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Abstract 

In developing countries, childhood mortality rates are not only affected by socioeconomic, demographic, and health 
variables, but also vary across regions. Correctly predicting childhood mortality rate trends can provide a clearer 
understanding for health policy formulation to reduce mortality. This paper describes and compares two prediction 
methods: Weighted Markov Chain Model (WMC) and Autoregressive Integrated Moving Average (ARIMA) in order to 
establish which method can better predict the annual child mortality rate in Nigeria. The data for the study were 
Childhood Mortality Annual Closing Rates (CMACR) data for Nigeria from 1964-2017. The CMACR provides random 
values changing over time (annually), so we can analyze the mortality closing rate and predict the change range in the 
next state. Weighted Markov Chain (WMC), a method based on Markov theory, addresses the state and its transition 
procedures to describe a changing random time series. While the Autoregressive Integrated Moving Average (ARIMA) 
is a generalization of an Autoregressive Moving Average (ARMA) model. The findings indicate that the ARIMA model 
predicts CMACR for Nigeria better than WMC. The WMC entered in a loop after two iterations, and we could not use it 
effectively to predict the future values of CMACR. 

Keywords: weighted Markov chain, autoregressive integrated moving average, under-five mortality rates, forecasting, 
prediction 

1. Introduction 

Childhood mortality reflects Social Economic Status (SES) and Quality of Life (QoL). In developing countries, 
mortality rates are not only affected by social, economic, demographic, and health variables, but also vary across 
regions and districts (Odimegwu & Mkwananzi, 2016). Globally, nearly 7 million children die each year before they 
reach their fifth birthday. While India (24%) and Nigeria (11%) together account for more than one-third of all 
under-five deaths (UNICEF, 2014; You et al., 2011). Nigeria Demographic and Health Survey (NDHS) reports indicated 
that the under-5 mortality rate decreased from 201 deaths per 1,000 live births in 2003 to 128 deaths per 1,000 live 
births in 2013 (National Population Commission (NPC) & ICF International, 2004, 2014). However, by 2015, Nigeria 
could not achieve the millennium development goal (MDG) target of reducing under-5 mortality to 64 deaths per 1,000 
live births and infant mortality to 30 deaths per 1,000 live births (Government of Federal Republic of Nigeria, 2010). 
The estimated infant mortality rate in 2003 was 100 deaths per 1,000 live births (National Population Commission 
(NPC) & ICF International, 2004), which decreased to 75 deaths per 1,000 live births in 2008 (National Population 
Commission (NPC) & ICF International, 2009) and further to 69 deaths per 1,000 live births in 2013 (National 
Population Commission (NPC) & ICF International, 2014). The pattern shows that about 29 per cent of deaths in 
children aged under five occur during the neonatal period (37 deaths per 1,000 live births), and 24 per cent occur during 
the post-neonatal period (31 deaths per 1,000 live births) (National Population Commission (NPC) & ICF International, 
2004). Just as important as childhood mortality is to the economic status of a country, so are many other childhood 
morbidities. Accurate prediction of these future patterns is of great value to these countries to plan to alleviate the 
burden of these health conditions. Many new prediction models are available now in the li terature that may provide 
more accurate prediction of time series data. However, model performance still needs to be compared and contrasted. 
One  such model is the Weighted Markov Chain (WMC). As enumerated above, it is clear that Nigeria , has 
experienced a gradual decline in Child Mortality Annual Closing Rates (CMACR), but the extent to which this will 
continue to decline into the future and the model which can make this prediction better is not very clear. The aims of 
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this paper, therefore, are to describe and compare two statistical models (Weighted Markov Chain (a relatively new 
model) and Auto-regressive Integrated Moving Average (an established model)) for predicting time series data using 
World Bank dataset of annual childhood (aged<5) mortality rates in Nigeria between 1964 and 2017 (The World Bank, 
2018). Of importance in the dataset is that there are elements of seasonality and trends in it. Our focus for both models 
is to forecast the possibility of a future state of under-5 mortality in Nigeria based on historical data of childhood 
mortality. However, both methods have  different approaches to transforming the value of mortality to the range of 
dynamic variables.  

