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cancer personalised evaluation empowered
by imaging biomarkers
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Abstract

PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial
intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16
European partners in the consortium, including the European Society for Paediatric Oncology, two imaging
biobanks, and three prominent European paediatric oncology units. The project is constructed as an
observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and
genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based
platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and
patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced
visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be
constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma.
External validation will be performed on data recruited from independent collaborative centres. Final results
will be available for the scientific community at the end of the project, and ready for translation to other
malignant solid tumours.

Keywords: Artificial intelligence, Biomarkers (tumour), Cloud computing, Diffuse intrinsic pontine glioma,
Neuroblastoma
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Key points

� An open-cloud platform for decision support in

neuroblastoma and diffuse intrinsic pontine glioma

is being developed.

� A decision support system guided by imaging and

paediatric oncology experts under a user-centric ap-

proach will be developed.

� The platform will validate imaging biomarkers

(computed tomography, magnetic resonance,

positron emission tomography, 131I-meta-

iodobenzylguanidine imaging) and integrated data.

� The system will develop diagnostic multiscale

models to predict disease progression.

Background
The digital transformation of healthcare systems has fos-

tered innovative clinical workflows and quality improve-

ments through value-based healthcare [1]. Nowadays,

digital diagnosis tools (such as imaging, pathology, gen-

omic analytics, wearable sensors) and patient electronic

records (clinical profiling, treatment, endpoints) are key

enabling factors for a new paradigm in routine clinical

practice. This change is expected to promote clinical

innovation models via real-world data-driven inferences

revealing insights implicit in the data [2]. Real-world evi-

dence can help answering existing questions and gener-

ating new knowledge in a more reproducible way [3].

Another key enabling factor to untap the enormous po-

tential of in silico tools to assist in clinical healthcare is

the current level of adoption of high-throughput screening

techniques for diagnosis and disease progression monitor-

ing. The amount of clinical, pathological, molecular and

imaging data available is enormous. The possibility of in-

tegrating large volumes of highly heterogeneous data into

in silico predictive tools has proven crucial to enhance

model performance in various applicability domains [4].

Computational imaging allows the extraction of multi-

parametric data, leading to a new era in radiomics, char-

acterised by high-throughput extraction, storage and

analysis of a large amount of quantitative imaging fea-

tures and parameters (imaging biomarkers) able to pro-

vide quantitative relevant information (virtual biopsies)

for the early disease diagnosis, disease phenotyping, dis-

ease grading, targeting therapies, and evaluation of dis-

ease response to treatment [5].

The development of predictive models using computa-

tional algorithms and artificial intelligence, taking into ac-

count all types of clinical, pathology, molecular, and

imaging information able to predict valid disease-related

outcomes by learning from retrospective data, is a hot topic

of scientific debate. The validity of these predictive models

depends on the quantity, quality, and representativeness of

the datasets used, being major limiting factors [6].

Imaging biobanks and in silico models

Oncologic imaging represents a suitable field for the dis-

covery and validation of new biomarkers from different

imaging modalities (such as computed tomography, mag-

netic resonance, positron emission tomography, and ultra-

sound), since cancer patients are frequently monitored for

staging and treatment response follow-up [7]. Many im-

aging biomarkers have been proposed over the last years

to measure tumour anatomy, morphology, pathophysi-

ology, metabolism, or molecular profiles in order to esti-

mate different cancer hallmarks, such as proliferation/

growth, angiogenesis, and evasion or metastasis [8]. How-

ever, very few biomarkers have so far entered routine clin-

ical practice to guide clinical decisions [9, 10]. The

majority of oncology imaging biomarkers still require ex-

ternal validation at different centres before they can be

properly qualified as robust and reproducible.

