as a wide slab. For
larger wavelengths, the thin-slab approximation is more
appropriate.
Light bridges between sunspot umbrae may have various

widths from around 1″ up to 4″ with their extent in one

⎧
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direction often far greater than their length (Toriumi et al. 2015;
Schlichenmaier et al. 2016). A light bridge of intermediate size,
with 2x0≈1500 km (or 2″) width, can then be regarded as a
wide slab for waves with λ=5 km, and as a thin slab for
longer wavelengths.

In the wide-slab approximation, because we have kx0?1,
m0x0?1 also applies (see Roberts 1981b), and so the full
dispersion relation (5) reduces to

⎡

⎣
⎢

⎤

⎦
⎥
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r
r
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2 2 1

1
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2

2 2

Because m xtanh 10 0 and m xcoth 10 0 as well, for both

quasi-sausage and quasi-kink modes, the decoupled dispersion

relation (6) now takes the same form:

⎡
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As the width of the slab keeps increasing, the waves at one
boundary will be less and less affected by the conditions at the
other boundary, essentially reducing the problem to a single-
interface system. This may be shown by going back to the
system of equations presented by the boundary conditions,
namely, the continuity of velocity and total pressure perturba-
tion. These can be summarized in a matrix formally
algebraically analogous to that in Equation (18) of Allcock &
Erdélyi (2017). Rearranging the equations and substituting

= =m x m xtanh coth 10 0 0 0 into them leads to

( )L + L = 0, 36i 0

for i=1, 2, which is the dispersion relation of a single

interface (see Roberts 1981a), expressed with the Λi quantities

defined as

( )
( )

r
w

w
L = -

-i k v

m
. 37i

i Ai

i

2 2 2

As for wide-slab body modes, the situation is similar to the
thin-slab approximation, in that the results obtained for a
symmetric (Roberts 1981b) or asymmetric (Allcock &
Erdélyi 2017) slab in a nonmagnetic environment can be
generalized, so that the constraints set by the external densities
and magnetic fields will now also be taken into account. The
phase speed of slow body modes, which would converge to
vmin in a field-free environment, might only do so with some
offset, which may be described as

⎡
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⎥[ ]

( )
( )w

n
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kx
1 , 382 2

min
2

0
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where the exact value of u depends on which band of solutions

we examine, i.e., in cases 24(a)–(c),
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A A Amin 0 0 1 1 2 2
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[ ( ) ] ( )= -u v c v c cmin min , , , , 39cA T Tmin 0 0 1 2

respectively. For the quasi-sausage mode solutions, as

 ¥kx0 , the condition can be set that ( )  ¥n xtan 0 0 ,

which means that the argument must be ( )p -n x j0 0
1

2
.

This gives us the νj coefficients as
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The slow body quasi-kink modes can be found in a similar
fashion, by setting pn x j0 0 so that ( )  ¥n xcot 0 0 . This
leads to

[ ( )( )]
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. 41j
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Substituting these into Equation (38) gives us the approxima-

tions of the body modes in a wide slab. This holds when

vA0>c0. In a high-beta slab, however, the condition for the

quasi-sausage modes becomes ( ) n xtan 00 0 , while for quasi-

kink modes, ( ) n xcot 00 0 , and the expressions containing

the coefficients j and j−1/2 have to be adjusted accordingly.
An analogous derivation leads to the approximate solutions

for fast-mode body waves in the wide slab. These modes can be
assumed to tend toward the higher internal characteristic speed
in the field-free configuration in the limit of short-wavelength
approximation. In the magnetically asymmetric configuration,
their dispersion is expected to follow

⎡
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where the exact value of f depends on which band of solutions

one takes. In cases 29(a), (b) and (c), the factors f are defined by

Equations 31(a), (b) and (c), respectively.

For quasi-sausage modes, ( )p -n x j0 0
1

2
has to be true

for ( )n n xtan0 0 0 to remain finite. This leads to
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Similarly, for the quasi-kink modes, pn x j0 0 , so the

coefficients and the frequencies are only marginally different:
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Substituting the appropriate coefficient ν from Equations (43)

and (44), respectively, into Equation (42) gives us the quasi-

sausage and quasi-kink mode solutions for the MHD wave

propagation in the wide-slab approximation. This is true when

c0>vA0. In a low-beta slab, however, the condition for quasi-
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sausage modes is ( ) n xtan 00 0 , while for quasi-kink modes,

it is ( ) n xcot 00 0 . Further, the coefficients j and j−1/2 in

the above expressions have to be swapped to fulfill these

conditions.
Much like in the thin-slab approximation, the effect of the

differences in the equilibrium parameters in the external

environment on body modes is not obvious immediately. To

second order, there are no terms containing the density ratios,

unlike for the surface waves. Overall, we may conclude that a

magnetically asymmetric environment has a greater effect on

MHD surface waves than on body modes. Applications to solar

and astrophysical plasmas may be exploited, e.g., by means of

SMS. Such analysis may be performed with greater success for

MHD waves observed in magnetic structures that can be

modeled by the thin-slab approximation, as in wide slabs, the

effects of asymmetry can be felt to a lesser degree at either of

the interfaces, which are distant from each other.

