

This is a repository copy of CH_2OO Criegee intermediate UV absorption cross-sections and kinetics of $CH_2OO + CH_2OO$ and $CH_2OO + I$ as a function of pressure.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/159396/

Version: Supplemental Material

Article:

Mir, ZS orcid.org/0000-0003-2223-2833, Lewis, TR, Onel, L et al. (3 more authors) (2020) CH₂OO Criegee intermediate UV absorption cross-sections and kinetics of CH₂OO + CH₂OO and CH₂OO + I as a function of pressure. Physical Chemistry Chemical Physics, 22 (17). pp. 9448-9459. ISSN 1463-9076

https://doi.org/10.1039/D0CP00988A

This journal is © the Owner Societies 2020. This is an author produced version of an article published in Physical Chemistry Chemical Physics. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

CH₂OO Criegee Intermediate UV absorption cross-sections and kinetics of CH₂OO + CH₂OO and CH₂OO + I as a function of pressure

Zara S. Mir,¹ Thomas R. Lewis,¹ Lavinia Onel,¹ Mark A. Blitz,^{1,2} Paul W. Seakins,¹ Daniel Stone^{1*}

¹School of Chemistry, University of Leeds, ²National Centre for Science, University of Leeds

*Corresponding author: <u>d.stone@leeds.ac.uk</u>

Supplementary Information

Determination of $\sigma_{CH2OO,max}$ [CH₂OO]_{*t*=0} *l* and $\sigma_{CH2OO,max}$

The product $\sigma_{CH2OO,max}$ [CH₂OO]_{*t*} *l* was determined as described in the main text, where $\sigma_{CH2OO,max}$ is the peak CH₂OO UV absorption cross-section, [CH₂OO]_{*t*} is the concentration of CH₂OO, and *l* is the effective path length of the probe beam through the reaction cell.

The initial concentration of CH₂OO was determined from the observed depletion of CH₂I₂, which gives the initial concentration of CH₂I radicals, and our previous measurements of CH₂OO yields from CH₂I + O₂ as a function of pressure.¹ In order to determine $\sigma_{CH2OO,max}$ [CH₂OO]_{*t*=0} *l*, and thus $\sigma_{CH2OO,max}$, it was necessary to fit the time profile for the absorbance at the wavelength at which the maximum cross-section is observed, $A_{t,\lambda,max} = \sigma_{CH2OO,max}$ [CH₂OO]_{*t*} *l*, to a mixed first- and second-order kinetic loss equation (Equation S1):

$$A_{t,\lambda,\max} = \frac{k_1 A_{0,\lambda,\max}}{k_1 e^{k_1 t} - 2\left(\frac{k_2}{\sigma_{\text{CH2OO,max}} l}\right) A_{0,\lambda,\max} + 2\left(\frac{k_2}{\sigma_{\text{CH2OO,max}} l}\right) A_{0,\lambda,\max} e^{k_1 t}}$$

(Equation S1)

where $A_{0,\lambda,\max} = \sigma_{CH2OO,\max}$ [CH₂OO]₀ *l* (the value of [CH₂OO]₀ *l* is determined from the observed product of the depletion of CH₂I₂ and path length, Δ [CH₂I₂] *l*, and the pressure dependent CH₂OO yield from CH₂I + O₂), *k*₁ is the first-order loss component for CH₂OO, primarily resulting from diffusion out of the probe beam, and *k*₂ is the second order loss component for CH₂OO owing to both the CH₂OO self-reaction and the reaction of CH₂OO + I. Figure S1 shows the fit result.

The effective path length, l, was determined from experiments in which the absorbance owing to IO from a single pass of the probe beam through the reaction cell, which overlapped completely with the photolysis laser and thus has a path length equal to the 1.5 m length of the reaction cell, was compared to the absorbance owing to IO measured simultaneously from the multipass arrangement. For seven passes of the probe beam through the cell, l was determined to be (443 ± 21) cm, and for thirteen passes of the probe beam through the cell, l was determined to be (1136 ± 143) cm. Although the path length, l, was experimentally determined for these configurations of the probe beam, it should be noted that the determination of $\sigma_{CH2OO,max}$ is independent of the path length in this analysis.

