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Abstract. A range of applications analysing the impact of

environmental changes due to climate change, e.g. geograph-

ical spread of climate-sensitive infections (CSIs) and agri-

culture crop modelling, make use of land surface modelling

(LSM) to predict future land surface conditions. There are

multiple LSMs to choose from that account for land pro-

cesses in different ways and this may introduce predictive

uncertainty when LSM outputs are used as inputs to inform a

given application. For useful predictions for a specific appli-

cation, one must therefore understand the inherent uncertain-

ties in the LSMs and the variations between them, as well as

uncertainties arising from variation in the climate data driv-

ing the LSMs. This requires methods to analyse multivariate

spatio-temporal variations and differences. A methodology

is proposed based on multiway data analysis, which extends

singular value decomposition (SVD) to multidimensional ta-

bles and provides spatio-temporal descriptions of agreements

and disagreements between LSMs for both historical sim-

ulations and future predictions. The application underlying

this paper is prediction of how climate change will affect the

spread of CSIs in the Fennoscandian and north-west Russian

regions, and the approach is explored by comparing net pri-

mary production (NPP) estimates over the period 1998–2013

from versions of leading LSMs (JULES, CLM5 and two ver-

sions of ORCHIDEE) that are adapted to high-latitude pro-

cesses, as well as variations in JULES up to 2100 when

driven by 34 global circulation models (GCMs). A single op-

timal spatio-temporal pattern, with slightly different weights

for the four LSMs (up to 14 % maximum difference), pro-

vides a good approximation to all their estimates of NPP,

capturing between 87 % and 93 % of the variability in the

individual models, as well as around 90 % of the variability

in the combined LSM dataset. The next best adjustment to

this pattern, capturing an extra 4 % of the overall variabil-

ity, is essentially a spatial correction applied to ORCHIDEE-

HLveg that significantly improves the fit to this LSM, with

only small improvements for the other LSMs. Subsequent

correction terms gradually improve the overall and individ-

ual LSM fits but capture at most 1.7 % of the overall vari-

ability. Analysis of differences between LSMs provides in-

formation on the times and places where the LSMs differ and

by how much, but in this case no single spatio-temporal pat-

tern strongly dominates the variability. Hence interpretation

of the analysis requires the summation of several such pat-

terns. Nonetheless, the three best principal tensors capture

around 76 % of the variability in the LSM differences and

to a first approximation successively indicate the times and

places where ORCHIDEE-HLveg, CLM5 and ORCHIDEE-

MICT differ from the other LSMs. Differences between the

climate forcing GCMs had a marginal effect up to 6 % on

NPP predictions out to 2100 without specific spatio-temporal

GCM interaction.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The rise in surface temperatures under global warming is

predicted to be most severe in the Arctic, where it is al-

ready altering surface conditions and perturbing ecological

systems (Overland et al., 2014). This will have multiple so-

cietal impacts, not least on the health of animals and humans

(IPCC AR5 WG2 A, 2014). The term climate-sensitive infec-

tion (CSI) refers to diseases whose epidemiological aspects

are driven, at least in part, by climatic factors (McMichael

et al., 2006; Ebi et al., 2017; Cayol et al., 2017). In the Arc-

tic, climate change is likely to cause enhanced CSI risk in

terms of increased incidence, more frequent outbreaks, geo-

graphic spread of existing affected zones, and occurrence of

newly affected zones (Pauchard et al., 2016; Sajanti et al.,

2017; Waits et al., 2018) The complex ecology of CSI organ-

isms presents a challenge to modelling and predicting their

epidemiology (Ostfeld, 2010; Carvalho et al., 2014; Ruscio

et al., 2015; Sormunen et al., 2016; Li et al., 2016; Gilbert,

2016; White et al., 2018). However, such modelling is needed

as disease vectors, such as ticks, mosquitoes, badgers and roe

deer, which are associated, for example, with Lyme disease

(borreliosis) and tularemia, are expanding their ranges north-

wards (Jaenson et al., 2012; Jore et al., 2014; Andersen and

Davis, 2017; Laaksonen et al., 2017; Blomgren et al., 2018).

Under climate change and human-induced land use changes,

fragmentation of the landscape was found to affect Lyme dis-

ease (Simon et al., 2014), whilst mosquito abundance was as-

sociated with outbreaks of tularemia in boreal forest (Rydén

et al., 2012). CSIs can also be non-vector diseases, as climate

change may force increasing proximity and contacts between

animals, e.g. pestivirus affects mammals (livestock or wild)

and thus reindeer (Kautto et al., 2012). This could threaten

the successful bovine pestivirus eradication programmes ex-

isting in Scandinavia since the 1990s (Tryland, 2013).

The Nordic Centre of Excellence (NCoE) CLINF, “Cli-

mate change effects on the epidemiology of infectious dis-

eases and the impacts on Northern societies” (http://www.

glinf.org/, last access: 2 March 2020), is an interdisciplinary

project supported by NordForsk (https://www.nordforsk.org/

en, last access: 2 March 2020), covering an area extending

across Norway, Sweden, Finland and north-west Russia. Its

aim is to study how climate change will affect the prevalence

of human and animal CSIs and the consequences for Arctic

societies. To do so it needs to characterize how a changing

climate will change the environmental and societal condi-

tions affecting a range of CSIs in Nordic regions. Besides

predicting environmental changes likely to affect the spread

of CSIs, CLINF also aims to gather and generate information

on the societal impacts of climate change. Achieving this aim

requires tools to model land surface and aquatic changes un-

der climate forcing. This paper focuses on land surface mod-

els (LSMs) and the extent to which existing LSMs could pro-

vide forecasts useful for the purposes of predicting CSI epi-

demiology.

An important factor in discussing the predictive value of

these models is the variability in their outputs. This variabil-

ity arises from two sources: variability in the climate drivers,

since there are many global circulation models (GCMs), and

differences between LSMs, whose core concepts are similar

but with many differences in process representation and pa-

rameterization. This leads to three key questions:

1. How does the choice of the GCM affect the CSI-relevant

outputs of a given LSM?

2. For a given GCM, how different are the CSI-relevant

outputs of the different LSMs?

3. How do the joint effects of GCM and LSM differences

translate into variability in predictions of CSI-relevant

quantities?

Addressing these questions requires methods to describe

spatio-temporal differences in models, and the first part of

this paper describes such methods. The treatment here is rel-

evant to a range of applications and is generic, but the evalu-

ation of the methods in the latter part of the paper is couched

in terms of differences between LSM predictions of net pri-

mary production (NPP), i.e. a single model output variable

indicating vegetation activity, hence with relevance to CSI

modelling involving changes in habitat for specific vectors,

as well as carbon fluxes and ecosystem functioning (Koca

et al., 2006; Rafique et al., 2016).

It is important that we quantify the uncertainty in any

variable derived from an LSM model as a predictor in

CSI modelling, so that the full uncertainty in the predic-

tions (and associated risk) is available to public health

decision-making. Typically, the uncertainty in the predic-

tions from a single LSM is poorly known, and we instead

treat the spread in data simulated by a range of leading

LSMs as a proxy for this uncertainty. Since Arctic CSIs are

the underlying motivation for this work, we only consider

LSMs that represent characteristics of Nordic areas, includ-

ing high-latitude processes, vegetation and landscapes. These

are CLM5 (the Community Landscape Model version 5)

(Lawrence et al., 2019), JULES (the Joint UK Land Environ-

ment Simulator) (Clark et al., 2011; Comyn-Platt et al., 2020)

and two versions of ORCHIDEE (Organising Carbon and

Hydrology in Dynamic Ecosystems), ORCHIDEE-MICT

(OR_MICT) (Guimberteau et al., 2018) and ORCHIDEE-

HLveg (OR_HL) (Druel et al., 2017). The simulated climate

data cover the historical period from December 1997 to De-

cember 2013, while for JULES we also analysed data from

100-year forecasts to the end of the 21st century under forc-

ing by 34 different GCMs (Comyn-Platt et al., 2020). The

specifics of the four models and the driving climate data are

briefly described in Sect. 1.2.

Section 2 motivates the use of a multiway methodology to

characterize variations between LSMs, and the essentials of

such a methodology are described in Sect. 3. In Sect. 4 we
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use this methodology to analyse the differences between the

four selected LSMs, while Sect. 5 shows how the methodol-

ogy can be applied directly to differences between the LSMs.

The same approach is then used in Sect. 6 to assess how the

choice of a particular GCM affects the NPP predictions from

the JULES LSM. Section 7 gives our discussion and conclu-

sions.