5. Low-β Approximation

In the low-β approximation, the magnetic pressure dom-

inates the gas pressure in a given region of plasma

( b = p p 1i i i m, , for i=0, 1 or 2.) Therefore, in the low-β

limit, c v 1i Ai . This particular approximation has practical as

well as analytical use: it reduces the dispersion relation into a

simpler form, and it also has a very significant range of

applicability, because from about the mid-chromosphere

upwards into the corona, the solar atmosphere is considered

to be a low-β environment. This is exactly the case that we are

first going to investigate in the following section, using a model

in which the plasma β is low in all three domains. Afterwards,

we will describe the limiting case, whereby all three domains of

the asymmetric slab system are filled with cold plasma (that is,

βi=0, for i=0, 1, 2). This considerably simplifies the

analytical expressions describing wave dispersion, while it still

approximates well the low values of plasma β found in upper

solar atmospheric, e.g., coronal, conditions.

5.1. Low Plasma β in All Three Domains

In the case when the plasma β is low, but nonzero, it is

possible to express the coefficients m0, m1, and m2 in terms of

β0, β1, and β2, and apply some simplifications to the dispersion

relation. This way, the modified wavenumber coefficients

become

( )( )

( )

( )

b g w w
b g b g w w

=
- -
- -

=m
k v k v

k v v v
i

2

2
, for 0, 1, 2,

45

i
i Ai Ai

i Ai i Ai Ai

2
2 2 2 2 2 2

2 4 2 2 2 2

( )( )

( )
( )

b g w w
b g b g w w

=
- -
- -

n
k v k v

k v v v

2

2
. 46

i Ai Ai

i Ai i Ai Ai

0
2

2 2 2 2 2 2

2 4 2 2 2 2

Assuming the plasma β is small in all three domains, an

expansion of the dispersion relation about (β0, β1, β2)≈(0, 0,
0) can be performed. Taking only zeroth- and first-order terms

into consideration, the dispersion relation for surface modes

takes the following form:
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( )
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r
r w

=
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=L
m

k v
j, for 1, 2, 48j

j

jz
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2 2 2

⎜ ⎟
⎛

⎝
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L
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coth
, 49s

z
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2
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2 2
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⎛
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w
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-
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v
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Ai

Ai

2 2 2

2

1 2

Here, the index “z” denotes the form of the wavenumber

coefficients when β=0 in the given domain, and the index “s”

refers to the fact that the term L0s is necessary for the

description of surface waves. In this term, the parts containing

the tanh and coth functions describe quasi-sausage and quasi-

kink surface modes, respectively. With the same notation, the

expansion of the dispersion relation for body waves becomes

⎪

⎪

⎧
⎨
⎩

⎡

⎣⎢

⎤

⎦
⎥

⎫
⎬
⎭
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g
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where further

⎜ ⎟
⎛

⎝

⎞

⎠( )
{ } ( )

w
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-
-

L
n

k v
n x

2 tan

cot
, 52b
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2
0

2 2
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w
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n
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2
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Here, the index “b” expresses that the term L0b is required for

the description of body modes, and, again, the upper part (with

the tan function and the minus signs) describes quasi-sausage

body modes, while the lower part governs the dispersion of the

quasi-kink body modes.
Edwin & Roberts (1982) explored the low-β case in a

magnetic, but symmetric environment of the slab, and their
qualitative basic findings still hold in an asymmetric slab. Let
us now solve the dispersion relation for a few different and
representative asymmetric slab systems filled in all three
domains with low-β plasma, and visualize the wave spectrum.
Panel (a) of Figure 2 shows that, when the ordering of the
characteristic propagation speeds is < < <c c v vi A Ai0 0 (where
i=1, 2), no surface modes can be found, only body waves.
The slow body waves have phase speed < <c v cT0 ph 0, and the
fast body waves propagate with < <v v vA A0 ph 2, which
correspond to the conditions outlined in case 24(a) for the
slow waves and case 29(a) for the fast waves. Both the quasi-
sausage and the quasi-kink modes are present.
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If the slab is cooler than its environment (the sound speeds
are interchanged, so the ordering is < < <c c v ve A Ai0 0 ), the
result is similar: both fast and slow waves may be present,
as panel (b) of Figure 2 illustrates. A further interesting
observation can be made in this equilibrium configuration.
While the slow modes represent case 24(c), there are two bands
of body waves, corresponding to the conditions in 29(a) for the
faster band, and 29(c) for the slower band. A similar result was
obtained by Edwin & Roberts (1982) for the symmetric case,
illustrated in their Figure 7.