2. The Theoretical Frame 

2.1 The Weighted Markov Chain (WMC) 

WMC method is based on Markov theory and  mainly studies the state and its transition procedures,  describing a 
dynamic change process of a random time series (Zhou, 2014). The difference between WMC and the traditional 
Markov Chain (MC) prediction method is in the weight computed for the initial state and that it is less dependent on 
historical data (Zhou, 2014). Researchers using WMC believe that predicted values derived from it, the accuracy and 
practicability are very significant, and as such recommend its study and promotion (Peng et al., 2010; Zhou, 2014). 
While using this model for prediction in previous studies, some researchers used it solely, and some  in combination 
with other mathematical models (such as fuzzy mathematical models, linear time series models) (Peng et al., 2010; 
Zhou, 2014). An earlier study has reported that WMC was able to forecast Chinese stock closing prices (Zhou, 2014). 
The result obtained was closer to the actual value when compared with the result derived using the traditional Markov 
Chain model (Zhou, 2014). Also, in another study, while predicting the exchange rate ratio between the US Dollar and 
the Euro, the US Dollar, and the Swiss Franc, the prediction errors using WMC were as low as between 1.4% and 3.0% 
(Kordnoori et al., 2015). However, Sadeghifar et al. (Shahdoust et al., 2015) used WMC and compared it with two other 
time series models including Holt Exponential Smoothing (HES) and Seasonal Auto-regressive Integrated Moving 
Average (ARIMA) in the prediction of hepatitis B (HB) monthly incidence rates in Hamadan Province, western Iran, 
and the result showed that HES  most accurately predicted of HB incidence rates (Shahdoust et al., 2015). 

2.2 Auto-regressive Integrated Moving Average (ARIMA) 

The ARIMA model, also known as the Box-Jenkins model, is widely regarded as the most efficient forecasting 
technique in social science and is used extensively for time series analysis (Adebiyi et al., 2014). ARIMA is a 
generalization of an ARMA model whose basic assumption is that the time series is stationary. If that is not the case, 
Box and Jenkins proposed differencing it to achieve stationarity by incorporating 'I', hence 'Integrated' (Opare, 2015). 
So, ARIMA is a model built to serve as a basis of standard structures in time-series data, and as a result, provides a 
simple yet powerful method for making significant time-series predictions (Adebiyi et al., 2014). We can use the 
ARIMA model in a situation where data exhibit evidence of non-stationarity and where  initial differencing steps 
correspond to eliminate the non- stationarity (Chetty & Narang, 2017a; Katchova, 2013).  Researchers have also used 
ARIMA in the future forecast of disease burden. In China, when used on the incidence of Haemorrhagic Fever with 
Renal Syndrome (HFRS), it fit the fluctuations in HFRS frequency (Adebiyi et al., 2014). On animal infectious diseases, 
the predicted incidence of the ARIMA model was consistent with the actual incidence of Newcastle disease (Liu et al., 
2011). 

The focus of this present study is not to establish that  these models (WMC and ARIMA) can predict under-5 mortality 
rate in Nigeria better than the models currently being used by UNICEF and its allies (The World Bank, 2018), but rather 
to identify the strengths and weaknesses of this relatively new prediction model (WMC) in comparison with another 
well-established time series prediction model (ARIMA) on a data set that is presumed to be seasonal and non-stationary. 
Given the above, the study hypothesized that the Weighted Markov Chain (WMC) model predicts the time series data 
more accurately than Auto-regressive Integrated Moving Average (ARIMA) while using World Bank Child Mortality 
Annual Closing Rates (CMACR) in Nigeria. 