1.1 LSM and ecological modelling aspects relevant to

CSI prediction

Climate change is driving the spread of a range of CSI dis-

ease vectors (Zuliani et al., 2015; Andersen and Davis, 2017;

Blomgren et al., 2018), so understanding the spatio-temporal

distribution and evolution of characteristics, such as habitat

suitability of these vectors or reservoirs, is essential. These

characteristics can then be used in an ecological model that

could be coupled with epidemiological models to estimate

future risks of disease incidence, e.g. where and when the

transmission risks are likely to be highest. For example,

changes in abundance and extent of habitat suitability are

important factors to be considered in dynamic landscape epi-

demiology modelling (Lambin et al., 2010). Changes due to

global warming could affect both abundance and geographi-

cal extent and also extend the period of transmission, e.g. by

affecting the vector life cycle (Rose et al., 2015). Extreme

weather conditions and events may either introduce out-

breaks of abundance, thereby increasing the risk of pathogen

occurrence in disease vectors, or wipe out a species at a given

location.

Under different scenarios of climate drivers, such as the

Representative Concentration Pathways (RCPs) developed

by the Intergovernmental Panel on Climate Change (IPCC),

LSMs can simulate future atmospheric and land conditions

that can be related to vector habitat suitability. Variables sim-

ulated by combined climate and land surface models, such

as surface temperature, soil moisture, precipitation and land

cover, can be used in ecological models or as part of an

epidemiological model, e.g. for a species distribution model

(Booth et al., 2014). However, the predictive uncertainty in

these variables may lead to significant uncertainty in the pre-

dictions from CSI modelling (Asghar et al., 2016). This pa-

per describes and quantifies the spatio-temporal uncertainty

arising from the choice of LSM alone, i.e. without assessing

its impact on CSI predictions, but provides an essential com-

ponent in understanding the uncertainty in any statistical or

mathematical predictions of CSI epidemiology and ecology

(Beale and Lennon, 2012; Zuliani et al., 2015; Metcalf et al.,

2017) that use LSM outputs as predicting variables.

1.2 Land surface model and data description

The four LSMs used in this study, CLM5, two versions of

ORCHIDEE (OR_MICT and OR_HL) and JULES, were

chosen because of their high degree of maturity and their

ability to model characteristics of Nordic areas, including

high-latitude processes, vegetation and landscapes. Table 1

summarizes these characteristics; details can be found in the

references. OR_MICT (Guimberteau et al., 2018) includes

major high-latitude adaptations, including snow and soil

thermal interaction, plant primary productivity constrained

by high-latitude conditions, and soil carbon stocks with feed-

back dynamics. OR_HL (Druel et al., 2017, 2019) adapts

ORCHIDEE with specific plant functional types (PFTs) such

as non-vascular plants (mosses, lichens), Arctic C3 grass and

boreal shrubs. CLM5 (Lawrence et al., 2019) includes per-

mafrost modelling and snow processes, C3 Arctic grass and

deciduous boreal shrubs as part of its 15 PFTs (see Ap-

pendix C) but no non-vascular plants. The version of JULES

(Clark et al., 2011) used here has been extended to be suit-

able for high latitudes (Comyn-Platt et al., 2020) by includ-

ing processes such as permafrost–carbon feedbacks (Burke

et al., 2017).

For all the LSMs, the initial PFTs were derived from land

cover maps. JULES and the two versions of ORCHIDEE

use the land cover product from the European Space Agency

Climate Change Initiative (ESA-CCI) (Poulter et al., 2015).

The supplementary material to Druel et al. (2017) describes

the correspondence between land cover and the added Arctic

PFTs. CLM5 uses the Land Use Harmonised data version 2,

a product of the Land Use Intercomparison Project (LUMIP)

(Lawrence et al., 2016), to define its initial spatial distribu-

tion of PFTs. For the historical analyses, the data were re-

gridded to the finest grid spacing, 0.5◦ N × 0.5◦ E, by simple

disaggregation which introduces a limitation when compar-

ing the LSMs. All analyses were performed for a sub-area

of the CLINF zone between 4.5–34.5◦ E and 58.5–70.5◦ N.

Note that the climate forcing data are not the same for the dif-

ferent LSMs (see Table 1) since the LSM data were provided

by different modelling groups, each of which uses preferred

GCMs. This is unlikely to have any significant impact on the

LSM comparisons (see Sect. 5).

2 Analysing spatio-temporal variations in LSMs

Unpublished analysis within the CLINF project has identi-

fied specific variables whose spatio-temporal behaviour is

correlated with CSI incidence; these include vegetation ac-

tivity (here represented by net primary production, NPP), soil

moisture, soil surface temperature, snow cover, precipitation

and land cover. This section concerns analysis of how pre-

dictions of such variables differ between LSMs.

For a given variable, say NPP, the data simulated by an

LSM can be arranged as a two-way spatial × temporal table,

where the spatial dimension has as many entries as latitude–

longitude positions, and the temporal dimension represents

monthly values for each year over the period studied. For our

dataset, the historical data simulations from December 1997

to December 2013 have 193 monthly entries over the selected

www.biogeosciences.net/17/1821/2020/ Biogeosciences, 17, 1821–1844, 2020
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Table 1. Summary of the main characteristics of the four LSMs (for details see references) analysed for the historical period 1997–2013 and

the forecasts to 2100 with JULES. Acronyms and references for the GCM drivers are given in the associated references to the LSMs.

Land sur-

face model

Initial

grid

spacing

Climate driver

model (GCM)

High-latitude characteristics and processes

OR_MICT 1◦ E

1◦ N

CRUNCEPv8 Permafrost thaw – snow processes – soil stocks and carbon feedback

on soil temperature – impact of severe climatic conditions on plant pro-

ductivity – 13 PFTs, including Arctic vegetation, but no non-vascular

plants, specific Arctic C3 grass or evergreen shrubs – no vegetation

competition

OR_HL 2◦ E

2◦ N

CRUNCEPv7

GSWP3v0

Permafrost thaw – snow processes – 16 PFTs, including non-vascular

plants, Arctic C3 grass, evergreen shrubs and deciduous shrubs, vegeta-

tion competition

CLM5 1.25◦ E

0.94◦ N

GSWP3v1 Permafrost thaw – snow processes – 15 PFTs, vegetation competition,

Arctic vegetation, but no non-vascular plants

JULES 0.5◦ E

0.5◦ N

WFDEI Permafrost thaw – snow processes – 14 PFTs, vegetation competition,

Arctic vegetation, but no non-vascular plants, no Arctic specific C3

grass, no evergreen shrubs

JULES

(horizon

year 2100)

3.75◦ E

2.5◦ N

34 GCMs with

IMOGEN (1.5

and 2 ◦C targets)

Permafrost thaw – snow processes – 10 PFTs, vegetation competition,

Arctic vegetation, but no non-vascular plants, specific Arctic C3 grass

or evergreen shrubs

Figure 1. Histogram of NPP values (kg m−2 s−1) in the three-way

table for the four LSMs for the period 1998–2013 and the selected

CLINF region; the top axis indicates cumulative frequencies.

zone of 1152 grid cells. Therefore for the four LSMs we get

a three-way 1152 × 193 × 4 data table per variable or a four-

way 1152 × 193 × 4 × 6 table if we include all the variables

given above. Since the LSMs provide NPP for each PFT, the

PFT dimension could also be added, but this is not done here.

Analysing such structured datasets to understand spatial,

temporal and between-model variations can be challenging

when there are long-tail distributions (as is the case in our

dataset: see Fig. 1, which shows the histogram of NPP val-

ues in the combined historical datasets simulated by the

four LSMs) which preclude the use of classical geostatistical

methods, and due to their multivariate nature. For two-way

tables, singular value decomposition (SVD) is a powerful

tool to extract associations of variables and patterns within

data, e.g. clusters and trends. The SVD of a data matrix finds

pairs of vectors (components) that successively extract de-

creasing fractions of the variation in the data and are uncorre-

lated with previous pairs. Visual description of these optimal

vectors can be obtained by plotting the component weights,

e.g. a spatial effect as a map and a temporal effect as a time

series plot.

With more than two dimensions, the data are a multiway

table; combining different dimensions to obtain a two-way

data table, i.e. a matrix, suitable for SVD would lead to diffi-

culties in interpreting the results. We could instead compare

the SVDs of the four spatio-temporal (1152 × 193) tables of

NPP for each LSM, which may indicate whether the models

behave similarly but would not readily highlight their differ-

ences. When the spatio-temporal effects extracted from the

four SVDs are similar, one would say it is a trend in NPP and

the small differences would be interpreted as uncertainty due

to intra-model variations. But when no similarities in patterns

could be read across the SVDs for each of the four LSMs,

one could infer larger inter-model uncertainty with specific

spatio-temporal variations per LSM without other means of

comparisons. Such considerations have led to the develop-

ment of methods to extend the SVD to multiway tables; these

are briefly described below, before giving a fuller description

in Sect. 3 of the R package PTAk method used in this paper

(Leibovici, 2010), which is an optimal nested decomposition

of the data variation.