The situation is vastly different, however, if the Alfvén
speeds are interchanged (compared to the original ordering
shown in panel (a)). In this case, presented in panel (c) of
Figure 2, the internal Alfvén speed is higher than both external
Alfvén speeds, and, just as in the symmetric slab, only the slow
body waves remain possible (corresponding to the conditions
in 24(a)).

Panel (d) of Figure 2 demonstrates that even if the
asymmetry is great enough in the system so that the internal
sound speed falls between the external ones, two bands of body
modes remain possible. The slow band is defined by the criteria
of 24(b), with phase speeds falling between cT0<vph<c0.
The band of fast body waves possess phase speeds in the range
vA0<vph<vA1, corresponding to case 29(b).

5.2. Zero-β Limit

An extreme but often practical case of the low-β approx-

imation is the zero-β limit, in which the sound speeds are

negligible compared to the Alfvén speeds: c1≈c2≈c0≈0,
which can be said to describe coronal plasma conditions using

the MHD framework. This assumption also leads to a vastly

simplified equation for the description of wave dispersion. The

zero-β approximation eliminates slow body waves, and only

the fast body waves remain possible, just like in the symmetric

case (Edwin & Roberts 1982).
In the zero-β limit, the modified wavenumber coefficients are

given by Equations (50) and (53), and the first-order terms of

the expanded dispersion relation vanish, leaving

⎜ ⎟
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⎞

⎠
{ }
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r
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2
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2
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0

2

0
2
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2
2

2
2 2 1 2

Total pressure balance must be upheld at both interfaces of the

asymmetric slab. In terms of the characteristic speeds, this

Figure 2. The phase speed (ω/k) of magnetoacoustic waves that occur in various low-β situations characterized by typical choices of rc v, ,i Ai i. Blue (red) curves show
quasi-sausage (quasi-kink) modes. Hatching represents regions in which no propagating modes are permitted. (a) Slow- and fast-mode body waves are visualized
when vA0=1.5c0, vA1=4c0, vA2=3c0, c1=0.5976c0, c2=0.6972c0, ρ1/ρ0=0.21, and ρ2/ρ0=0.36. (b) One band of slow and two bands of fast body modes
appear when vA0=1.2c0, vA1=3c0, vA2=3.5c0, c1=1.5811c0, c2=1.6531c0, ρ1/ρ0=0.22, and ρ2/ρ0=0.17. (c) Only slow body modes can be found when
vA1=0.7vA0, vA2=0.6vA0, c0=0.5vA0, c1=0.2504vA0, c2=0.2472vA0, ρ1/ρ0=2.3, and ρ2/ρ0=3.0. (d) Even with more prominent asymmetry, one band of
slow and one band of fast body modes exist when, e.g., vA0=0.3vA2, vA1=0.6vA2, c0=0.2vA2, c1=0.1vA2, c2=0.8vA2, ρ1/ρ0=0.3710, and ρ2/ρ0=0.0871. In
each panel, only a couple of examples in each band of body modes are displayed.

9

The Astrophysical Journal, 894:123 (19pp), 2020 May 10 Zsámberger & Erdélyi



condition can be expressed as

( )

r
r

g

g
=

+

+
=

= ¹

c v

c v
i

j i j

, where 0, 1, 2;

0, 1, 2; . 55

i

j

j Aj
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2 1

2

2

2 1

2

2

Because the sound speeds are zero in this limit, Equation (55)

can be used to further simplify the dispersion relation:
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⎛
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2

In the fully symmetric case, this expression reduces to

Equations (22) and (23) of Edwin & Roberts (1982).
In Equation (56), n0z, m1z and m2z > 0, which are only true

when ( )w< <k v k v k vmin ,A A A
2

0
2 2 2

1
2 2

2
2 . The role of asymmetry

manifests in this selection for the lower Alfvén speed value. An
alternate description of body waves in this band, e.g., in the
wide-slab limit, can be constructed by the substitution of

[ ][ ( ) ]w r r n= +k v kx1A
2 2

,min
2

min 0 0
2 , where the index m

denotes external equilibrium parameters of the side with the
lower (external) Alfvén speed. Applying the same considera-
tions that we used while deriving the wide-slab approximation
in the general case allows us to determine the coefficients νj.
This process yields the expression
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for quasi-sausage modes, and
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for quasi-kink modes of the fast body wave. A basic diagnostic

purpose may be fulfilled by making these approximations.