3. Data and Methods 

3.1 Data 

The data used for this study are from UNICEF/World Bank annual report for Nigeria Under-5 mortality (U5M) from 
1964 to 2017 (UNICEF, 2018). The Child Mortality Annual Closing Rate (CMACR) of under-5 is a random value 
changing over time (annually). It is the probability per 1000 live birth that a new-born child will die before the fifth 
birthday (The World Bank, 2018).  ݏ݁ݐܴܽ ݕݐ݈݅ܽݐݎܯ ൌ ே  ௗ௧  ௗ ௗழହ  ௧ ௬  ௦௧௧௦  ௗ ௗழହ  ௧ ௬  ܺ ͳͲͲͲ                                  (1) 
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The UNICEF/World Bank sourced mortality data from countries specific vital registration systems and estimates based 
on sample surveys and censuses (The World Bank, 2018). The computations used all the available parameters that 
reconcile differences across countries to be able to make comparisons (The World Bank, 2018). 

Table 1 represents the data set of annual median (The World Bank, 2018; UNICEF, 2018) estimates for Nigeria under-5 
mortality rates from 1964 to 2017. The data witnessed a sharp, steady decline from 1964 to 1982. It began to rise slowly 
from 1984 (with a mortality rate of 207.7) to 1989 (with a mortality rate of 211.1).  

Table 1. Under-5 Mortality Rates for Nigeria per 1000 live births (1964-2017) 

Years Rates Years Rates Years Rates Years Rates 
1964 324.8 1978 223.1 1992 210.8 2006 151.5 
1965 318 1979 217.8 1993 209.9 2007 145.7 
1966 311.2 1980 213.7 1994 208.8 2008 140.1 
1967 304.7 1981 210.6 1995 206.9 2009 134.7 
1968 297.9 1982 208.8 1996 204.3 2010 129.6 
1969 291 1983 208 1997 200.7 2011 124.7 
1970 283.7 1984 208.1 1998 196.4 2012 119.9 
1971 275.9 1985 208.8 1999 191.5 2013 115.6 
1972 267.9 1986 209.9 2000 186.2 2014 111.6 
1973 259.7 1987 210.8 2001 180.6 2015 107.5 
1974 251.5 1988 211.6 2002 174.9 2016 103.8 
1975 243.6 1989 212 2003 169.1 2017 100.2 
1976 236.1 1990 211.9 2004 163.2   
1977 229.2 1991 211.4 2005 157.3   

Extracted from the graph: https://data.unicef.org/country/nga/(UNICEF, 2018)  

The table also revealed that Nigeria has continued to witness a steady decline in the median estimates of under-5 deaths 
from 1990 to 2017. Between 1990 and 1999, the decline was slower However between 2000 and 2015, the period of 
millennium development goals was in operations, the under-5 deaths declined sharply. So, from the data, we can 
analyze the mortality closing rate and predict the change range in the next state. However, 50 annual reports from 1964 
to 2013 were purportedly selected and used in the analysis to derive the WMC and the ARIMA models, while we used 
2014 to 2017 (Zhou, 2014) for confirmation of prediction accuracy.  

3.2 Methods 

3.2.1 Weighted Markov Chain 

The approach adopted here is as proposed in Peng et al. (Peng et al., 2010) modified and used in (Kordnoori et al., 2015; 
Shahdoust et al., 2015; Zhou, 2014). The steps were as follows: 

i. We computed the number of clusters (i.e. the number of data points that can be combined for similarities) 
to divide the data into, using k-mean clustering methods. We can also use the mean and mean square error 
of the data values (Zhou, 2014). 

ii.  Divided the data values {Xn} = X 1, X2 … Xn into the chosen number of clusters (say n), such that fij, are the 
elements in a shift matrix starting with cluster i moving to cluster j. 

iii.  In order to make use of WMC, we carry our ‘Markov property’ verification of the known data time series 
(Zhou, 2014). 
The marginal probability estimates, which is the marginal frequency (sum of elements along each column 
in the shift matrix) divided by the total, are determined by: 

 ൌ  σ ݂ୀଵ σ σ ݂൘         (2) 

  The test statistic for large n, follows a chi-square distribution with (n-1)2 degree of freedom is given as: ݔଶ ൌ ʹ σ σ ݂ ቚ݈݊ ೕ ቚ          (3) 