Biogeosciences, 17, 1821–1844, 2020 www.biogeosciences.net/17/1821/2020/
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3 From singular value decomposition to multiway data

analysis

Let X be an n×p matrix, which we can regard as a collection

of np-dimensional vectors or pn-dimensional vectors. The

matrix XtX is positive semi-definite, so all its eigenvalues are

positive, and its eigenvectors, ϕh, are mutually orthogonal,

i.e. ϕt
hϕh′ = 0 if h 6= h′. The matrices XtX and XXt have the

same eigenvalues, σ 2
h , and the sum of squares of the elements

of X is given by xtx = trace(XtX) = trace(XXt ) =
∑

hσ
2
h ,

where x is the matrix X vectorized as a np-dimensional vec-

tor.

The SVD of any matrix X is defined by the series of

decreasing σh, the singular values, each associated with

a pair of unit vectors ϕh (p-dimensional) and ψh (n-

dimensional), withψ t
hψh = ϕt

hϕh = 1, which explain a frac-

tion σ 2
h

/(
∑

hσ
2
h

)

of the variability of X (defined as the

sum of squares of the elements of X), i.e. ϕt
hXtXϕh = σ 2

h =
ψ t

hXXtψh. Hence SVD can be used for dimension reduction

by defining a p′-dimensional subspace (p′ < p) that captures

most of the variability in X:

X =SVD(X) =
p′

∑

h=1

σhψhϕ
t
h +

∑

h>p′
σhψhϕ

t
h

=
p′

∑

h=1

σhψh ⊗ϕh + ǫ. (1)

For a suitable p′, the residual variation ǫ =
∑

h>p′σhψhϕ
t
h

is small enough to be considered insignificant. As shown in

Eq. (1), this decomposition can be written in tensorial form,

since ψhϕ
t
h = ψh ⊗ϕh. The rank-1 matrix ψhϕ

t
h is known

as a decomposed rank-1 tensor (Leibovici, 2010). The term

σ1ψ1 ⊗ϕ1 is the best rank-1 tensor approximation to the ma-

trix X in the sense of capturing the maximum fraction of vari-

ability in X among all rank-1 tensors, i.e. the maximum value

of σ = ψ tXϕ. Subsequent rank-1 tensors in the decomposi-

tion in Eq. (1), given by the other eigenvectors, are orthogo-

nal to the previous ones and successively extract decreasing

fractions of the variability. Matrices can be seen as order 2

tensors and multiway tables as order k tensors, where k is the

number of dimensions of the table. For k = 2 the SVD can be

seen as an optimal basis vector system in each dimension and

in the tensor space, and generalizations of SVD to tensors of

the order k ≥ 3 aim to find equivalent optimal systems.

Several algorithms to extend SVD to tables with more

than two entries have been proposed (Tucker, 1966; Carroll

and Chang, 1970; Harshman, 1970; Kroonenberg, 1983; Lei-

bovici, 2010), and development of methods and their appli-

cations is still very active (Demšar et al., 2013; Kroonenberg,

2016; Takeuchi et al., 2017; Lock and Li, 2018). Most exten-

sions aim to find an optimum decomposition of a multiway

table that allows dimension reduction by looking for a de-

composition similar to Eq. (1) under specific optimization

criteria. The algebraic embedding of two-way data tables as

tensors of the order of 2 (equivalent to matrices) and by ex-

tension of k-way data tables as tensors of the order k facili-

tates the understanding of these extensions. For a multiway

table X with k ≥ 3 entries this takes the generic form

X =SVD_k_method(X) + ǫ

=
∑

h1,h2,...,hk

σh1h2...hk
ψh1

⊗ϕh2
⊗ . . . ⊗ ξhk

+ ǫ, (2)

where hi is the index of the basis vectors of the individual

vector spaces making up the k-dimensional data table and

ǫ expresses the residual of the approximation given by the

summation. This residual depends on the method and the

number of components used in the decomposition and can

be zero (as would be the case if we retained all the terms in a

SVD).

The decompositions carried out by the CANDECOMP and

PARAFAC methods (Carroll and Chang, 1970; Harshman,

1970) fix the number of rank-1 tensors in the decomposition

but do not impose an orthogonality constraint, while PCA-

3modes (Kroonenberg, 1983) considers both orthogonality

and rank within each vector space. However, all three meth-

ods need to choose in advance the number of rank-1 tensors

in their optimization and obtain decompositions that are not

nested as with SVD, in which the rank p′′ approximation of

X contains the approximation obtained for p′ (with p′′ > p′).
This property is often desirable for environmental data anal-

ysis (Frelat et al., 2017), as decomposition of the variance or

sum of squares has a practical interpretation.

To address this, Leibovici and Sabatier (1998) developed

the PTAk method, which is a hierarchical decomposition giv-

ing nested approximation by construction. For k = 2, the

PTAk algorithm is the same as SVD, while for k = 3 it is

given by

X =PTA3(X) = σ1(ψ1 ⊗ϕ1 ⊗φ1)

+ψ1⊗1PTA2(P(ϕ1⊗φ1)
⊥X..ψ1)

+ϕ1⊗2PTA2(P(ψ1⊗φ1)
⊥X..ϕ1)

+φ1⊗3PTA2(P(ψ1⊗ϕ1)
⊥X..φ1)

+PTA3(P(ψ⊥
1 ⊗ϕ⊥

1 ⊗φ⊥
1 )X). (3)

The notation ⊗i means that the vector on the left takes the ith

place in the tensor product, e.g. ϕ1⊗2(α⊗β) = α⊗ϕ1 ⊗β

and “..” indicates the contraction operation (defined in Ap-

pendix B along with definitions of the other notation used in

Eq. 3). Note that the PTA3 algorithm is recursive as the last

line of Eq. (3) calls another PTA3. This process can be con-

tinued until it leads to a null table, but normally a stopping

rule is imposed by requiring the decomposition to capture a

prescribed fraction of the overall variability or specifying the

desired number of order k rank-1 tensors (right-hand side of

Eq. 3).

Similarly to SVD, the PTA3 algorithm first retrieves the

rank-1 tensor approximation to X, σ1ψ1 ⊗ϕ1 ⊗φ1, which

www.biogeosciences.net/17/1821/2020/ Biogeosciences, 17, 1821–1844, 2020
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captures the maximum possible fraction of the variability in

X and is termed the first principal tensor (PT) of X. The

second, third and fourth lines in Eq. (3) correspond to op-

timizations associated with this first PT in which the decom-

posed tensors share one of the components in the first PT. The

corresponding PTA2 analyses are complete SVD decompo-

sitions into series of tensor products. Given this decomposi-

tion, descriptive statistics or plots of the triple of components

(ψ1, ϕ1, φ1) can then be used to visualize the pattern or ef-

fect associated with the fraction of the variability captured by

each of the tensors.

The generalization of Eq. (3) to k-way data tables is

straightforward. In a PTAk decomposition, the first rank-1

tensor will have associated PTA(k − 1) values which will re-

cursively end up at associated PTA2s, i.e. SVDs.

4 Spatio-temporal variations in NPP across the four

LSMs

This principal aims of this section are to perform a PTA3

analysis of the three-way spatial × temporal × LSM table X

of NPP and to interpret the results. However, it is useful to

first examine some of the properties of the distributions of

NPP for each LSM. The histogram of the NPP values in the

full data table X, displayed in Fig. 1, conceals distinct dif-

ferences between the LSMs. Some of these differences are

indicated by Table 2, which gives the mean NPP and sum of

the squares of NPP for each LSM, and Table 3, which shows

for each LSM the fraction of NPP values in each decile of the

reference distribution in Fig. 1. In Table 2, OR_MICT stands

out by its low mean NPP (23 % less than JULES) and low

variability (significantly less than the other LSMs and 37 %

less than OR_HL). The LSMs also exhibit different distri-

butions (see Table 3): notably CLM5 has 35 % of its NPP

values in the first decile of the reference distribution, while

OR_HL and JULES have very few values in this decile, and

the decile with peak occupancy is different for all four LSMs.

However, all the LSMs place around 10 % of their NPP esti-

mates in each of the higher deciles (70 % to 100 %).

These distributional differences tell us nothing about the

spatio-temporal differences between the LSMs, and for that

we use the decomposition provided by the R package PTAk

(Leibovici, 2010) of which the first 10 terms are displayed in

Fig. 2. This describes the hierarchical and nested decomposi-

tion of the sum of squares of X into PTs and associated PTs.