Namely, for given values of j, ω, and k, Equations (57) and (58)

determine a simple connection between the lower external

Alfvén speed and the external to internal density ratio on the

same side; therefore, knowing one of them can provide an

estimate of the other. The description of eigenmodes in the

low- and zero-β asymmetric slab is formally analogous to that

in the symmetric case. However, the difference in equilibrium

external parameters—even in this simplified scenario—adds

some analytical complexity. Perhaps the most important

difference resulting from the asymmetry is that, although the

fast body-mode solution curves are still located between the

external and internal Alfvén speeds, they experience a cutoff in

the thin-slab limit: with phase speed above the lower external

Alfvén speed, the waves become leaky.

6. High-β Approximation

In the approximation of high plasma β, magnetic pressure is
dominated by plasma kinetic pressure. Because this is more
generally true for lower solar atmospheric conditions, it is
worthwhile to explore the behavior of wave perturbations in
this limit of plasma and magnetic parameters. First, we are
going to derive the dispersion relation for the case of high
plasma β in all three domains and provide examples of its

numerical solution. Further on, we will demonstrate the
analytical ease that the extreme infinite-β approximation brings
to the problem.

6.1. High Plasma β in All Three Domains

If the plasma β is high, the Alfvén speeds are negligible
compared to the sound speeds of each domain: c v 1i Ai for
i=0, 1, 2. In this limit, the modified wavenumber coefficients
take the following form:
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Several modes are possible in this case, which is illustrated
in Figure 3, including both surface and body waves. For an
analytical description of the wave modes, the dispersion
relation can be expanded about (1/β0, 1/β1, 1/β2)≈(0, 0,
0). Keeping only zeroth- and first-order terms then yields
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for surface waves, where
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With the same notation, the expansion of the dispersion relation

for body waves becomes
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Let us now solve the dispersion relation for a few interesting

cases of high-β slabs, enclosed in high-β environments, and

visualize the solutions. Panel (a) of Figure 3 illustrates the

results of the numerical examination in a typical high-β

equilibrium configuration. There is a band of fast body modes

(corresponding to case 29(a)) confined between the sound

speeds, and a band of slow body modes between the internal

Alfvén- and cusp speeds (which represents the conditions

outlined in 24(a). Here, slow surface waves are present as well,

as opposed to the low-β limit.
Next, panel (b) of Figure 3 shows that the dispersion curves

do not change qualitatively when the Alfvén speeds are

interchanged. Besides the slow surface mode, there is still a

band of fast body modes fulfilling the conditions of 29(a) and a

band of slow body modes representative of 24(c). However,

when the sound speeds are interchanged, as may be seen in

panel (c) of Figure 3, only the slow surface waves and the band

of slow body waves appear, while there are no fast waves
present at all.
The splitting of body-mode bands remains allowed in the

high-β limit. Slow body modes adhering to the conditions in
24(c), as well as slow surface modes, are present. One band of
fast body modes is confined between the internal sound speed
and the lowest of the external cusp speeds, as outlined in 29(c).
A second band of fast body modes realizes case 29(b),
comprising waves with < <v v cA T1 ph 2, while a third band of
fast body modes corresponds to case 29(a) and contains waves
with phase speeds vA2<vph<c1.

6.2. Infinite-β Limit

In this limit, magnetic forces can be considered negligible
compared to kinetic ones, and so the approximation vAi≈0 for
i=0, 1, 2 can be taken, and only “fast” (i.e., essentially purely
acoustic) body waves occur. The modified wavenumber coeffi-
cients simplify to the expressions of Equations (64) and (67), and
the first-order terms vanish from the dispersion relation. Using the
pressure balance condition (55), the dispersion relation for body