Where pij  is the transition matrix from the cluster, i to cluster j. The data values {Xn} is  said to conform 
to the Markov property, provided ݔଶ ൌ ఈǡሺିଵሻమଶݔ . 

https://data.unicef.org/country/nga/
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iv. Compute each order autocorrelation coefficient rk of the data values {Xn} and the corresponding weight ݓ  of Markov Chain for the various steps using: ݎ ൌ  σ ሺ௫ିషೖసభ  ௫ҧሻሺ௫శೖି ௫ҧሻσ ሺ௫ି ௫ҧሻమసభ           (4) 

   and  ݓ ൌ  ȁೖȁσ ȁೖȁೖసభ            (5) 

where m is the maximum order of prediction inquiry; ݎ is the k order autocorrelation coefficient, such 
that ȁݎȁ  ͲǤ͵;  

xi is the CMACR for the ith year; ݔҧ  is the mean of data values {Xn};  

n is the length of the reference sample data values; ݓ is the weight of Markov Chain with a step of k orders. 

v. The Prediction of the CMACR Range.   
Here, we combine the initial state Si as the corresponding state of CMACR in the one-year past with the 
row vector of its corresponding transition probability matrix results in state transition probability vector in 
the year as follows (Kordnoori et al., 2015): ሺሻ ൌ ൫ଵሺሻǡ ଶሺሻǡ ǥ ǥ ǡ ݅   ሺሻ൯ǡ א  (6)            ܧ

We obtain the m-order weighted state transition probability matrix as follows: 

ቌఈଵሺሻఈଶሺሻ ڮ ڭఈሺሻ ڰ ఉଶሺሻఉଵሺሻڭ ڮ ఉሺሻ ቍ ǡߙ   Ǥ Ǥ ǡܵ߳ߚ Ǥߙ Ǥ ߚ  ݉      (7) 

Then, predict the state of the data values {Xn} in the future using the data values {Xn} for 2012 and 2013 as the initial 
state (S) and the corresponding transition probability matrix to predict the data values {Xn} for 2014 using the formula:  ൌ  σ ሺሻୀଵݓ ǡ ݅ א  (8)                    ܧ

The forecasted state of data values {Xn} by WMC is max {Pi, i א ܵሽ. We used R-Statistical Programming Package 
version 3.5.3 (R Version 3.5.3, 2019) for the analysis of WMC,.  

3.2.2 Auto-regressive Integrated Moving Average (ARIMA) 

ARIMA model has a unique condition that the time series data are either stationary or can be transformed into it (Chetty 
& Narang, 2017a; Opare, 2015). The prediction equation is a linear regression such that the independent variables are 
the lags of the dependent variable including/or lags of error terms (Nau, 2014). 

ARIMA is simply the ‘Integrated series (I)’ of two lags series: the stationary part known as ‘auto-regressive (AR)’ and 
the forecast errors part known as ‘moving average (MA)’. When an ARMA (p,q) process carries a d-order differencing, 
it is then known as ARIMA(p,d,q) (Zaiontz, 2012). The p refers to the number of autoregressive terms, d as the degree 
of differencing, while q refers to the number of moving average terms. The mathematical formulation of the ARIMA 
model is well established in the literature (Nau, 2014).  In general, with lag-operator set as B, ARIMA (p,d,q) is given 
as (Deljac et al., 2011): ൫ͳ െ σ ୀଵ ൯ሺͳܤ െ ሻௗܤ ௧ܻ ൌ ൫ͳ െ σ ୀଵߠ  ௧      (9)ߝ൯ܤ

In order to use ARIMA, the model requires that we transform the original series into stationary data through 
differencing at different levels.  