Each row corresponds to a PT, identified by a label and num-

ber, -no-, and its singular value; e.g. vs111 and -no-1

correspond to the first line of Eq. (3) giving the best rank-1

approximation of X, with singular value σ1 = 2.7147×10−5.

The row with label vs222 gives the singular value corre-

sponding to the next order-3 rank-1 approximation, which

corresponds to the recursive step in the last line of Eq. (3).

The rows between vs111 and vs222 correspond to PTs

associated with vs111, which are derived from PTA2s,

Figure 2. Summary of the PTA3 decomposition for the data table

of NPP simulations for the four LSMs for the studied region and

period. Each line of the table corresponds to a rank-1 tensor part of

the decomposition; the variability (sum of squares) in X it explains

is given by the square of its singular value, SingVal, and this is

expressed as a percentage of the variability in the ssPT% column.

i.e. SVDs. The labels given to these decomposed compo-

nents start with the dimension of the component used in con-

tracting the tensor X (see Appendix B) and continue with

the label of the PT from which they are derived and the di-

mensions of the contracted tensor; e.g. 1152 vs111 193

4 identifies the results from the PTA2 of the 193 × 4 ma-

trix X..ψ1 (i.e. an SVD), where ψ1 is the 1152-dimensional

vector forming the spatial component of PT -no-1. There-

fore the associated PTs -no-3 and 4 have the same spatial

component as tensor -no-1. Similarly, the rank-1 tensors

-no-6 and 7 are associated PTs along the temporal com-

ponent of vs111. Note that Fig. 2 displays only PTs with a

contribution exceeding 0.1 % of the total sum of squares, as

indicated in the bottom line in the figure. This means that we

show only the first two terms from each of the PTA2s associ-

ated with vs111, one of the associated PTs associated with

vs222 and no associated PTs for vs333.

The other terms in the rows of Fig. 2 are the singular values

associated with each PT (SingVal) and the percentage of

the variability in X explained by each of the PTs (ssPT%).

The variability explained is given by the square of the sin-

gular value. Tensors -no- 2, 5 and 8 are missing as they

are repeats of already listed rank-1 tensors. This arises from

the way the code implements Eq. (3); see Leibovici (2010)

for further details.

The contribution by the main PTs decreases from vs111,

vs222, vs333, etc. Each of the associated tensors makes a

smaller contribution than its main PT but this may be larger

than the next main PT; e.g. tensor -no-3 captures more

variability than tensor -no-11. There is no particular or-

dering in the tensors associated with different components,

between -no-3, which is associated with the spatial com-

ponent, and -no-6, which is associated with the temporal
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Table 2. Mean NPP (kg m−2 s−1) and sum of squares of NPP (SS) for the original aggregated and individual LSMs, together with the SS

explained by each PT from the PTA3 analysis, and the cumulative approximations (in brackets) to the overall SS and the SS of each LSM.

OR_MICT OR_HL CLM5 JULES Overall

Mean NPP (×10−8) 1.63 1.93 1.73 1.99 1.82

SS (×10−10) 1.70 2.33 2.12 2.09 8.23

Mean NPP in PT -no-1 (×10−8) 1.69 1.92 1.84 1.88 1.83

PT -no-1 ssPT % (cumul %) 92.00 (92.00) 86.50 (86.50) 87.30 (87.30) 93.10 (93.10) 89.50 (89.50)

PT -no-6 ssPT % (cumul %) 0.62 (92.62) 9.36 (95.86) 2.32 (89.62) 1.35 (94.45) 3.72 (93.22)

PT -no-3 ssPT % (cumul %) 0.68 (93.30) 0.00 (95.86) 4.20 (93.82) 1.95 (96.40) 1.72 (94.94)

PT -no-9 ssPT % (cumul %) 1.42 (94.72) 1.33 (97.19) 1.35 (95.17) 1.43 (97.83) 1.38 (96.32)

PT -no-7 ssPT % (cumul %) 2.90 (97.62) 0.04 (97.23) 0.91 (96.08) 0.05 (97.88) 0.86 (97.18)

PT -no-11 ssPT % (cumul %) 0.00 (97.62) 0.05 (97.28) 1.05 (97.13) 0.50 (98.38) 0.42 (97.60)

PT -no-4 ssPT % (cumul %) 1.09 (98.71) 0.27 (97.55) 0.01 (97.14) 0.14 (98.52) 0.34 (97.94)

PT -no-10 ssPT % (cumul %) 0.18 (98.89) 0.17 (97.72) 0.17 (97.31) 0.19 (98.71) 0.18 (98.12)

PT -no-21 ssPT % (cumul %) 0.01 (98.90) 0.39 (98.11) 0.03 (97.34) 0.21 (98.92) 0.17 (98.29)

PT -no-16 ssPT % (cumul %) 0.01 (98.91) 0.24 (98.35) 0.01 (97.35) 0.11 (99.03) 0.10 (98.39)

Table 3. Deciles (q) of the reference NPP distribution given by Fig. 1 and the percentage of NPP values in each decile observed for each LSM.

An LSM whose NPP values had a distribution similar to the reference would have 10 % in each decile; entries in bold indicate departures of

more than 2 % from 10 % (decile values from 10 % to 100 % are: −1.25 × 10−9, −5.15 × 10−11, 4.58 × 10−11, 1.30 × 10−9, 5.67 × 10−9,

1.53 × 10−8, 2.65 × 10−8, 4.14 × 10−8, 5.80 × 10−8, 1.11 × 10−7).

q 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

OR_MICT 5.2 22.0 8.0 5.6 10.0 14.0 9.7 8.9 7.2 9.4

OR_HL 0.0 4.2 21.0 12.0 12.0 11.0 11.0 9.5 8.0 11.0

CLM5 35.0 6.2 2.1 3.0 5.8 5.6 10.0 11.0 11.0 9.9

JULES 0.2 7.4 8.6 19.0 12.0 10.0 9.5 10.0 13.0 9.7

component, but the PTs associated with a given component

are ordered since they derive from the same PTA2 (i.e. SVD);

e.g. -no-3 precedes -no-4. Figure 2 then allows one to se-

lect the PTs or associated PTs that successively capture the

variability in X.

It is helpful to visualize the first PT, whose components are

displayed in Fig. 3, as an optimal approximation to the initial

1152 × 193 × 4 data table in which each of the four layers

is the same 2-D spatio-temporal “map”, but scaled by the

weight for a particular LSM, given by φ1. The spatial pattern

at each time is the same (ψ1, as in Fig. 3a), but with a weight

appropriate to that particular time. Similarly, the time series

at each spatial location is the same (ϕ1, shown as Fig. 3b),

but with a weight appropriate to that location. To recover the

NPP from this approximation at a particular position, time

and for a given LSM, the corresponding values in ψ1, ϕ1 and

φ1 are multiplied together and then multiplied by its singular

value, σ1. Exactly the same construction applies to each of

the rank-1 tensors in the decomposition.

The spatial effect (Fig. 3a), which is always positive,

places higher weights in Sweden, the Baltic states and north-

west Russia and lower values in Norway and northern Fin-

land, with values varying between 22 % and 138 % of a uni-

form spatial weighting (i.e. equal weights of 1/
√

1152). For

display, the temporal component, a vector of length 193 (De-

cember 1997 to December 2013), has been split into annual

segments which express the monthly weights over the 16-

year period (Fig. 3b). As expected, there is a strong sea-

sonal effect, with the summer months (June to August) hav-

ing large positive weights, while values are very small from

November to March and include negative values from De-

cember to February in nearly all years. Two other groups

of months can be distinguished: October paired with April

as just before or after winter and May with September as

just before and after the seasonal peak of production. The

months from May to September all display significant up-

ward trends in NPP over the 16 years, with average increases

of 1.48 %, 0.80 %, 0.63 %, 0.67 % and 0.51 % per annum

respectively. The other months show no significant trends.

April, May, June and August have more inter-annual vari-

ability than the other months, and April, May and June all

show peaks in 2002. Over the 16 years, the maximum is in

July 2013 and is 217 % greater than for uniform temporal

weighting (1/
√

193), while the minimum in winter (Decem-

ber 2006) represents −8 % of uniform weighting.

Since these spatial and temporal patterns are the same for

all the LSMs, the difference between them is expressed by

the LSM weights (Fig. 3c). For identical LSM simulations,
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the weights would be 1/2, since each vector in the decompo-

sition is normalized to unity (i.e.