Figure 3. Solutions to the dispersion relation, similar to Figure 2, but for high-β cases. (a) Slow- and fast-mode body waves, as well as slow surface waves are present
when vA0=0.7c0, vA1=0.2c0, vA2=0.1c0, c1=1.6683c0, c2=1.8742c0, ρ1/ρ0=0.5, and ρ2/ρ0=0.4. (b) The same modes appear when vA0=0.6c0,
vA1=0.95c0, vA2=0.9c0, c1=1.5c0, c2=1.4c0, ρ1/ρ0=0.433, and ρ2/ρ0=0.4934. (c) Only slow surface and body modes can be observed when vA1=0.4vA0,
vA2=0.3vA0, c0=1.4vA0, c1=1.15vA0, c2=1.1vA0, ρ1/ρ0=1.9188, and ρ2/ρ0=2.1738. (d) Three bands of fast body modes, one band of slow body modes, and
a pair of slow surface modes exist when vA0=0.2vA2, vA1=0.7vA2, c0=0.5vA2, c1=1.1vA2, c2=1.8vA2, ρ1/ρ0=0.1751, and ρ2/ρ0=0.071. In each panel, only
a couple of examples in each band of body modes are displayed.
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modes reduces to
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In the symmetric case, Equation (68) further simplifies to

Equations (24) and (25) of Edwin & Roberts (1982). The

condition n0z, m1z, and m2z > 0 is only fulfilled when

( )w< <k c k c k cmin ,2
0
2 2 2

1
2 2

2
2 . The band of fast body waves

therefore exists between the internal sound speed and the lower

of the two external ones. Similarly to the zero-β case, an

infinite number of harmonics exist in the direction of

structuring due to the periodicity of the tangent and cotangent

functions. Introducing the notation ( )=c c cmin ,m 1 2 , the waves

are expected to behave as [ ][ ( ) ]w r r n= +k c kx1m m
2 2 2

0 0
2 .

By using the alternate method described during the derivation

of the general wide-slab approximations, the coefficients νj can

be determined. Eventually, the quasi-sausage mode solutions

are given as
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while the approximation for quasi-kink modes becomes
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In this case, Equations (69) and (70) showcase a simple

connection between the lower external sound speed and the

ratio of the same side’s external density to the internal one for

any given value of the wavenumber and angular frequency of a

body mode of a given order. Similarly to the low-β case, in the

limits of high and infinite plasma β as well, the asymmetry

brings a more complex dependence of the frequencies of

eigenmodes on the set of external parameters characteristic of

the system. The difference in external equilibrium parameters

affects the frequencies of surface and body waves, and

introduces cutoff frequencies to the trapped propagation of

both. Notably, due to this cutoff, there can be more than one

band of either fast or slow body modes. Furthermore, in the

wide-slab limit, the phase speeds of surface modes will diverge.

The latter can lead to a phenomenon known as avoided

crossing, which will be detailed in the next section.

7. The Effect of Varying Magnetic Field and Density Ratios

Avoided crossings of eigenmodes are known to happen in
various physical processes, from quantum mechanics through
coupled spring oscillations to photochemistry (Naqvi &
Brown 1972; Devaquet 1975; Heiss & Sannino 1990;
Novotny 2010). In MHD, they were first found on dispersion
diagrams of magnetoacoustic gravity waves of a plane-stratified
atmosphere by Abdelatif (1990) and further examined by, e.g.,
Mather & Erdélyi (2016). Avoided crossings occur when
constraints in a physical system supporting wave perturbations
preclude the phase speeds of two modes from being equal,
which is accompanied by a transfer of properties between the
modes. Allcock & Erdélyi (2017) showed that avoided crossing
happens between quasi-sausage and quasi-kink modes of a slab

in a nonmagnetic asymmetric environment, when the density
ratio of the two external domains is varied.
In the current study, we find that the quasi-sausage and

quasi-kink eigenmodes of an asymmetric slab in a magnetic
environment perform avoided crossings as well. Figure 4
demonstrates this phenomenon for the slow surface modes
under the equilibrium conditions used in Figure 3(b). This
behavior is not specific to slow-mode solutions, but as the fast
surface mode does not exist in a high-β configuration, our
examination proceeds with the slow surface modes.
A substantial difference from the nonmagnetic case is that

the closest approach between the phase speeds of the slow
quasi-sausage and quasi-kink surface modes does not occur at
equal external densities this time, due to the presence of
magnetic asymmetry. Keeping the external Alfvén speed vA1
fixed while varying the external density ratio ρ1/ρ0 implies that
the strength of the external equilibrium magnetic field B1 is
continuously changing throughout this numerical examination,
too. Thus, the case of equal external densities (ρ1=ρ2) on its
own does not correspond to a symmetric configuration, and the
phase speeds of the quasi-modes will show the greatest
similarity at different values of the changing density ratio.
It may be seen in Figures 4–5 that avoided crossings happen

when either the density ratio on one side, or the ratio between
one of the external equilibrium magnetic field strength values
to the internal one, is changed. In the figure presented, the left-
side external Alfvén speed, vA1, grows from the lower-right to
the upper-left corner. The displacement perturbations of the
quasi-sausage and quasi-kink modes, as a result, show the
effect of avoided crossing, as one follows the diagonal from the
first, through the fifth, to the ninth panel. Figure 5(b) illustrates
how the changing magnetic field ratio shifts the point of closest
approach for different kx0 values.
We conclude that, although both thermodynamic and

magnetic asymmetry can cause avoided crossings to occur,
the behavior of the slow quasi-sausage and quasi-kink modes