Mathematical and computational modelling of bio-

logical processes can be used to enhance quantitative un-

derstanding of biomedical phenomena, such as cancer

progression [11], potentially incorporating patient-specific

data to enrich the scope of therapeutic target identifica-

tion. Models can describe the growth of solid tumours

using discrete or continuous representations, with or with-

out accounting for stochasticity [12]. PRIMAGE (predict-

ive in silico multiscale analytics to support cancer

personalised diagnosis and prognosis, empowered by im-

aging biomarkers) is a funded Horizon 2020 project (RIA,

topic SC1-DTH-07-2018) where a combination of these

approaches ensures the best of both worlds.

The PRIMAGE project focuses on the further develop-

ment of in silico tools for a more personalised clinical

management of childhood cancer by targeting clinical

endpoints (CEPs), considering the progression of the

growth of the tumour post-diagnosis, but not including

the initial oncogenic processes active during embryogen-

esis. The project will utilise novel high-performance

computing (HPC) approaches to provide computation-

ally efficient and large scale in silico models resulting in

a decision support system (DSS) which will hopefully

provide improved health outcomes (Fig. 1).

Neuroblastoma and diffuse intrinsic pontine glioma

(DIPG)

Data infrastructure, imaging biomarkers and models for

in silico medicine research will be developed and vali-

dated in the context of neuroblastoma (NB) and diffuse

intrinsic pontine glioma (DIPG).

NB is the most frequent solid cancer of the early child-

hood [13], and the diagnosis age has proven to be a cru-

cial factor in its prognosis [14]. A number of risk factors

have been identified and are already in use by the Inter-

national Neuroblastoma Risk Group (INRG) [15, 16].

Major European groups involved in PRIMAGE have
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advanced standard of care treatments in low [17–19],

intermediate [20, 21] and high-risk NB [22–24].

DIPG is the leading cause of brain tumour-related

death in children [25]. Given the rarity of childhood tu-

mours, international cooperative networks are essential

to agglutinate relevant retrospective data and/or pro-

spective cases for clinical trials, facilitating identification

of effective tools for earlier diagnosis and potentially ef-

fective therapeutics.

The aim of the project is the development of an

open hybrid cloud and HPC platform with later im-

plementation and validation in non-interventional tri-

als, which will support decision-making in the clinical

management of malignant solid tumours. The

PRIMAGE platform will implement the latest ad-

vancement of in silico computational image analysis

and modelling which may be run on central process-

ing unit (CPU) or general purpose graphics process-

ing unit resources as needed.

The results are expected to have great impact not only on

NB and DIPG but also on the management of other malig-

nant solid tumours, since the proposed methodologies for

data management, in silicomodels and visualisation tools will

be available to be transferred to other cancer types.

The development process of the PRIMAGE platform

following a user-centric approach is summarised in Fig. 2.

Methods

The partnership

For the successful design and implementation of

PRIMAGE, a very high level of interdisciplinarity con-

sortium was required, with expertise ranging from HPC

infrastructures to visual analytics [26] and multiscale

simulation, bringing together public and private organi-

sations across Europe to perform collaborative research

and development, a key aspect of the PRIMAGE inter-

disciplinary approach. Partners from eight European

countries were selected (hospitals, research and

Fig. 1 PRIMAGE technological development
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development centres, medical associations, private com-

panies, and universities), constituting a pan-European

ecosystem of knowledge, infrastructures, biobanks, and

technologies in the area of oncology, in silico, and cloud

computing/HPC healthcare-related computing. Follow-

ing a recruitment process, 16 organisations were incor-

porated, all of them are well known and with remarkable

expertise in their respective areas. The University and

Polytechnic Hospital La Fe in Spain is the project coord-

inator institution.

On the clinical side, the PRIMAGE consortium has

tried to reunite leading European clinical centres to-

gether with key opinion leaders specialised in NB and

DIPG (as these cancers are the context of the application

proposed for the validation works of PRIMAGE in silico

tools during this project) (Table 1). The University and

Polytechnic Hospital La Fe in Spain, the Children’s

Cancer Research Institute in Austria, the University

Hospital Cologne in Germany, and the Pisa University

Hospital in Italy constitute the clinical team. All of them

belong to the European Research Network in NB and

DIPG, facilitating PRIMAGE access to their datasets for

further secondary used studies, in addition to their own

biobanks and databanks of existing DIPG and NB cases.