√

φ2
11 + φ2

12 + φ2
13 + φ2

14) =
√

4φ2
11 = 1), but the weights lie between 0.460 and 0.523,

with JULES and OR_HL respectively giving values 3 % and

5 % higher than for equal weights and OR_MICT giving a

value 8 % lower. Hence there is only a weak dependence on

the LSM in this first PT.

The proportion of the variability in the first PT due to each

LSM is given by the squares of the LSM weights, i.e. 21.2%,

27.4%, 25.1% and 26.3% for OR_MICT, OR_HL, CLM5

and JULES respectively. Multiplying these values by σ 2
1

gives the sum of squares of NPP in the spatio-temporal maps

for vs111 for each LSM (see Table.2). Several points should

be noted about the approximation to X given by vs111.

1. The squares of the LSM weights are in the ratio 1 :
1.29 : 1.19 : 1.24, while the values of the original sum

of squares of NPP (see Table 2) are in the ratio 1 : 1.37 :
1.25 : 1.29. Hence the first PT correctly picks up the

ordering of the variability amongst the LSMs, but not

its full value, since it is effectively a smoothing of the

dataset.

2. The spatio-temporal maps for the individual LSMs cap-

ture 92.0 %, 86.5 %, 87.3 % and 93.1 % of the original

variability of OR_MICT, OR_HL, CLM5 and JULES

respectively. Hence each one is a reasonable approxi-

mation to the original LSM simulation, particularly for

OR_MICT and JULES.

3. The mean NPP represented by vs111 is 1.834 × 10−8

kg m−2 s−1, which is very close to that of the mean of X

(1.824 × 10−8 kg m−2 s−1), though the individual NPP

spatio-temporal maps for each LSM track the original

mean NPP less closely (+3.6 %, −0.7 %, +6.3 % and

−5.6 % for OR_MICT, OR_HL, CLM5 and JULES re-

spectively; see Table 2).

As noted above, recovering the NPP at a particular po-

sition and time and for a given LSM in vs111 requires

multiplying together the corresponding weights in the spa-

tial, temporal and LSM dimensions and then multiplying by

the singular value. So, for example, the maximum value of

NPP in the first PT over the whole time period is in July

2013, in the darkest red cell of Fig. 3a and for OR_HL,

the LSM with maximum weight. Since σ1 = 2.7147 × 10−5

and in this cell the spatial, temporal and LSM weights are

0.040, 0.156 and 0.523 respectively, this yields a maxi-

mum NPP of 8.9 × 10−8 kg m−2 s−1. There are small neg-

ative temporal weights from December to February, lead-

ing to negative values of NPP and an overall minimum NPP

of −1.44 × 10−8 kg m−2 s−1 in December 2006, which will

again occur for OR_HL and at the same position as the over-

all maximum NPP.

Results from Table 2 and this first PT makes the important

point that a single spatio-temporal pattern does well at cap-

turing the NPP from the four LSMs. Whilst this expresses

a common trend between the LSM, their weight similarity

is up to 14 % differences, showing a variation in intensity

from one to another. Despite similar photosynthesis modules

in most LSMs, parameter settings, such as the choice of PFTs

together with different climate datasets (GCM; see Table 1)

and settings in other modules, induce these variations. The

subsequent PTs provide a series of corrections to this com-

mon pattern, expressing LSM specificities, such as how the

PFTs are parameterized.

The second best PT in the decomposition, -no-6, is a

temporally associated PT, so it has the same temporal com-

ponent as vs111 and expresses 3.72 % of the variability. Its

spatial component (Fig. 4a) has positive (red) weights in the

north and west and negative (green) weights to the south and

east. The most striking feature of this tensor is in its LSM

component (Fig. 4c) which shows a marked contrast between

OR_HL, with a large negative weight, and the other LSMs,

for which the weights are significantly smaller and positive.

Hence, after multiplying the weights in the different compo-

nents, all the LSMs except OR_HL will see an increase in

NPP in the red areas in the summer months and decrease in

the green areas, while the opposite effect occurs for OR_HL.

When the temporal weights are negative, as occurs for most

of the winter, these sign changes in NPP are reversed. As can

be seen from Table 2, including the contribution from this

PT increases the captured fraction of variability in OR_HL

from 86.5 % to 95.9 %, with much smaller gains for the other

LSMs. Therefore, PT -no-6, mostly contributing to fitting

OR_HL (9.36 % of its variability), is highlighting a speci-

ficity relatively to the others. Without ground truth, one can-

not tell if this specificity is a bias or a better modelling than

the other LSMs and just expresses a well-defined uncertainty.

Figure 5 shows the components of the third best PT,

-no-3, which captures 1.72 % of the variability and is as-

sociated with the same positive spatial pattern as PT -no-1.

Here the temporal effect is positive for the months from Au-

gust to October, close to zero for November and July, and

negative for the other months, especially April to June, which

show higher inter-annual variations around their trends than

the other months. CLM5 and JULES have large positive and

negative weights respectively while OR_MICT has a smaller

negative weight and OR_HL has a weight very close to zero.

Hence for CLM5 this tensor acts to increase NPP from Au-

gust to October and reduce it for all other months except

November and July, while for JULES and OR_MICT it does

the opposite. As expected from the weights, including this

tensor mainly acts to improve the fit of CLM5 and JULES

to their original values (Table 2). There are more between-

year variations for the months of May to July than post-peak-

production months, with September and October showing the

most stable year-to-year variations among the months con-

tributing to the tensor.

Principal tensor -no-9 is the fourth best in the decom-

position and captures 1.38 % of total variability. Since it is
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Figure 3. Plots of the components of PT -no-1 of the PTA3 decomposition in Fig. 2 representing 89.5 % of the variability.

associated with the LSM component of PT -no-1 it is the

same for all LSMs. Its spatial component Fig. 6a exhibits a

strong latitudinal gradient with positive values in the north

and negative values in the south. The temporal component

has positive weights in July and August and negative values

in April, May and June, while for other months the weights

are near-zero. This is relatively constant over the 16-year pe-

riod, the year-to-year variations being smaller than the sep-

aration of the three groups of months, except in 2002 where

June joins the near zero group and July gets a significantly

higher value than August whilst getting a significantly lower

weight (close to the zero group) than August in 2012. Also,

one must notice in 2006 a relatively parallel shift from 2005

values for all months having a contribution. The years 2002,

2006, 2011 and 2012, showing local temporal similarity for

the growing season, correspond to extreme events mentioned

in the literature (Høgda et al., 2013; Bjerke et al., 2014; Park

et al., 2016). Hence, since the LSM weights are all positive,

in July and August this tensor acts to increase NPP in the

north and reduce it in the south, while in April to June it

does the opposite. These effects will be slightly greater for

OR_HL because of its greater weight. Though its contribu-

tion to the overall sum of squares is only 1.38 %, it provides

improvements for all LSMs (see Table 2).

None of the other PTs contribute more than 1 % to the

overall variability and their components are not displayed,

although the contributions for all terms in Fig. 2 are given

in Table 2. For example, the next best PT (-no-11), which

derives from the last line in Eq. (3), captures 0.42 % of the

variability and principally improves the fit to the variability

captured by CLM5 and, to a lesser extent, JULES. The sum-

mation of all 10 PTs that each represent at least 0.1 % of the

variability captures 98.4 % of the variability in X and be-

tween 97.4 % and 99.0 % of the variability in the individual

LSMs (last line of Table 2).
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Figure 4. Plots of the components of PT -no-6 associated with PT -no-1 along its temporal dimension, which is therefore identical to

Fig. 3b; it represents 3.72 % of the variability.

Overall, this analysis shows that a single optimal spatio-

temporal pattern, with slightly different weights for the four

LSMs (up to 14 % maximum difference), provides a rea-

sonably good approximation for all their estimates of NPP,

capturing between 87 % and 93 % of the variability in the

individual models, as well as around 90 % of the variabil-

ity in the combined LSM dataset. The next best adjustment

to this pattern is a spatial correction that principally applies

to OR_HL and significantly improves the fit of the approx-

imation to this LSM, with only small improvements for the

other LSMs. The second best adjustment adds a temporal pat-

tern that mainly affects CLM5 and JULES and improves the

fit to these LSMs, with less effect on OR_MICT and none

on OR_HL. The third best adjustment adds a new spatio-

temporal pattern whose spatial component is roughly the op-

posite of that in the first PT (i.e. it is spatially similar but with

opposite signs) but a quite different temporal component that

is positive in the later summer months, negative in the late

spring and early summer months, and roughly zero at other

times. The improvement in the overall fit from the next best

PT and all succeeding ones is less than 0.9 %, and, although

in two instances the fits to individual models improve by over

1 %, in most cases the improvements are much smaller (see

Table 2).