Figure 4. The slow quasi-sausage and quasi-kink surface mode solutions of the
dispersion relation are plotted for a fixed value of dimensionless slab width
(kx0), and changing density ratio on one side of the slab. The other density ratio
using the density from the other side of the slab is held fixed at ρ2/ρ0=0.4.
The characteristic speed orderings are identical to those of Figure 3, but c1
varies to satisfy equilibrium pressure balance. The thick black line indicates the
values of the density ratio and the dimensionless slab width, for which the
phase speeds of the quasi-sausage and quasi-kink modes perform a close
approach and avoided crossing.
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Figure 5. (a) The spatial variation of the transverse displacement perturbation (x̂x ) is plotted. The upper (lower) parts of the panel represent the quasi-sausage (quasi-
kink) mode solutions. In each column, the left-side density ratio remains constant, while in each row, the ratio of the left-side external magnetic field to the internal one

( =B B B1 1 0* ) is kept at the same value. The right-side density ratio is held fixed at ρ2/ρ0=0.4. The characteristic speeds are vA0=0.7c0, vA1=0.2c0, vA2=0.1c0,
c2=1.8742c0, but c1 varies to satisfy equilibrium pressure balance. Panel (b) displays solution curves corresponding to different values of B1* for specific values of
the nondimensional slab width (kx0).
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during such approaches is qualitatively similar to the case of an
asymmetric slab with a field-free environment. The consecutive
panels in the rows of Figure 5(a) show that as the symmetric
configuration is approached, the amplitude of the quasi-sausage
mode on the two interfaces begins to change, and the plane
with the highest amplitude eventually shifts from the left side to
the right, following the interface with the lower density ratio. In
the meantime, the highest amplitude of the quasi-kink mode
does the exact opposite, by jumping from the right to the left
boundary of the slab, thus following the interface with the
higher density ratio. The same exchange of properties can also
be observed in the columns of Figure 5(a), this time governed
by the relative magnitudes of the external magnetic fields.

8. Conclusion

Wave dispersion in a magnetic slab embedded in plasma
atmospheres of various structures (magnetic or free of field,
uniform or asymmetric) is a complex problem that has been
studied for decades, and yet still offers new solutions and
discoveries. The associated dispersion relation for wave
propagation, in general, is a transcendental equation. The
dispersion relation often describes a rich spectrum of normal
modes. Investigating a magnetic slab surrounded by an
asymmetric field-free environment, Allcock & Erdélyi (2017)
found that the difference in external conditions leads to
important changes in wave dispersion. All of the solutions are
described by one and the same dispersion relation, and the
eigenmodes show mixed characteristics.

The situation is qualitatively similar in the case of added
magnetic asymmetry in the environment. After deriving the
equation that governs wave dispersion in this configuration
and examining the incompressible limit (Zsámberger et al.
2018), we have now continued to explore various approxima-
tions in important and limiting cases. With the aim of
providing the theoretical background for future applications,
analytically solvable equations descriptive of wave behavior
were retrieved for slabs much thinner or wider than the
characteristic length scale set by the wavelength of perturba-
tions. The presence of a magnetically asymmetric environ-
ment modifies the frequencies of eigenmodes and introduces a
number of cutoff frequencies, as well as new possibilities for
the ordering of characteristic speeds, and therefore, different
phase-speed bands in which trapped solutions remain
possible. All of these various new and interesting cases
deserve their own description, because the analytical expres-
sions retrieved in the thin- and wide-slab, as well as the low-
and high-β limits simplify the calculations to be performed.
Furthermore, they provide clear connections between the
physical parameters describing the system and the properties
(wavenumbers, angular frequencies) of eigenmodes, which
express the influence of environmental asymmetry.

With these approximations, thus, a set of mathematical tools
is provided, which we can use to describe a plethora of
asymmetric solar astrophysical waveguides, such as, e.g., the
global stratification of the solar atmosphere, prominences or
plumes in the corona, and MBPs, light bridges, or light walls in
the photosphere. While these are all promising candidates to
apply our asymmetric slab model to, we emphasize that there
are natural limitations to the applicability. The validity of

considering a solar structure as a slab sandwiched between

asymmetric external layers is case dependent and determined

first and foremost by the extent of local gradients in plasma/
magnetic parameters. Using an asymmetric slab model to

describe a solar structure is a sensible approach if the difference

among the three regions constructed is relatively big compared

to the variation of background parameters within the three

regions (which are essentially averaged out in this description).