^{1.} Stone, D.; Blitz, M.; Daubney, L.; Ingham, T.; Seakins, P. CH2OO Criegee biradical yields following photolysis of CH₂I₂ in O₂. *Physical Chemistry Chemical Physics* **2013**, *15* (44), 19119-19124

Figure S1: Temporal profile of the product $\sigma_{CH2OO,max}$ [CH₂OO]_t $l = A_{t,\lambda,max}$ (green, orange and purple points) determined from the observed absorbance at each time point and the respective fit of the mixed order equation (Equation S1, green, orange and purple lines) to the data. For all these data p = 70 Torr. For the data shown in green, $[O_2] = 2.19 \times 10^{17}$ cm⁻³ and $[CH_2I_2] = 9.72 \times 10^{12}$ cm⁻³, with the fit to the data giving $A_{0,\lambda,max} = \sigma_{CH2OO,max}$ $[CH_2OO]_{t=0} l = (4.55 \pm 0.03) \times 10^{-3}, k_1 = (34.3 \pm 1.3) \text{ s}^{-1} \text{ and } k_2 / \sigma_{CH2OO,max} l = (21614 \pm 309) \text{ s}^{-1}.$ For the data shown in orange, $[O_2] = 1.49 \times 10^{17}$ cm⁻³ and $[CH_2I_2] = 1.91 \times 10^{13}$ cm⁻³, with the fit to the data giving $A_{0,\lambda,\text{max}}$ $= \sigma_{CH2OO,max} [CH_2OO]_{t=0} l = (3.31 \pm 0.03) \times 10^{-3}, k_1 = (20.6 \pm 2.6) \text{ s}^{-1} \text{ and } k_2 / \sigma_{CH2OO,max} l = (19048 \pm 559) \text{ s}^{-1}.$ For the data shown in purple, $[O_2] = 1.50 \times 10^{17} \text{ cm}^{-3}$ and $[CH_2I_2] = 7.25 \times 10^{12} \text{ cm}^{-3}$, with the fit to the data giving $A_{0,l,\text{max}} = \sigma_{\text{CH2OO,max}} [\text{CH}_2\text{OO}]_{t=0} \ l = (1.94 \pm 0.02) \times 10^{-3}, \ k_1 = (20.6 \pm 2.6) \text{ s}^{-1} \text{ and } k_2 \ / \ \sigma_{\text{CH2OO,max}} \ l = (1.94 \pm 0.02) \times 10^{-3}, \ k_1 = (20.6 \pm 2.6) \text{ s}^{-1} \text{ and } k_2 \ / \ \sigma_{\text{CH2OO,max}} \ l = (1.94 \pm 0.02) \times 10^{-3}, \ k_1 = (1.94 \pm 0.02) \times 10^{-3}, \ k_2 = (1.94 \pm 0.02) \times 10^{-3}, \ k_3 = (1.94 \pm 0.02) \times 10^{-3}, \ k_4 = (1.94 \pm 0.02) \times 10^{-3}, \ k_5 = (1.94 \pm 0.02) \times 10^{-3}, \ k_$ (19048 ± 559) s⁻¹. From the product of the CH₂I₂ depletion and path length, for the data shown in green Δ [CH₂I₂] $l = 6.06 \times 10^{14}$ cm⁻², for the data shown in orange Δ [CH₂I₂] $l = 3.89 \times 10^{14}$ cm⁻², and for the data shown in purple Δ [CH₂I₂] $l = 2.28 \times 10^{14}$ cm⁻², and using the pressure dependent CH₂OO yield, Y_{CH2OO}, p=70 $T_{OTT} = 0.65$, the product of the initial concentration of CH₂OO and path length was calculated to be [CH₂OO]₀ $l = 3.96 \times 10^{14}$ cm⁻² for the data shown in green, [CH₂OO]₀ $l = 2.54 \times 10^{14}$ cm⁻² for the data shown in orange, and $[CH_2OO]_0 l = 1.49 \times 10^{14} \text{ cm}^{-2}$ for the data shown in purple. $\sigma_{CH2OO,max}$ is then calculated from $\sigma_{CH2OO,max}$ $[CH_2OO]_{t=0} l / [CH_2OO]_0 l.$

Dependence of $\sigma_{CH2OO,max}$ on pressure

Experiments were carried out over the pressure range 6 - 300 Torr. Figure S2 shows the average $\sigma_{CH2OO,max}$ value determined at each pressure, indicating that there is no significant dependence of the CH₂OO UV absorption cross-sections on pressure.