Summing the 10 PTs whose individual contribution to the

overall variability exceeds 0.1 % (Fig. 2) provides an approx-

imation to the overall data table that captures 98.4 % of the

overall variability and between 97.4 % and 99.0 % of the vari-

ability in the individual LSMs (Table 2). However, also of in-

terest is the point-wise goodness of fit of the approximation,

not just the variability it captures. This is represented by the

table of residuals, i.e. the ǫ term in Eq. (2). Around 75 % of

the absolute values of these residuals are less than 8.4 % of

the overall mean NPP, so in most cases there is a good point-

wise fit to the original data, but the maximum absolute value

of the residuals (4.83 × 10−8) is around the third quartile of
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Figure 5. Plots for PT -no-3 associated with PT -no-1 along the spatial dimension, which is therefore identical to Fig. 3a; it represents

1.72 % of the variability.

NPP (3.44 × 10−8). Hence, in some cases the approximation

may be significantly different from the correct value despite

the residuals contributing less than 1.62 % to the overall vari-

ability.

5 Analysing differences between the LSMs

Section 4 identified differences between the LSMs captured

by an optimal decomposition of the associated three-way ta-

ble. In this section we instead directly analyse the variabil-

ity in the differences between the LSMs, in order to local-

ize where and when the LSMs disagree and thus to quantify

spatio-temporally the uncertainty in NPP associated with the

choice of a particular LSM. We in fact analyse LSM differ-

ences normalized by the maximum value of NPP, i.e. (NNP1–

NPP2) / NPPmax, where NNP1 and NNP2 refer to NPP val-

ues in two different LSMs and NPPmax is the maximum NPP

over all four LSMs. Note that for each pair of LSMs we have

chosen arbitrarily whether to use (NPP1–NPP2) or (NPP2–

NPP1). This choice of sign does not affect the PTAk opti-

mization since this is based on the sum of squares, but the

sign does matter when identifying which of a pair of LSMs

gives higher NPP values. The sign convention used is indi-

cated in the relevant figures (Figs. 9–11).

Figure 7 displays the histograms of (a) the absolute values

of normalized differences, which has a peak near zero but

also a fairly long right-hand tail, and (b) the absolute values

of (NPP1–NPP2) / (NPP1 + NPP2), which is fairly flat across

most of the range, with a small peak near zero, but with a

large peak near 1. The latter indicates that for many times

and places the NPP values in one LSM are very small relative

to one of the other LSMs. This occurs much more frequently

in winter when CLM5 gives NPP values that are very small

compared to those from the other LSMs. However, since NPP

is small in winter, these large relative differences have little
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Figure 6. Plots for PT -no-9 associated with PT -no-1 along the LSM dimension, which is therefore identical to Fig. 3c; it represents

1.38 % of the variability.

Figure 7. Histograms of (a) the absolute values of the six NPP dif-

ferences normalized by NPPmax and (b) the normalized relative dif-

ferences.

impact on overall annual production. Indeed Table 2 shows

that the mean annual NPP from CLM5 exceeds that from

OR_MICT.

The results of the PTA3 for the 1152 × 193 × 6 table of

normalized NPP differences are shown in Fig. 8. The first

and second PTs respectively extract 43.4 % and 21.7 % of the

variation, both with well-structured patterns in their compo-

nents. The first, shown in Fig. 9, has a spatial pattern with

negative (green) value areas to the south and east, and posi-

tive (red) values in the north and west, as well as in south-

west Finland. The temporal component is always positive

and displays a seasonal effect (Fig. 9b) with the same or-

dering of the months as Fig. 3. However, despite being very

similar to the temporal pattern in Fig. 3, it shows more year-

to-year variations, and the May profile differs from Septem-

ber with an increasing trend. All the differences involving

OR_HL have significant weights but for the other differences

they are close to zero. Hence the effects of this principal vec-
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Figure 8. Summary of the PTA3 decomposition for the data table

of the six normalized LSM differences.

tor essentially translate into differences between OR_HL and

the other LSMs. Taking into account the signs of the spatial,

temporal and LSM weights (the last to be interpreted as an

LSM difference), this means that for this PT over the whole

time period CLM5 > JULES > OR_MICT > OR_HL in the

red areas in Fig. 9a while these orderings are reversed in the

green areas. However, the small weights on the differences

not involving OR_HL indicate that the other LSMs all give

similar NPP values.

The second best PT, Fig. 10, expressing 21.7 % of the

variability, has a quite complex positive spatial pattern, with

the strongest effects in northern Finland and the weakest

near Lake Ladoga, Russia, in the south-east of the region.

The temporal weights are positive in June, May and to a

lesser extent April; weakly positive for the winter months

from December to March; nearly zero in July; variable but

mainly negative in November; and negative from August to

October. The weights for all differences involving JULES

are negative but are positive for the other differences. This

means that for this PT in all locations and for all years

JULES > OR_MICT > OR_HL > CLM5 from April to June,

but this ordering is reversed from August to October. This is a

persistent monthly pattern but with much greater inter-annual

variability from May to July than in the other months. So this

ordering of LSMs is more sensitive to yearly variations from

April to June than its reverse counterpart during post peak

production months from August to October.

The third and fourth most important PTs, -no-6 and 7,

are associated with the temporal component of vs111 and

capture 10.94 % and 4.85% of the variability respectively.

Their spatial and LSM components are depicted in Fig. 11.

The first displays little spatial structure apart from significant

negative values along the east coast of Sweden. This may

be due to differences in data resolution before grid trans-

formation but also occurs where C3 grass is the dominant

PFT (all LSMs). All LSM differences have positive weights

except CLM5 – JULES, which is negative but small, and

all differences involving OR_MICT have significantly larger

weights than other combinations. Since the temporal com-

ponent is positive everywhere (Fig. 9b), the net effect is

that OR_MICT > OR_HL > JULES > CLM5 in the red ar-

eas (with a high value north of Lake Ladoga), and this order

is reversed in the green areas. However, the differences be-

tween LSMs other than those involving OR_MICT are small.

The spatial component of PT -no-7 (Fig. 11c) is weakly

positive except for a very small area near Tromsø in north-

ern Norway. All the LSM differences involving JULES

have negative weights and have greater magnitude than

the other differences, which are all positive, meaning that

JULES > OR_HL > OR_MICT > CLM5 everywhere except

near Tromsø, where this ordering is reversed.

As indicated by Fig. 8, the next best PTs (not dis-

played) are -no-13, associated with the spatial component

of vs222, -no-9 and 10, associated with the LSM com-

ponent of vs111, and -no-19, associated with the LSM

component of vs222. Hence PT -no-13 modulates the tem-

poral pattern of differences depicted in Fig. 10 with a dis-

tinct temporal pattern that has different positive weights for

each of the LSM differences (the contribution from OR_HL

– CLM5 is almost zero and OR_MI – JULES gets the larger

positive weight). A contrast between July (positive weights)

and May (negative weights) stands out clearly from the

other months by the size of its contribution to the variabil-

ity, for reasons which are not clear. In Fig. 10, July and

OR_MI – JULES weights were close to zero. Because PTs

-no-9 and 10 are associated with the LSM component of

vs111, the spatio-temporal table given by summing the spa-

tial × temporal terms in all three PTs can be analysed to-

gether; this would mainly reveal spatio-temporal differences

between OR_HL and the other LSMs (see Fig. 9c). How-

ever, this combined analysis cannot be displayed as separate

spatial and temporal plots. With the same LSM weights as in

Fig. 10, PT-no-19 exhibits a clear north–south gradient and

a temporal pattern in which June clearly contributes more to

the variability than the other months. This is similar to what

is seen for July in PT -no-13, again for unknown reasons.

All the rest of the PTs cumulatively contribute only 10 % to

the overall variability and individually less than 0.8 %.

Also analysed was the variability in the quantity |NPP1 –

NPP2 | / | NPP1 + NPP2 | but this is not displayed, since its

main contribution is to show that the large peak near 1 seen

in Fig. 7b can mainly be attributed to small values of CLM5

relative to the other LSMs in winter in the north of the region.

The analysis in this section adds significantly to that in

Sect. 4 by providing specific information on the times and

places where the LSMs differ and by how much. However,

in this case no single spatio-temporal pattern strongly domi-

nates the variability so interpretation of the analysis requires

consideration of several such patterns. Nonetheless, the three
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Figure 9. Best PT (vs111) of the PTA3 decomposition of the six normalized differences, representing 43.37 % of the variability. In (c), the

labelling CLM5_JUL indicates the difference CLM5-JULES, and similarly for other LSM pairs.

best PTs capture around 76 % of the variability in the LSM

differences. The first essentially tells us that over a well-

defined spatial pattern and a clearly ordered temporal pattern

that with a maximum in summer and a minimum in winter

OR_HL gives different values from the other LSMs, which

are all similar. The second PT principally identifies times and

places where CLM5 differs from the other LSMs, while the

third does the same for OR_MICT.