The steps involved in formulating ARIMA model, as stated in (Opare, 2015) include: 

1. Model Identification: We carried out a visual inspection on the graphical plot to confirm the stationarity in the 
series. Stationarity means the existence of constant mean, and variance    

2. Model Estimation: We used Augmented Dickey-Fuller (ADF) to test the null hypothesis that the data has a 
unit root and, therefore, non-stationary (Opare, 2015). ADF usually will check the correlation in error terms by 
adding lags. Two values are most important to make confirmation: Z(t) and Mackinnon p-value for Z(t) 
(Chetty & Narang, 2017a). For stationarity, Z(t) should have a sizeable negative number, and the p-value 
should be significant, at least on a 5% level (Chetty & Narang, 2017b; Opare, 2015). To achieve this resolution, 
we add lags and subsequently taking the differencing (Chetty & Narang, 2017b).  
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For instance, a series that needs no difference (d=0) has the forecasting equation as ݕ௧ ൌ ௧ܻ ǡ where Y is the 
original series and y is the difference series at time t. Also, for d=1 (first difference): ݕ௧ ൌ ௧ܻ െ ௧ܻିଵ, this 
addresses linear trends, for d=2 (second difference): ݕ௧ ൌ ௧ܻ െ ʹ ௧ܻିଵ  ௧ܻିଶ addresses quadratic trends, this 
is usually the first-order difference of the first-order difference (Zaiontz, 2012). For d = 3 (third difference): ݕ௧ ൌ ௧ܻ െ ͵ ௧ܻିଵ  ͵ ௧ܻିଶ െ ௧ܻିଷ addresses cubic trends, etc., so that, d = n (nth difference) will address the nth 
- ordered trends. The rule of thumb is that over differencing could introduce into the model large variances that 
could result in greater errors in the prediction value. 

The model estimation also involves the determination of the time lags (p,q) for auto-regression (AR) and 
Moving average (MA). We can achieve it by plotting the correlogram for Autocorrelation Function (ACF) and 
Partial Auto-Correlation (PAC) for third differencing 

3. Model Diagnostic checks: We carried out a Portmanteau test for white noise to know if the residual variable 
follows a white noise process (Stata, 2017). Furthermore, we plot the ‘fitted’ values with the actual values on a 
two-way graph with standard error as scattered points (Chetty et al., 2018), 

4. Forecasting: In general, the forecast equation for the differencing series is: ݕ௧ᇱ ൌ ߤ   ଵݕ௧ିଵ  ڮ Ǥ ݕ௧ି െ ߠଵ݁௧ିଵ ǥ Ǥ െߠ݁௧ି  ߳௧     (10) 

In the situation where differencing has been introduced, there was need to reverse the differencing to obtain the original 
series. However, the software  does it automatically (Nau, 2014).  

In general, the transformation is done using this substitution (Opare, 2015): ݕ௧ ൌ ሺͳ െ ሻௗܤ ௧ܻ          (11) 

For a 3rd differencing, for instance, the reverse equation will be: ௧ܻᇱ ൌ ௧ᇱݕ   ͵ ௧ܻିଵ െ ͵ ௧ܻିଶ  ௧ܻିଷ       (12) 

The chosen ARIMA (p,d,q) model was used to forecast values for the period 2014 to 2017. We used Stata 14 SE for 
academic user (Stata Corporation, 2014) in the computations 

3.3 Measure of Comparison 

The Mean Absolute Percentage Error (MAPE), is widely used statistical measure of forecast accuracy (Stephanie, 2017). 
The fact that MAPE is computed in percentage makes it easy to interpret (ForecastPRO, 2011). In this study, we apply 
MAPE as a measure of accuracy by converting the errors between the actuals and the estimates into percentages (Opare, 
2015). The lower the MAPE, the more accurate the forecast. ܧܲܣܯ ൌ ቀଵ σ ȁ௧௨ିி௦௧ȁȁ௧௨ȁୀଵ ቁ ͳͲͲ       (13) 

4. Results 

4.1 WMC Model in Forecasting (CMACR) in Nigeria 

Changes in Nigeria CMACR was divided into two states blocks according to k-means cluster analysis as 'rate below' 
and 'rate above' with the corresponding state space as E = {1, 2}. Table 2 showed the results. 