Figure S2: Dependence of $\sigma_{CH2OO,max}$ on pressure. Results are displayed as the mean value at each pressure, with errors given by the standard deviation of all values at each pressure.

Absorption cross sections for CH₂OO, $\sigma_{CH2OO,\lambda}$

Absolute CH_2OO cross-sections from this work in the wavelength range 280 - 450 nm are given in Table S1 below.

Wavelength	Absorption Cross-	Wavelength	Absorption Cross-	Wavelength	Absorption Cross-	Wavelength	Absorption Cross-
/ nm	Section / 10^{-17} cm ²	/ nm	Section / 10^{-17} cm ²	/ nm	Section / 10^{-17} cm^2	/ nm	Section / 10^{-17} cm ²
280.5	0.25	292.4	0.39	304.3	0.67	316.2	0.99
281.1	0.25	293.0	0.40	304.9	0.70	316.8	1.01
281.6	0.25	293.5	0.41	305.4	0.72	317.4	1.02
282.2	0.27	294.1	0.43	306.0	0.73	317.9	1.04
282.8	0.25	294.7	0.47	306.6	0.75	318.5	1.04
283.3	0.28	295.2	0.47	307.1	0.77	319.1	1.06
283.9	0.30	295.8	0.48	307.7	0.78	319.6	1.07
284.5	0.28	296.4	0.48	308.3	0.79	320.2	1.10
285.0	0.29	296.9	0.50	308.8	0.80	320.8	1.10
285.6	0.29	297.5	0.52	309.4	0.82	321.3	1.11
286.2	0.30	298.1	0.53	310.0	0.82	321.9	1.13
286.7	0.31	298.6	0.55	310.5	0.85	322.5	1.14
287.3	0.33	299.2	0.54	311.1	0.88	323.0	1.17
287.9	0.32	299.8	0.56	311.7	0.87	323.6	1.17
288.4	0.36	300.3	0.58	312.3	0.89	324.2	1.18
289.0	0.35	300.9	0.58	312.8	0.90	324.7	1.19
289.6	0.36	301.5	0.60	313.4	0.93	325.3	1.19
290.1	0.38	302.0	0.62	314.0	0.94	325.9	1.22
290.7	0.38	302.6	0.63	314.5	0.95	326.4	1.23
291.3	0.40	303.2	0.64	315.1	0.96	327.0	1.22
291.8	0.38	303.7	0.66	315.7	0.98	327.6	1.25

Wavelength	Absorption Cross- Section $/ 10^{-17} \text{ cm}^2$	Wavelength	Absorption Cross-	Wavelength	Absorption Cross-	Wavelength	Absorption Cross- Section (10^{-17} cm^2)
/ 1111	Section / 10 Chi	/ 11111	Section 710 cm	/ 11111	Section 710 cm	/ 11111	Section / 10 cm
328.1	1.25	340.0	1.37	354.2	1.29	368.4	0.97
328.7	1.26	340.6	1.37	354.8	1.28	369.0	0.97
329.3	1.27	341.2	1.37	355.4	1.28	369.5	0.99
329.8	1.28	341.7	1.38	355.9	1.27	370.1	1.00
330.4	1.28	342.3	1.37	357.6	1.26	370.7	1.02
331.0	1.30	342.9	1.38	358.2	1.23	371.2	1.02
331.5	1.30	343.5	1.37	358.8	1.21	371.8	1.01
332.1	1.31	344.0	1.37	359.3	1.19	372.4	0.99
332.7	1.32	344.6	1.37	359.9	1.19	372.9	0.96
333.2	1.32	345.2	1.36	360.5	1.16	373.5	0.92
333.8	1.34	346.9	1.35	361.0	1.17	374.1	0.88
334.4	1.34	347.4	1.36	361.6	1.16	374.7	0.85
334.9	1.35	348.0	1.36	362.2	1.17	375.2	0.81
335.5	1.34	348.6	1.36	362.7	1.17	375.8	0.80
336.1	1.36	349.1	1.34	363.3	1.18	376.4	0.78
336.6	1.35	349.7	1.34	363.9	1.17	376.9	0.78
337.2	1.35	350.3	1.34	364.4	1.16	377.5	0.78
337.8	1.36	350.8	1.33	365.0	1.14	379.2	0.84
338.3	1.36	351.4	1.32	365.6	1.11	379.8	0.84
338.9	1.36	353.1	1.27	366.1	1.08	380.3	0.83
339.5	1.36	353.7	1.29	366.7	1.03	380.9	0.81