6 Climate forcing uncertainty

This section analyses the effects of different GCM drivers

on the NPP estimated by JULES, so it is a partial answer

to question (i) in Sect. 1. Two global warming scenarios

that stabilize at 1.5 and 2.0 ◦C above pre-industrial levels by

the year 2100 were used, with 34 GCMs as climate forc-

ing in JULES (Comyn-Platt et al., 2020). The ensemble of

the GCMs is taken to represent the uncertainty in climate

prediction, from which one can get an idea of the associ-

ated uncertainty in the JULES estimates of NPP. Note how-

ever, that this commonly used approach to quantifying cli-

mate uncertainty is not entirely satisfactory, since it identifies

inter-GCM model variability with the internal uncertainty in

climate prediction (Hawkins and Sutton, 2009; Kay et al.,

2015).

For each scenario a PTA3 analysis was performed on

a spatial × temporal × GCM table. The decompositions for

both the 1.5 and 2.0 ◦C targets capture almost all the vari-

ation in their first PT (99.15 % and 99.16 % respectively);

hence very similar spatio-temporal patterns of NPP are pro-

duced whichever GCM is used. The spatial patterns are

shown in Figs. 12a and 13a. The temporal and GCM weights

are given as a percentage relative deviation from uniform

weighting, i.e. 100× (cp−unif)/unif, where cp indicates the

weight while unif = 1/
√

1200 for the temporal dimension

and unif = 1/
√

34 for the GCMs.

Over the 100 years, all months exhibit an initial increase,

which is sharper for the 2 ◦C scenario, followed by a flat-

tening out and minor decrease; this decrease sets in around

2070 for the 1.5 ◦C scenario and slightly later for the 2.0 ◦C

scenario. The maximum increase from 2000 (indicated on

each monthly curve in Figs. 12b and 13b) is higher in every

month for the 2.0 ◦C scenario, e.g. 20 % and 32 % in July for
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Figure 10. Second best PT (vs222) of the PTA3 decomposition of the six normalized differences, representing 21.7 % of the variability.

the 1.5 and 2.0 ◦C case respectively. The differences between

the GCMs are indicated by histograms of the relative devia-

tion of the GCM weights from uniform weighting (Figs. 12c

and 13c). These differences are up to 7 % for the 2.0 ◦C sce-

nario and 4.5 % for the 1.5 ◦C scenario. For both scenarios,

the groups of GCMs giving the lowest or highest difference

from equal weighting were the same, though the precise or-

dering was different (see Appendix D). If the singular value

associated with this first PT are expressing the same amount

of variability, the latter is 10 % higher for the 2.0 ◦C case

than for 1.5 ◦C, which simply expresses the sharper increase

in NPP values produced under a more intense warming.

7 Discussion and conclusion

This paper investigates the uncertainty associated with

choosing a given LSM and GCM to predict the effects of cli-

mate change on net primary production in northern Europe.

More precisely, it provides a spatio-temporal analysis that

captures the principal similarities and differences between

LSM estimates of NPP, which need to be taken into account

if these LSMs are to be used to provide scenarios for applica-

tions. Its primary motivation is to provide information rele-

vant to studying climate-sensitive infections (CSIs), but here

the CSI context is used only to reduce the number of LSMs to

those that contain adequate descriptions of key high-latitude

processes. NPP was chosen as a representative, substantial

output variable from any LSM. It is based on a multiway

data science methodology that extends the SVD of a ma-

trix to a multitable in order to analyse spatio-temporal vari-

ations between LSMs. This allows quantification of the sim-

ilarities and differences between the LSMs structured into

spatio-temporal patterns that identify where, when and be-

tween which LSMs they occur, together with analysis of the

variability arising from using different climate forcing mod-
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Figure 11. Spatial and LSM components of PTs -no-6 and 7 associated with the temporal component of vs111 in the PTA3 decomposition

of the six normalized differences, representing 10.94 % and 4.85 % of the variability respectively.

els (GCMs) by then reflecting on the arising uncertainties

when estimating NPP.

Detailed results of each multiway data analysis are given

at the end of each section and we focus here on integrating

the many highlighted aspects of uncertainties arising from

comparing the four LSMs: OR_MICT, OR_HL, CLM5 and

JULES.

Global statistical differences were found between the

LSMs, with OR_MICT exhibiting significantly lower mean

NPP and variability than the other LSMs, and CLM5 pro-

ducing a very high proportion of low values associated with

the winter season, particularly in the north of the CLINF re-

gion. However, all the LSMs tend to agree for higher NPP

values (above the 70 % decile), which mainly indicates that

they give similar values in summer. Despite these global

differences, to a first approximation the spatio-temporal be-

haviour of all the LSMs could be well-fitted by the tensor

product of a single spatial and temporal pattern, in which

the west and north of the region exhibited lower NPP values

than the east and south, and there was a strong seasonal pat-

tern. Differences between LSMs for this single pattern were

fairly small, with weights lying between 92 % and 105 % of

a uniform weighting of 0.5 or 14 % maximum difference be-

tween them. This combined pattern captured around 90 % of

the overall variability in simulations covering 16 years for

the whole Fennoscandian region. Across this time period,

this first approximation displayed statistically significant in-

creases in NPP from May to September, with the largest in-
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Figure 12. Components of the best principal tensor from the PTA3 analysis of NPP for JULES driven by 34 different GCMs (using IMOGEN)

under the +1.5 ◦C target scenario. For the temporal and GCM dimensions the percentage relative difference from uniform weighting, 100 ×
(cp−unif)/unif, of the component weights is plotted, where “cp” and “unif” refer to component weights and uniform weighting respectively.

On the temporal plot the increase for each month between 2000 and the maximum value is indicated as an absolute increase above the 2000

value. The GCM weights are shown as a histogram but individual weights are given in Appendix D.

crease in the earlier months. This is likely to be caused by the

growing season starting earlier and lasting longer.

The LSM requiring the most adjustment to this first ap-

proximation for an improved fit was OR_HL; this adjust-

ment is in the spatial pattern, decreasing the spatial weights

in Norway and northern Finland and increasing them in Swe-

den and southern Finland. The next adjustment, which has

no effect on OR_HL, is to modify the temporal pattern; this

particularly improves the fit to CLM5. The approximation

achieved with just these adjustments captures 95 % of the

overall variation and between 93 % and 96 % of the variation

in the individual models. It also has the advantage of being

fairly simple to interpret because OR_HL dominates the first

adjustment while CLM5 (and to a lesser extent JULES) dom-

inates the second. Further terms in the approximation yield

smaller gains that tend to be spread more evenly across the

LSMs.

While the first analysis provides information on temporal

and spatial patterns characterizing the main common struc-

ture in the LSM estimates of NPP, together with a system-

atic analysis of how different models diverge from this pat-

tern, more specific information on how they differ from each

other is gained by analysing their differences. Here no single

pattern dominates the overall variability between the LSMs,

but the three best PTs capture around 76 % of the variabil-

ity in the LSM differences and can be fairly well-interpreted

in terms of how individual LSMs differ in space and time

from the others. Successively they show where and when in-

dividually OR_HL, CLM5 and OR_MICT differ from the

other LSMs, and also where different LSMs agree. More-
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Figure 13. Components of the best principal tensor from the PTA3 analysis of NPP for JULES driven by 34 different GCMs (using IMOGEN)

under the +2 ◦C target scenario. For the temporal and GCM dimensions the percentage relative difference from uniform weighting, 100 ×
(cp−unif)/unif, of the component weights is plotted, where “cp” and “unif” refer to component weights and uniform weighting respectively.

On the temporal plot the increase for each month between 2000 and the maximum value is indicated as an absolute increase above the 2000

value. The GCM weights are shown as a histogram but individual weights are given in Appendix D.

over, this analysis on differences enabled us to add specifici-

ties (geographical and temporal differences) to each LSM,

e.g. OR_HL with a large difference in summer for NPP val-

ues with any other models (with similar values) in most parts

of Finland and eastern Sweden and CLM5 with smaller NPP

values than the others in May and June but higher values

from August to October. Quantitatively the former represents

43.37 % of variability of the differences and the latter 21.7 %.