Moreover, the European Society for Paediatric Oncology

(SIOPE) joined PRIMAGE, leading its dissemination and

communication activities.

The knowledge and expertise of universities, research

centres and private companies are essential for success-

ful development of PRIMAGE. Partners include Quanti-

tative Imaging Biomarkers in Medicine (QUIBIM SME),

Institute for Molecular Imaging Technologies and Mech-

anical Engineering Department at Valencia Polytechnical

University, Chemotargets SME, and Matical Innovation

in Spain; the Department of Computer Science at Uni-

versity of Konstanz in Germany; Medical Imaging Tech-

nologies (Medexpim) in France; the University of

Sheffield in United Kingdom; Simulation, Modelling and

Engineering software (Ansys group) in France; Akademia

Gorniczo-Hutnicza Im (Cyfronet) in Poland; and the De-

partment of Industrial Engineering at the University of

Bologna in Italy.

The consortium partners ensure complementarity and

bring the necessary combination of skill, knowledge,

technology, and motivation, comprising a highly moti-

vated team, fully committed to turning PRIMAGE into a

case study in the use of existing datasets, service-

oriented architectures and in silico technologies for bet-

ter diagnosis and treatment of oncology diseases.

An advisory board consisting of a recognised group of

experts in the fields of paediatric oncology, imaging bio-

markers and related information and communication

technologies, General Data Protection Regulation and

Fig. 2 PRIMAGE approach

Table 1 Clinical centres and networks data registries involved in data collection with an estimation of cases for neuroblastoma (NB)
and diffuse intrinsic pontine glioma (DIPG)

Responsible entity Characteristics

Clinical partners for NB and DIPG
University and Polytechnic Hospital La Fe, Spain
Children’s Cancer Research Institute, Austria
University Hospital Cologne, Germany
Pisa University Hospital, Italy

Target sample: approximately 900 cases with imaging, clinical, and molecular data.
Data type: imaging (magnetic resonance, computed tomography, 131I-metaiodine-benzylguanidine
scintigraphy and single-photon emission tomography, positron emission tomography/computed
tomography), histology (if available), complete molecular biology studies according to SIOPE
(blood, urine, and bone marrow, cerebrospinal fluid), genetic (next generation sequencing,
fluorescence in situ hybridisation), and clinical data (patient profile, prescribed treatment, survival).

Data on patients with NB
GPOH

Target sample: approximately 1,000 NB (high, low, and intermediate risk) patients participants in
academia-promoted clinical trials.
Data type: diagnosis and longitudinal data (clinical, follow-up, and biology data for all patients
registered in GPOH database).

Data on patients with DIPG
SIOPE registry

Target sample: approximately 700 DIPG patients from European Union countries, both inside
and outside clinical trials.
Data type: diagnostic and follow-up magnetic resonance scans linked to e-data transmittal form
including demographics, medical history, and physical exam at time of diagnosis, results from
radiological, results from pathological review (if available), treatment (including radiotherapy,
chemotherapy, surgery and supportive), clinical data, and last known status of the patient.

GPOH German Society of Paediatric Oncology and Haematology, SIOPE European Society for Paediatric Oncology
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industry representatives of manufacturers of drugs and

picture archiving and communication systems has been

designated to give general advice and guidance to the

consortium.

Platform architecture

The PRIMAGE in silico models to be developed require sig-

nificant computational and data storage resources to process.

Our intention is to deliver a bespoke information technology

solution, combining large-scale HPC and versatile cloud

computing resources for optimum efficiency and reliability.