Wavelength	Absorption Cross-	Wavelength	Absorption Cross-	Wavelength	Absorption Cross-	Wavelength	Absorption Cross-
/ nm	Section / 10^{-17} cm^2	/ nm	Section / 10^{-17} cm ²	/ nm	Section / 10^{-17} cm ²	/ nm	Section / 10^{-17} cm ²
381.5	0.77	395.6	0.41	409.8	0.27	422.9	0.14
382.0	0.74	396.2	0.43	410.4	0.25	423.4	0.14
382.6	0.69	396.8	0.44	411.0	0.25	424.0	0.12
383.2	0.64	397.3	0.47	411.5	0.21	424.6	0.11
383.7	0.61	397.9	0.46	412.1	0.19	425.1	0.12
384.3	0.57	398.5	0.46	412.7	0.18	426.8	0.07
384.9	0.57	399.0	0.44	413.2	0.18	427.4	0.06
385.4	0.57	400.7	0.37	413.8	0.17	428.0	0.08
386.0	0.58	401.3	0.33	414.4	0.16	428.5	0.09
386.6	0.59	401.9	0.31	416.1	0.17	429.1	0.09
387.1	0.63	402.4	0.28	416.6	0.16	429.7	0.10
387.7	0.65	403.0	0.26	417.2	0.17	430.2	0.11
388.3	0.66	403.6	0.25	417.8	0.18	430.8	0.12
390.0	0.61	405.3	0.26	418.3	0.18	431.4	0.12
390.5	0.56	405.9	0.27	418.9	0.17	431.9	0.12
391.1	0.53	406.4	0.28	419.5	0.17	432.5	0.11
391.7	0.49	407.0	0.30	420.0	0.16	433.1	0.10
392.2	0.45	407.6	0.31	420.6	0.16	433.6	0.10
392.8	0.42	408.1	0.30	421.2	0.16	434.2	0.09
394.5	0.40	408.7	0.31	421.7	0.15	434.8	0.08
395.1	0.39	409.3	0.31	422.3	0.15	435.4	0.06

Wavelength	Absorption Cross-	Wavelength	Absorption Cross-
/ nm	Section / 10^{-17} cm ²	/ nm	Section / 10^{-17} cm ²
435.9	0.05	443.9	0.08
437.6	0.06	444.4	0.06
438.2	0.07	445.0	0.05
438.8	0.08	445.6	0.05
439.3	0.08	446.1	0.05
439.9	0.06	446.7	0.07
440.5	0.07	447.3	0.06
441.0	0.06	447.8	0.05
441.6	0.06	448.4	0.05
442.2	0.06	449.0	0.04
442.7	0.07	449.5	0.05
443.3	0.07		

Table S1: Summary of CH₂OO absorption cross-sections.

Dependence of IO concentration on the initial CH₂I concentration

Concentration-time profiles for IO radicals indicate an initial rapid production of IO, occurring within 1 ms of photolysis, which is followed by further slower production of IO (see main text). Figure S3 shows the dependence of the observed initial IO concentrations, produced within 1 ms of photolysis, and the maximum IO concentrations observed, on the initial concentrations of CH₂I radicals. The initial concentration of CH₂I in the system, $[CH_2I]_0$, was determined from the observed depletion in CH₂I₂ absorbance. Concentrations of the IO radicals produced in the initial rapid process, $[IO]_{t=1 \text{ ms}}$, were observed to be directly proportional to $[CH_2I]_0$ (Figure S3a), with a yield of rapid IO formation of (14.8 ± 0.5) % of the initial CH₂I concentration. Similarly, the maximum IO concentrations, $[IO]_{max}$, were also observed to be directly proportional to $[CH_2I]_0$ (Figure S3b), with an IO yield of (17.2 ± 0.5) % of the initial CH₂I concentration.