Table 2. State Division Cluster of CMACR  

Cluster interval Designation 

1 X< 200.6 Rate Below 

2 x> 200.5 Rate Above 

To verify the Markov property to justify the use of WMC, the chi-square of 68.98 was higher than the table value of 
3.84 at 0.05 level of significance, so the annual closing CMACR conformed to the ’Markov property’; therefore WMC 
prediction theory can be applied (Zhou, 2014). 

Table 3. Each Order Autocorrelation Coefficient and the Weight of each Step 

k 1 2 0.492 0.508 ࢝ 0.952 0.981 ࢘ 
Table 3 displayed the results of the computation of each order autocorrelation coefficient rk of the sequence parameter 
values and the corresponding weights. Table 4 displayed the result of the prediction of CMACR for 2014 using 2012 
and 2013 as the initial years 
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Table 4. The Prediction about CAMCR for 2014 

Initial year state Retention time State of weight 1 2 

2013 2 1 0.508 1.000 0.000 

  0.537 0.463 0.941 0.059 0.492 2 2 2012

The result in table 4 showed that max {pi,݅ א  indicating that CMACR annual closing rate in 2014 was in ,0.537 = {ܧ
cluster 1 (i.e., ‘Rate below’), which met the block interval of X < 200.6 with a probability of 53.7%. From the historical 
data, the actual closing rate was 111.6 and consistent with the prediction. 

Also, we perform similar iteration such that the state in 2014 served as one of the initial states for predicting the annual 
closing rate in 2015. 

Table 5. The Prediction about CMACR for 2015 

Initial year State Retention time State of weight 1 2 

2014 2 1 0.508 1.000 0.000 

  1.000 0.000 0.000 1.000 0.492 1 2 2013

The result in table 5 showed that max {pi, ݅ א  indicating that CMACR closing in 2014 was also in cluster 1 ,1.000= {ܧ
(i.e., ‘Rate below’), which met the block interval of X < 200.6 with a probability of 100%. From the historical data, the 
actual closing rate was 107.5 and consistent with the prediction. 

4.2 ARIMA Model in Forecasting (CMACR) in Nigeria 

4.2.1 Model Identification 

Fig 1 indicated that there is trending downward during 1964-2013 with minor fluctuations.  

 
Figure 1. Diagram for CMACR Trend 1964 - 2013 

So, CMACR cannot have constant mean and variance; hence, the primary assumption of stationarity cannot be 
confirmed (Adebiyi et al., 2014; Katchova, 2013; Liu et al., 2011; Opare, 2015). 

4.2.2 Augmented Dickey-Fuller (ADF) Test 

The results are shown in Table 5 below: 

Table 6. The Differencing of CAMCR for 1964 - 2013 

S/N Lags/Differencing Z(t) P-values Remarks 

1 Lag=0 -2.03 0.27 Not Significant 

2 Lag=10 0.63 0.99 Not Significant 

3 Differencing = 1 -0.68 0.97 Not Significant 

4 Differencing = 2 -1.44 0.84 Not Significant 

5 Differencing = 3 -7.90 <0.0001 Significant 

6 Differencing = 4 -19.22 <0.0001 Significant 

We observe that from table 6, the third differencing Z(t) value (-7.90) is a sizeable negative & corresponding p-value is 
also significant (0.0001), so the null hypothesis, which states that the series has a unit root was rejected. Therefore, we 
considered the third differencing for further studying. 
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4.2.3 Model Estimation 

 

Figure 2. Diagram for ACF 

From the diagram in Fig 2, only the 2nd lag is outside the shaded portion (acceptable region), so, we set AR at 2. This 
AR (2) means that the AR model needs only two autoregressive terms (i.e., AR of order 2).  