The infrastructure will be ultimately based on a DSS

which will be designed for cancer management with ad-

vanced functionality and usability under a user-centric

approach, guided by the clinical partners. A diagram of a

high-level architecture can be appreciated in Fig. 3. This

DSS will make use of the following:

� Large-scale processing on HPC resources (CPU or

general purpose graphics processing unit), overlaid

by a convenient representational state transfer-based

process controller called Rimrock [27] and data ac-

cess suite called Polish Grid Infrastructure (PL-grid)

Data [28].

� Hybrid cloud resources, composed of both private

and public cloud sites (based on the Europen open

science cloud, EOSC, services), which will host

PRIMAGE data repositories. Computational tasks can

be deployed and coherently managed by a single

access tool, such as the Atmosphere platform (project

number 777154, European Commission) [29].

� An integration middleware, consisting of a set of

protocols and interfaces between HPC/storage

(models), private and public cloud computing/

storage (repositories, sandboxed processing), and

external data sources (anonymised clinical and

biobanking data). The middleware will be put in

place to achieve an adequate level of solution

coherency.

� Upper layer service exposing the features of the

underlying infrastructure to researchers as a

convenient graphical user interface, to manage

definition, execution, and comparison of results of

computationally intensive modelling pipelines. The

tool will feature security management and application

programming interface for programmatic access, and

it will be based on the model execution environment

(MEE) [30], which has been developed and

successfully deployed in the EurValve project [31–33].

Data repositories

Stored clinical data (imaging, clinical, pathology and mo-

lecular) from 2002 onwards will be collected by the clin-

ical centres and the paediatric oncological associations

involved in PRIMAGE project. Clinical, molecular and

imaging data in PRIMAGE will be undertaken under the

strictest administrative and contractual procedures to

ensure legal and ethical compliance under the General

Data Protection Regulation in Europe. All cases included

within the data repository, both for model development

and platform validation, will have to be approved by the

Ethics Committees of their respective centres. Even

more, the observational in silico trial design for the in-

ternal platform validation, including new data from 2020

to 2022, will be constructed in parallel to standard clin-

ical practice after signed consent is obtained.

Relevant data will be used following extraction, anon-

ymisation and curation for computational simulation de-

velopments and testing the integrated PRIMAGE DSS

platform. The datasets used for the training and the de-

velopment of the different in silico models will differ

from the datasets used for the later validation of the in-

tegrated platform. Therefore, the use of clinical data (in

the big data domain) for model training and model test-

ing will be done in two phases:

� Phase 1: compilation of clinical, molecular and

imaging data for PRIMAGE training, knowledge

extraction, and multiscale testing of the in silico

models for tumour growth, advanced visualisation

solutions, identification and analysis of imaging

biomarkers and training of predictive models for

CEPs.

� Phase 2: extensive in silico testing of the integrated

PRIMAGE DSS platform will be undertaken using

cases from the same retrospective dataset, split by

cross validation from the curated initial clinical

dataset to ensure that these specific datasets are not

used in the training phase.

Big data techniques will be applied to generate new

knowledge from the advanced in silico tools. The use of

retrospective data for training models, testing and valid-

ation will require extensive curation and quality control

procedures. Automated tools will be implemented in this

project to streamline the processes of extracting, map-

ping data, controlling the quality and homogenisation,

translation, and completion of data feeds. Allocation of

significant human resources is also foreseen, as human

intervention is essential to achieve excellence in the

training data sets.

Clinical data used in the international staging and

stratifying criteria for NB and DIPG, including age, dis-

ease extension, image defined risk factors, histological

type, grade of tumour differentiation, genetic, and mo-

lecular features will be used at the models construction

phase. Imaging biomarkers will be extracted and vali-

dated for their use in cancer management, in
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combination with already available biological biomarker

panels. PRIMAGE is defined as an observational in silico

study that will be validated also in silico in data recorded

from new clinical observations. Image radiomics and dy-

namic parameters will be obtained from standard of care

real-world ultrasound, computed tomography, magnetic

resonance, positron emission tomography, and 123I-

metaiodobenzylguanidine scintigraphy or single-photon

emission computed tomography images.