Figure S3: Relationships between a) the concentrations of IO produced within 1 ms of photolysis and the initial concentrations of CH₂I, and b) the maximum concentrations of IO and the initial concentrations of CH₂I. Linear fits to the data (red lines) give a) gradient = (14.8 ± 0.5) and intercept = $(-2.3 \pm 6.1) \times 10^9$ cm⁻³ and b) gradient = (17.2 ± 0.5) and intercept = $(3.5 \pm 0.6) \times 10^{10}$ cm⁻³.

Comparison of observed and simulated IO profiles

Simulated IO profiles, constrained to the initial observed IO concentrations, in which the reaction of CH₂OO + I exclusively produced CH₂IO₂ were compared to observed IO time profiles. The results suggested that both the production and decay of IO in the system are underestimated in the model as listed in Table 2 in the main text. Simulations in which rate coefficients for the CH₂IO₂ self-reaction (k_6) and the CH₂IO₂ + I reaction (k_7) were systematically increased and decreased show that the discrepancy between observed and simulated IO may be due to uncertainties in CH₂IO₂ peroxy radical chemistry. On average, an increase of a factor of 3 in the rate coefficient for the CH₂IO₂ self-reaction and of a factor of approximately 2 in the rate coefficient for the CH₂IO₂ self-reaction and of a factor of approximately 2 in the rate coefficient for the cH₂IO₂ self-reaction and of a factor of approximately 2 in the rate coefficient for the CH₂IO₂ self-reaction for data at 70 Torr is given in Figure 8 in the main text, and Figure S4 shows this comparison for data at 300 Torr. These results suggest that kinetics of CH₂IO₂ chemistry in the model need to be altered in order to account for the observed IO in the system.

Figure S4: Experimentally observed IO concentrations (black points) and simulated IO profiles using the mechanism given in Table 2 in the main text, except where specified otherwise, and constrained to the observed IO concentration at t = 1 ms. The reaction between CH₂OO and I (R4 in the main text) was set to produce CH₂IO₂ with 100 % yield (purple). Adjustments made to the rate coefficients of the CH₂IO₂ self-reaction (R6 in the main text) and the CH₂IO₂ + I reaction (R7 in the main text) to simulate IO profiles which better represented the IO observed in the system than using rate coefficients as given in Table 2 in the main text were $2.75 \times k_6$ (green), $1.25 \times k_7$ (orange) and a combination of both $2.75 \times k_6$ and $1.25 \times k_7$ (blue). For these data, p = 300 Torr, $[O_2] = 1.76 \times 10^{17}$ cm⁻³, $[CH_2I_2] = 1.30 \times 10^{13}$ cm⁻³, and $[CH_2OO]_0 = 3.50 \times 10^{11}$ cm⁻³.

Sensitivity of the system to CH₂OO + IO

Potential impacts of any reaction between CH₂OO and IO on the analysis used to determine the kinetics for the CH₂OO self-reaction (k_3) and for the reaction between CH₂OO and I (k_4) were investigated through a series of model fits in which a reaction between CH₂OO and IO was included in the mechanism. Fits were performed with the rate coefficient for CH₂OO + IO fixed to a series of values between 1×10^{-11} and 1×10^{-10} cm³ s⁻¹, with the mechanism otherwise as shown in Table 2 in the main text and the initial IO concentration constrained to the observed value. Figure S5 shows the impacts on the fit results for k_3 and k_4 . For the largest rate coefficient adopted in the model for CH₂OO + IO, the fit results for k_3 and k_4 are within 15 % of the values obtained from model fits in which CH₂OO + IO is not considered, with the loss of IO dominated by the IO self-reaction. Results for k_3 and k_4 reported in this work are thus given from fits performed in which CH₂OO + IO is not considered.

Figure S5: Sensitivity of k_3 (green) and k_4 (orange) to the rate coefficient for CH₂OO + IO adopted in the model used to fit to experimental observations. Results are shown for model fits performed at p = 300 Torr, at which pressure the effects, if any, of a potential CH₂OO + IO reaction are expected to be most prevalent due to the high yield of IO in the system (see main text and Figure 9). The sensitivity factors are defined as the fractional difference in the fit result for the rate coefficient compared to the result obtained for fits in which CH₂OO + IO is not considered.