Therefore, the spatial scale of local gradients in the direction of

structuring (i.e., the x-direction) should be comparable to the

size of the slab. This assumption may or may not be true in

general; it should be evaluated on a case-by-case basis for the

specific waveguides one intends to study.
For a thin slab, most of the solutions are analogous to the

supported modes of a slab placed in a symmetric magnetic

environment. There are, however, a few more possibilities to

arrange characteristic speeds, not all of which can be attributed

to a direct parallel with a simple symmetrization of external

parameters. For a first approximation for body modes, the

asymmetry mainly shows as quantitative modifications and

cutoffs in their frequency, beyond which the modes would

become leaky. The ratio of internal density to external ones

directly appears in the description of surface waves, while it

does not appear in the approximation for body modes. This

points to the fact that the latter are less sensitive to changes in

the density ratio.
We have also examined how the ratio of plasma kinetic and

magnetic pressures affects supported modes. These approxima-

tions can serve as the basis of direct applications to solar

physics, which is the subject of a follow-up article. Here, it was

detailed how, in a more general high-β environment,

representative of photospheric circumstances, all but the fast

surface mode solutions might appear. However, under upper-

chromospheric/coronal conditions, when the plasma β is low

in all three domains, only body waves are present.
The model becomes even more adaptable by combining the

equations of geometrical and plasma-β approximations, and

provides analytical solutions for various structures in the solar

atmosphere that can be handled as a slab. For example, the

region of coronal hole boundaries might be thought of as an

asymmetric magnetic slab, and plumes have already been

reported to show MHD perturbations.
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Appendix A
Quasi-sausage Surface Mode Solutions in the Thin-slab Limit

The surface wave solution in the thin-slab approximation, with w  k cT
2 2

0
2 , can exist as trapped when the conditions in (9) are

met. However, if this is not the case, the following possibilities exist, depending on the ordering of characteristic speeds in the
different plasma layers:
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All three cases lead back to the results that were obtained for the symmetric slab in a magnetic environment; see, e.g., Edwin &
Roberts (1982), Equations 16(b), (c), (d) accordingly, if we substitute = =v v vA A Ae1

2
2
2 2 , = =c c ce1

2
2
2 2, ρ1=ρ2=ρe.

With different orderings of the characteristic speeds, the asymmetry may give rise to solutions other than those listed above. The
following cases might also occur:
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Solutions (A3), (A4), and (A5) also provide a mathematical description for cases where the same conditions are met; only the i=1,
2 indices of all the characteristic speeds and densities are swapped. To tie them to a symmetric equivalent, however, a “dominant”

condition needs to be chosen for these last three configurations (for example, by choosing the average of the two external parameters

as the value in the symmetric case, and using this average to set the conditions). Such a treatment reveals that Equations (A3) and

(A4) reduce to Equation 16(b) of Edwin & Roberts (1982) if the dominant condition is cT0<cTe. Equation (A3) reduces to Edwin &

Robertsʼs Equation 16(c) with the condition choice < <c c ve T Ae
2

0
2 2 , while relation (A4) reduces to their Equation 16(d) if the

dominant condition is < <v c cAe T e
2

0
2 2. Equation (A5), however, does not have an equivalent in the symmetric case with either

possible ordering of characteristic speeds for that case.

Appendix B
Thin- and Wide-slab Approximations Based on the Full Dispersion Relation

It is possible to utilize the equilibrium information that the slab is thin and obtain the quasi-sausage mode solutions for the full
dispersion relation (6) as well. Keeping in mind that in the thin-slab approximation both ( ) m x m xtanh 0 0 0 0 and

15

The Astrophysical Journal, 894:123 (19pp), 2020 May 10 Zsámberger & Erdélyi



( ) ( )m x m xcoth 10 0 0 0 are valid, we can examine each mode mentioned in Section 3.1. For the quasi-sausage mode whose phase

speed approaches cT0 in the limit of a thin slab, using the substitution w  k cT
2 2

0
2 , the full dispersion relation can be rearranged into a

third-degree equation of the form
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The (real) solutions are then given by
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In order to keep the solutions real, the same six orderings of the characteristic speeds that were detailed using the decoupled
dispersion relation are possible.