Experimental and computational methodologies will be

used for the identification and validation of novel imaging

biomarkers and the development of shared instruments

for knowledge extraction from imaging biomarkers, clearly

focused on improving disease diagnosis and follow-up.

The development of a biomarker involves defining its rela-

tionship with the objective reality (structural, physio-

logical, biological, or molecular), monitoring its technical

validity and the relationship with the final CEPs. The path

Fig. 3 PRIMAGE platform concept diagram
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to handcrafted biomarker development, expansion and

subsequent implementation is based on available guide-

lines and recommendations [34]. Main outcomes to be

predicted relate to tumour phenotyping, treatment alloca-

tion, response to treatment and children survival.

Machine learning and image processing deep learning

algorithms extract pattern information from the images

and link outcome results to known ground-truth diagno-

sis. For this task, QUIBIM, a start-up company working

in the field of artificial intelligence and imaging bio-

markers applied to radiology data, will provide the meth-

odologies for identification and validation of imaging

biomarkers and related algorithms for the automatic

analysis of images towards their validation in clinical

trials through a PRIMAGE-specific customisation of

QUIBIM precision platform (SME Instrument Phase 2,

project number 778064). The computational equation-

based handcrafted methods will be used first to have a

ground truth for the training of machine learning algo-

rithms. On a furthermore advanced stage, at the end of

the project, it is envisioned that deep learning tools will

directly provide clinical estimations from the source im-

ages, clinical and molecular data information.

In silico scale models

PRIMAGE’s proposed in silico model spans three scales:

▪ The tumour scale model describes the evolution of

volume and cellularity in the primary tumour, as well

as its biomechanical interactions with the surrounding

tissues, and the diffusion of nutrients and metabolites

to and from the closest blood vessels. These quantities

are described as spatial fields, whose temporal

evolution is governed by a system of partial differential

equations. These equations are discretised and then

integrated over a period of time using a finite element

method. Reduced order techniques will be applied on

tumour parameters (variability of tumour size, material

properties and treatment type) to enable real-time

simulation at the tumour scale.

▪ The tissue scale model requires two complementary

methodologies—firstly, a continuous, partial

differential equation-based model that includes the

chemical, biological and biomechanical interactions

of the NB/DIPG cells with each other and with their

extracellular matrix and vasculature. Model outputs

will be the population sizes of different cell types

and their evolution over time. In parallel to this, we

will develop an agent-based model [35], wherein

each cell is represented as an individual within a re-

gion of interest, explicitly capturing cellular behav-

iours including cell cycle progression, cell cycle

arrest, cell death, production and degradation of the

extracellular matrix, physical intercellular

interactions, and cell-microenvironment interactions.

This model may be used independently to explore

hypotheses about specific regions of the tumour at a

high resolution, or be fully integrated with other

PRIMAGE models using state-of-the-art optimisation

and acceleration techniques [36] and multiscale

modelling approaches, as described below.

▪ The cell scale model describes the evolution of

chemical and biological properties over time inside a

single NB/DIPG cell, when it is exposed to different

environmental conditions including various treatments.

Computational strategy

This project proposes a dataflow strategy to enable the

proposed multiscale model to be executed using avail-

able HPC resources, in an effective and robust manner,

considering that the proposed tumour model will need

to be coupled to hundreds of thousands of tissue

models, each coupled to also hundreds of thousands cell

models.

In the proposed dataflow strategy, each single-scale

model is described as a black box that takes as input an

array of input sets and produces as output an array of

output sets. Bi-directional resampling modules are pro-

posed between the database that contains the input sets

as computed, and those as required by the next model.

Thus, resampling modules are used on value sets that

are computed at lower scales and homogenised at upper

scales, and on value sets that are computed at upper

scales and then particularised at lower scales, at each

scale transition.