 

Figure 3. Diagram for PACF 

Similarly, in figure 3, for the 3rd differencing correlogram of PACF, the 2nd lag is coming out of the shaded region, so we 
set MA at 2. So far we are  able to identify only one plausible model (2, 3, 2); therefore, there may be no need to make 
a choice using Akaike’s Information Criterion (AIC) and Bayesian information criterion (BIC) 

4.2.4 Model Adequacy 

The portmanteau Q statistic is 26.81 with a p-value of 0.26, so we cannot reject the null hypothesis indicating that the 
residual variance is indeed a white noise process 

Furthermore, after plotting the ‘fitted’ values with the actual values on a two-way graph with standard error as scattered 
points (Chetty et al., 2018), it can be seen clearly that the predicted values of CAMCR do not differ from the actual 
values. 

 

Figure 4. Two-way graph of Actual and Fitted Values of CAMCR 

4.2.5 Forecasting 

The chosen ARIMA model is used to forecast values for the period 2014 to 2017, as shown on the table below: 

-0.
40

-0.
20

0.0
0

0.2
0

0.4
0

0 5 10 15 20
Lag

Bartlett's formula for MA(q) 95% confidence bands

-0.
50

0.0
0

0.5
0

0 5 10 15 20
Lag

95% Confidence bands [se = 1/sqrt(n)]

10
0

15
0

20
0

25
0

30
0

35
0

100 150 200 250 300
y prediction, one-step

95% CI Fitted values

rate



 
 
http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 9, No. 3; 2020 

20 

Table 6. Comparing the Actual and Forecast Values for CAMCR per 1000 live births per year 

Period 2014 2015 2016 2017 ……. 2030 

CAMCR Actual 111.6 107.5 103.8 100.2 …….  

CAMCR Forecast 111.58 108.18 105.36 103.23 ……. 139.43 

The Mean Absolute Percentage Error (MAPE) for the forecast (2014 to 2017) is 1.3% signifying that the ARIMA model 
was off by a yearly average of 1.3%. This error is relatively low and therefore near a perfect fit. However, using the 
ARIMA model to forecast mortality rate for 2030 resulted in a rate of 139/1000 live births showing a rise in CAMCR 
for Nigeria. 

5. Discussion 

This study used WMC and ARIMA to predict the CMACR for Nigeria Under-five mortality rates. As for WMC, we 
classified CMACR into 2 clusters after having examined the performances of other clusters (3,4,5,6,7). The Markov 
Chain property was checked and found to be adequate to apply WMC. However, because of the nature of the data 
(non-stationary data), WMC could not produce a reasonable conclusion because it entered into a loop after the second 
iterations (after predicting for two periods, this causes the predicted values to remain in cluster one. Also, because of the 
open-ended interval created by using two clusters in WMC, the exact value for the forecasts could not be determined; 
therefore, accurate prediction becomes difficult. This finding agrees with Sadeghifar et al. (Shahdoust et al., 2015). So, 
WMC is weak in its ability to model effectively a data set including trends and seasonality. ARIMA, on the other hand, 
proved to be a better and more straight forward approach. The original data were non-stationary. We used third-order 
differencing to bring it into stationarity. The chosen model, ARIMA (2, 3, 2) gave a near-perfect fit with MAPE of 
1.28%. So, because of the findings above, the hypothesis that WMC predicts CAMCR better than ARIMA was rejected. 
Therefore, we conclude that ARIMA can predict more accurately the CAMCR in Nigeria than WMC. Interestingly, the 
predicted values with ARIMA shows that the CMACR will continue to decrease up to 2022, after which it will increase 
such that the rate as of 2030 will be 139.4. However, the limitation from this finding is that the ARIMA model is weak 
in its ability to predict for a medium-term and long-term range (Deljac et al., 2011). The reason being that ARIMA 
convergences toward the mean of the auto-regressive part of the series (Huijskens, 2016), so we cannot rely on the 
efficacy of the 2030 forecast.   

6. Recommendations for Future Study and Policy Implementation  

More studies on WMCare needed to resolve the pitfall identified in this study. However, the implication here for 
policy-makers or agencies in charge of monitoring the under-five mortality rate in Nigeria is that, if the current 
approaches are continued, , the country will be unlikely to achieve the Sustainable Development Goals (SDGs) for 
2030. 
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