Through a similar process, the quasi-sausage mode with w  k c2 2
2
2 can be obtained from the full dispersion relation as
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For a more symmetric configuration, the dispersion relation for the quasi-sausage mode approaching c1=c2=ce simplifies to the

following equation:
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For the quasi-kink mode with w  k vA
2 2

1
2 , the solutions become
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For the even more symmetric case, when the phase speed is approaching = =v v vA A Ae1 2 , the dispersion relation for the quasi-kink

mode simplifies to
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For another type of asymmetric quasi-kink mode, namely, with w  k cT
2 2

1
2 , the solutions become
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Essentially, the same considerations apply for the derivation of body-mode solutions starting from the full dispersion relation (20),
as we used for the algebraic manipulations of the decoupled dispersion relation. For slow body waves in a thin slab, the angular
frequency tends toward ∣ ∣kcT0 or the appropriate cutoff frequency (see the details after Equation (25)) from above, and ∣ ∣  ¥n0 .
Now, for the expression ( ( ) ( ))- +n n x n xtan cot0 0 0 0 0 to remain bounded as kx 00 , n0x0 should approach values that satisfy
( ( ) ( ))- + =n x n xtan cot 00 0 0 0 . The roots of this equation are multiples of π/4; therefore,

( )p=
-

n x
j2 1

4
, B80 0

where j=1, 2, 3 K. Using this condition, the coefficients ν=νj in Equation (25) can be determined and an approximation for ω2

provided, which will describe both quasi-sausage and quasi-kink modes. In a wide slab, slow body modes are still described by the

approximation of Equation (38). The angular frequency will therefore approach ∣ ( )∣k v cmin ,A0 0 (potentially with some offset) from

below. Taking this into consideration, in a high-beta slab, the same condition as in (B8) can be set. However, if the slab is filled with

low-beta plasma, then the coefficients νj for quasi-sausage and quasi-kink modes can be determined by ensuring that

( ( ) ( ))- +  ¥n x n xtan cot0 0 0 0 , which means for integers j that

( )p=n x
j

2
. B90 0

Similarly, fast body waves in a thin slab can be described by Equation (30). To determine the coefficients νj, the condition (B8)
applies if the slab is in a low-beta environment, and Equation (B9) should be used in the case of a high-beta environment. In the wide
slab, the approximation in Equation (42) can still describe fast body waves, and the values of νj can be calculated by prescribing the
condition (B8) if vA0>c0, and fulfilling Equation (B9) if the opposite is true.

Appendix C
Low- and High-β Approximations Based on the Full Dispersion Relation

Utilizing the modified wavenumber coefficients (46) and (45), the full dispersion relation for surface waves can be expanded (to
first order) to the following form for a configuration in which the plasma β is low everywhere:

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

[ ] [

( ) ] [ ( ) ] } { }

{ } [ ] [ ] ( )

t
t

t
t

w t
t

w w gb g b b

gr w b
r

w b
r

w t
t

+ + + - + - - +

+ - + + - - +

- - - + - + =

L m L m L m L k v L

x k v L m L k v x L m L

m k v
m

k v
m

k v

2 2
1 1

2

1 1

2

1

1

2

1

2

1
0. C1

A z B z C z

z

z C z

z
A z

z

B

A C z B A C z A

z A
z

A
z

A z

z

0 0
2

0 0 0 0
0

0 0 0
0

2
0

2 2
0
2

0
2 0

0
2

0
2 2

0 0
2

0
2

0
2 2

0 0 0
2

0 0 1 2

0 0
2

0
2 2

1
1

1

2
2

2 2
2

2

2

2
1

2 2
0

0

Here,

( )

( )( ) ( )

r

r r
w

w w

= -

= - -

L m m k v

L m k v k v

,

, C2

A z z A

B z A A

0
0
2

1 2

1 2
2

0
2 2

0 0
2 2

1
2 2 2

2
2 2

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

( )

( )
r

r
w

r
w

t

= - + -

=

L m
m

k v
m

k v

m x

,

tanh ,

C3
C z

z
A

z
A

z z

0 0 0
1

1

2
2

2 2 2

2

2
1

2 2

0 0 0

18

The Astrophysical Journal, 894:123 (19pp), 2020 May 10 Zsámberger & Erdélyi



and miz (i=0, 1, 2) are defined in Equation (50). For body waves, using the expressions from Equations (53) and (C3) and with

( )=T n xtanz z0 0 0 , the expansion, to first order, becomes
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Similarly, if the plasma β is high in all three domains, the expansion of the dispersion relation (to first order) is
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and miz (i=0, 1, 2) are defined in Equation (64), and further τ0z is defined in Equation (C3). Using the same factors, as well as

Equation (67), and the notation ( )=T n xtanz z0 0 0 , the expanded full dispersion relation for body waves in a high-β configuration can

be written as
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