The proposed workflow for the implementation of the

described dataflow approach is:

▪ Implementation of the software infrastructure to

manage the multiple databases. This infrastructure

includes frameworks for coupling of the models at

different scales via resampling functions, and

repositories for the three single-scale models as they

develop.

▪ Models execution without resampling. At this stage,

no resampling will be provided as the software

developments are focused on delivery and validation of

the dataflow architecture to execute the multiscale

model under suboptimal conditions, as efficiently as

possible (using acceleration techniques).

▪ Models execution with resampling. Tissue-to-organ

and cell-to-tissue modules will be incorporated in the

dataflow, using progressively sophisticated multidimen-

sional sampling techniques.

▪ Testing alternative approaches for enhancing

computational efficiency. The use of surrogate

modelling methods such as Gaussian processes will be

explored as an alternative of resampling techniques.
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Although operating under completely different

principles, they can be used to produce same result.

Even more, deep learning solutions will be developed,

tested and validated for image segmentation (convolu-

tional neural network architectures), radiomics analysis

(support vector machine, linear discriminant, quadratic

discriminant, decision trees, logistic regression, nearest

neighbour, deep neural networks, and their combination

in ensemble models) and CEPs (e.g., tumour subtypes,

patient’s prognosis), to estimate most accurate lesion

diagnosis, treatment prediction, and patient prognosis.

Models will be adapted to each application context (NB,

DIPG) in order to more specifically address the clinical

problems.

Performance platform validation

The proposed in silico tools will help tackle the relevant

CEPs on the clinical target applications. The following

CEPs have been prioritised by the Consortium clinicians

as highly relevant to these diseases and suitable for being

supported by in silico models, contributing to enhance

reliability of current diagnosis and prognosis procedures:

� Prognosis of NB spontaneous regression capacity for

low and intermediary risk patients;

� Identification of high-risk NB patients with

imminent risk of relapse (50% currently);

� Identification of NB high-risk patients that will not

respond to induction chemotherapy (30% currently);

� Identification of DIPG patients who will respond to

treatment (10% currently);

� Estimation of the expected survival period for DIPG

responder patients.

A functional version of the PRIMAGE platform will be

extensively evaluated in order to assess the platform’s

performance, thus its capacity to guide clinical decisions

in a precise, reliable, and relevant manner. The datasets

used for the validations includes imaging data, clinical

data and genetics and other molecular data (Table 2).

The internal validation of PRIMAGE platform will be

performed using datasets provided by the clinical centres

and organisations involved in PRIMAGE project which

never were used for the models and platform development.

In addition, in order to guarantee its correct perform-

ance under general conditions when using any datasets

from the real world, PRIMAGE platform will be exter-

nally validated using data from clinical centres out of

PRIMAGE environment. To get access to this data,

other hospitals not involved in the project as partners

have already been invited to participate by providing NB

and DIPG cases to the PRIMAGE platform as independ-

ent collaborative international centres.

Table 3 describes the methodologies that will be used

in the evaluation of PRIMAGE platform performance.

During the evaluations, it will be also assessed other

metrics such as security, reproducibility, interoperability

and usability amongst others (Table 4).

Expected results

The state of the art for production-quality hybrid

computational cloud and HPC for in silico processing

of clinical cases is currently represented by projects

such as EurValve [30, 31, 37] and GoSmart [38, 39],

having achieved significant progress in developing in-

tegrated, comprehensive frameworks. EurValve has

also come up with an integrated cloud/HPC comput-

ing solution to back up its MEE, dedicated for simu-

lations of valvular heart conditions. This environment

is now used in EurValve to perform clinical validation

of the resulting DSS, which is a preliminary step to-

wards development of an integrated, non-distributed

clinical DSS.

The significant novelty of PRIMAGE with regard to

this state of the art is to bring the cloud and HPC com-

puting solutions, already successfully utilised for devel-

opment and validation of in silico models, considerably

closer to clinical use. The project will carefully evaluate

available strategies, and it will deploy the selected solu-

tion to remotely provision the computationally intensive

elements of the proposed clinical DSS, thus enabling the

advantages of in-cloud computation for today’s DSSs.

The PRIMAGE approach combines the training and val-

idation of models for medical imaging biomarkers and

tumour growth simulation on open scientific cloud in-

frastructures, which constitutes the most computing in-

tensive part, with the use of those models for

personalised diagnosis, prognosis and optimisation of

Table 2 Datasets used for testing of the PRIMAGE platform

Imaging data Imaging data represents the highest challenge
in terms of storage and processing. In
PRIMAGE data repositories, for each patient,
imaging data is linkable to their available
pseudonymised biological, pathological, and
genetics. The use of common metadata
frameworks and image analysis techniques for
automated data annotation for each image is
proposed to generate common repositories

Genetics and other
molecular data

This project uses existing knowledge on
biological biomarkers (currently on clinical use
or at advanced clinical validation stage). This
type of data is used in combination with
imaging and clinical data, facilitating
multidisciplinary big data analytics.

Clinical data Use of natural language processing tools for
automated extraction of relevant pathological
data, including data on patient response to
specific treatment will be extracted from the
electronic health record. Data will then be
structured, curated, and stored.
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treatment, within hospital boundaries. The construction

of in silico clinical trials will allow decision-making from

causal inference from observational databases emulating

a pragmatic target trial if methodological pitfalls are

avoided [2].

This project will bring major advancements in the val-

idation of novel imaging biomarkers; it will create ad-

vanced computational models for tumour growth

simulation, given response to specific CEPs. A very lim-

ited number of imaging biomarkers have been used in

routine clinical practice to guide clinical decisions [7–9].

Therefore, PRIMAGE predictive models will enable un-

precedented effectiveness in the translation from clinical

Big Data to personalised predictors for malignant solid

tumours, particularly NB and DIPG, by incorporating

these assets for Big Data to usable clinical knowledge

translation. The PRIMAGE diagnosis guiding tool uses

quantification of imaging findings to improve sensitivity,

specificity, accuracy and reproducibility of diagnostic

and therapeutic decisions derived from image features

used in combination with clinically validated biological

biomarkers and cross-cohort machine learning from

Table 3 PRIMAGE platform testing methodologies and performance metrics

Main testing methodologies Main performance metric

Cloud
infrastructure

Definition of unitary and integration tests based on the
application requirements, monitoring along time, design-time
vulnerability analysis.

Performance (deployment and reconfiguration overheads,
performance penalties, scalability), reliability (correct results with
respect references), reproducibility (predictability of performance
and automation), robustness (reliability along time and under
different stress conditions), security (identification of
vulnerabilities and isolation), privacy (privacy risk estimation).

High-performance
computing
infrastructure

Continuous monitoring of infrastructure. Alerts for
administrators in case of malfunctions or failures.

VM start-up time. Resource consumption. Number of concur-
rently running computational tasks. Availability. Measured
through monitoring statistics, experiments and benchmarks.

Data repositories Testing on MR, 131I-MBIG imaging, CT, PET/CT data, from
retrospective studies of neuroblastoma and diffuse intrinsic
pontine glioma patients

Correlation between clusters of imaging biomarkers. Correlation
between radiomic signatures and genomic profiles, and/or
circulating tumour biomarkers from liquid biopsy (circulating
tumour cells, tumour nucleic acids, etc.)

Imaging
biomarkers

Testing on images (MR, 131I-MBIG imaging, CT, PET/CT) from
retrospective data of neuroblastoma and diffuse intrinsic
pontine patients

Precision, accuracy and clinical relationship measured in terms of
quantified limit of detection and limit of quantification,
reproducibility, sensitivity/specificity, coefficient of variation,
correlation to diagnosis/prognosis of a specific disease

Multiscale
modelling
framework

Qualitative and quantitative comparison of numerical
predictions with retrospective data

Quantitative correlation of the shape and size of tumour
between image-based data and computer-based results. Qualita-
tive correlation of vascular level and extracellular matrix proper-
ties in the tumour surroundings.

CT Computed tomography, MR Magnetic resonance, MBIG Metaiodobenzylguanidine, PET Positron emission tomography

Table 4 Metrics assessed in PRIMAGE platform

Metrics to be assessed Methodology

Security/privacy Provision of authentication and authorisation and analysis of vulnerabilities from public databases. Assessment of the
platform’s robustness to preserve data integrity according to GDPR, evaluating the privacy risk (e.g., as the capability of a
model to infer information previously anonymised), and managing the fine-grain consent as GDPR requires.

Correctness/reliability Assess the correctness of the predictive results for the established clinical end points using testing datasets from clinical
data repositories for over 2000 neuroblastoma patients and over 500 diffuse intrinsic pontine glioma patients with
complete diagnosis and follow-up data, including treatment and outcomes.

Sensitiveness to
incomplete data

Assess dependence of correctness of the predictive results with the completeness of the diagnosis datasets, to establish
how new biomarkers modify minimum datasets required for correct diagnosis/prognosis.

Reproducibility Statistical assessments: dispersion in the results obtained for a subgroup of patients with a common clinical diagnosis,
belonging to different hospitals where the diagnosis studies were undertaken

Interoperability Assessment of failures in the integration with hospital picture archive and communication system and electronic health
record systems, as well as to on-premise and public cloud services

Malfunction Occurrence of any fatigue of integrity or potential to induce to use errors

Relevance Interviews to assess users’ own judgement of helpfulness of the platform to guide them beyond obvious decisions for a
given data available set

Added value Statistical assessment of occurrence of correct predictions for clinical end points that current diagnosis/prognosis
standard protocols could not predict correctly

Usability/user friendliness Observation of use patterns, users’ eye tracking, interviews to users

DIPG Diffuse intrinsic pontine glioma, GDPR General Data Protection Regulation
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European repositories for NB and DIPG. We aim to im-

pact current clinical guidelines [40].

PRIMAGE is designed to have a major impact on im-

proving the disease management of malignant solid tu-

mours. Upon successful validation in NB and DIPG,

evidencing how in silico tools can assist clinicians to

make improved informed decisions, PRIMAGE plat-

form’s architecture, repository infrastructure, simulation

frameworks, and web-based user interfaces will have the

potential to be adapted and completed for use in the

management of other types of cancer.

We do not foresee any intellectual property nor com-

mercial issues during the project: the intellectual prop-

erty background of each partner has been defined and

declared already, as well as the general framework on

the future exploitation and ownership of the project’s re-

sults. At the end of the project, there will be pieces of

software, computational models and other intellectual

property assets that will be owned by the partner(s) that

developed them. Exploitation and/or access rights on

these developments may be given to the rest of partners

under favourable conditions. This shall be set in specific

commercial agreements between the owner(s) and the li-

censee(s) after the end of the project. Finally, regarding

the access to the PRIMAGE platform as a whole, the

aim of the project is to give open access to the research

community. Means for the sustainability and continuity

over time of the PRIMAGE platform will be assessed

also during the project.

Conclusion
At the end of the project, the developed open cloud-

based platform will support phenotyping (diagnosis),

treatment stratification (prediction) and patient-specific

CEPs determination (prognosis), based on the use of im-

aging biomarkers, tumour growth simulation, advanced

visualisation of confidence scores, and machine learning

approaches. The decision support prototype will be con-

structed and validated on NB and DIPG cancers. The re-

sults will be available for the scientific community and

ready for transfer learning to other malignant solid tu-

mours. Data infrastructures, imaging biomarkers, and

predictive models for in silico medicine research will be

validated during this project. Given the rarity of these

tumours, international cooperative networking is essen-

tial to agglutinate relevant in silico data from clinical tri-

als and large real-world data repositories, facilitating

identification of effective clinical tools.
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