Besides the main trend of increase in NPP over the

16 years (first analysis), 24 % in May and down to 8 % in

September (see Fig. 3b), no other noticeable year-to-year

patterns were identified in both analyses based on compar-

ing the four LSMs and in the 100-year horizon analysis with

JULES. The year-to-year variations were less important than

intra-annual patterns, either seasonal or other months’ pat-

terns. In other words, the monthly patterns were relatively

steady over the 16-year period. However, within the monthly

patterns the between-year variations could be very different,

illustrating either relatively steady monthly patterns with dif-

ferences among the LSMs (e.g. in Fig. 3) or very variable

intensity of the monthly pattern from year to year expressed

by a principal tensor, some with similar variability across

months (e.g. Fig. 9) or with different levels of uncertainty

for certain months (e.g. in Figs. 5 and 10). These various lev-

els of inter-annual variability linked to the effects (i.e. month

pattern, spatial and LSM differences) already described are

to modulate the uncertainties associated with LSM choice.

Our analysis of the impact of the choice of GCM on the

simulations of NPP was restricted to runs with JULES out to

2100 driven by 34 different GCMs. This showed that a single
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spatio-temporal pattern captured over 99 % of the variability

of NPP in the combined dataset for climate change scenar-

ios, leading to either 1.5 or 2.0 ◦C atmospheric warming, and

that none of the GCM weightings differed by more than 3 %

from uniform weighting (maximum difference of 6 %). The

temporal pattern showed increases in NPP up to the 2070s,

with small decreases thereafter. Although this analysis was

only carried out for JULES, there is no reason to expect sig-

nificantly different findings for the other LSMs, since they

all use a form of the Farquhar photosynthesis model to de-

rive gross primary production, of which some fraction is al-

located to NPP. Moreover, this single PT expressing 99 % of

variability highlights a strong effect correlated temporally to

the findings of the first analysis with the four LSMs (Fig. 3).

Hence the insensitivity of the simulated NPP to the choice of

GCM is likely to be repeated in the other LSMs.

We return to the three key questions posed in Sect. 1:

1. How does the choice of the GCM affect the CSI-relevant

outputs of a given LSM?

2. For a given GCM, how different are the CSI-relevant

outputs of the different LSMs?

3. How do the joint effects of GCM and LSM differences

translate into variability in predictions of CSI-relevant

quantities?

The analysis in this paper suggests that, at least for NPP, we

can neglect the effect of different GCMs and need only deal

with question (ii). Quantitative answers are provided to this

question in terms of both spatio-temporal patterns and differ-

ences and similarities of LSMs. However, we have only con-

sidered one of the six variables listed at the start of Sect. 2

that are considered to be of major importance for climate-

sensitive infections (CSIs), and we may find different be-

haviour for the others. In particular, initial investigation in-

dicates very different representations of land cover between

the four LSMs and how land cover will evolve under climate

change in the 21st century. This variable is likely to be the

one showing the most differences between the LSMs because

it is very much controlled by the PFTs used, how they are pa-

rameterized and the rules by which PFTs compete over time.

Of significant interest would be analysis of multiple vari-

ables and their co-variation. We intended to address this is-

sue in a future paper using the PTAk method used here, since

this can be readily extended to multiple variables. While this

does not present any methodological difficulties, it will only

become clear how useful this is when we find how easy it is

to interpret the outputs of the analysis.

The next major step is to couple the findings from this pa-

per (and its extension to other variables) to ecological mod-

els for CSI vectors and statistical epidemiological models in

order to establish the sensitivity of predicted CSI behaviour

under climate change to the choice of GCM and LSM. Cur-

rently only a small number of CSIs have well-developed pre-

dictive models (notably tularemia (Rydén et al., 2012; An-

dersen and Davis, 2017; Desvars-Larrive et al., 2017); Lyme

disease (Simon et al., 2014; Li et al., 2016)) and these will

provide the basis for such a study. However, CLINF is in the

process of developing more comprehensive statistical CSI

models at high latitudes, which will lend themselves read-

ily to combination with the approach adopted in this paper.

Besides understanding better the variations from one LSM

to another, geographically and temporally, which are impor-

tant aspects in CSI models, the methodology developed in

this paper allows some controls on the predictive uncertainty

arising from choosing one LSM. In particular, the variations

in CSI prediction due to the use of different LSMs can be

systematically analysed as the result of a sequence of pro-

gressively less important deviations from an overall common

pattern, for NPP as predictor in this paper.
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Appendix A: Scientific notations for real numbers

Note the slightly different scientific notations throughout the

paper, for example 0.00000002 as 2 × 10−8 or 2 × 10−8 or

2 × 10−8.

Appendix B: Contraction operator and orthogonal

projector

B1 Contraction

For X and Y two multiway data tables n × p × q, their in-

ner product is defined as < X,Y>=
∑

ijkXijkYijk . The con-

traction operation .. is the extension to tensors of the linear

combination of the columns or rows of a matrix to give a

vector. If X is a tensor of the order of 3, equivalent to a

table n × p × q, then with the variables (u,v,w) and vec-

tors of length n, p and q respectively, the contraction X..u

is a p × q matrix with (X..u)jk =
∑

iXijkui , the contrac-

tion X..v is a n × q matrix with (X..v)ik =
∑

jXijkvj , and

X..w is a n × p matrix with (X..w)ij =
∑

kXijkwk . Con-

tacting X successively by two vectors gives for example

(X..u)..v =
∑

ijXijkuivj =
∑

ijXijk(u⊗v)ij = X..(u⊗v),
and X..(u⊗ v⊗w) is equivalent to the inner product for the

multiway data tables.

B2 Orthogonal projector

Without loss of generality let a, b and c be unit vectors of di-

mensions n, p and q respectively. If X is a tensor represented

by an n×p×q array, one can write X = (a⊗b⊗c)β +ǫ =
P(a⊗b⊗c)X +P(a⊗b⊗c)⊥X, where Pa⊗b⊗c = (a⊗ b⊗ c)β is

the linear orthogonal projection of X onto a⊗ b⊗ c and

P(a⊗b⊗c)⊥X = X−(a⊗b⊗c)β. From the orthogonality con-

straints, β = X..(a⊗b⊗c), so Pa⊗b⊗cX = (a⊗b⊗c)X..(a⊗
b⊗ c).

Moreover, if X = (x⊗ y⊗ z) then Pa⊗b⊗cX = Pax⊗
Pby⊗ Pcz. This property extends easily to any subspace of

E, F and G; i.e PE1 ⊗PF1 ⊗PG1 is equivalent to PE1⊗F1⊗G1 .

Appendix C: List of plant functional types (PFTs) used

in the LSMs

This appendix lists the PFTs for the versions of the

LSMs used in this paper (see Sect. 1.2). JULES, OR-

CHIDEE_MICT (OR_MICT), ORCHIDEE-HL-Veg

(OR_HL) and CLM5 have 14, 13, 16 and 15 PFT PFTs

respectively. The version of JULES used for the 34 simula-

tions over 100 years used 10 PFTs (where C3 or C4 crops or

pastures are set as C3 or C4 grass).

Table C1. Table of plant functional types relevant in high-latitude

calculations for each LSM.

PFTs & other JULES OR_ OR_HL CLM5

tiles MICT

bor: boreal

tem: temperate

Bare ground 1 1 1 1

Broadleaf 1 1 tem, 1 tem, 1

Deciduous 1 bor 1 bor

Temperate 1 1 1 1

Broadleaf

Evergreen

Needleleaf 1 1 1 1

Deciduous

Needleleaf 1 1 1 1

Evergreen

Deciduous 1 1 1 bor, 1 bor,

Shrubs broadleaf 1 tem

Evergreen 1 0 1 bor 1 tem

Shrubs broadleaf

C3 grass 1 1 1 1

C4 grass 1 1 1 1

C4 pasture 1 1 1 1

Urban (tile) 1 1 1 1

Inland water 1 1 1 1

(tile)

Land ice 1 1 1 1

(tile)

C3 Arctic grass 0 0 1 1

Non-vascular 0 0 1 0

plants
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Table D1. Rounded GCM component weights relative to uniform

weighting from Figs. 12 and 13.

GCM abbreviations 1.5◦ 2◦

CEN_CMCC_MOD_CMCC-CMS −2 −2

CEN_CSIRO-QCCCE_MOD_CSIRO-Mk3-6-0 −2 −2

CEN_IPSL_MOD_IPSL-CM5A-MR −2 −3

CEN_MPI-M_MOD_MPI-ESM-LR −2 −2

CEN_MPI-M_MOD_MPI-ESM-MR −2 −3

CEN_BCC_MOD_bcc-csm1-1 −1 −1

CEN_CNRM-CERFACS_MOD_CNRM-CM5 −1 −2

CEN_INM_MOD_inmcm4 −1 0

CEN_MIROC_MOD_MIROC-ESM-CHEM −1 −1

CEN_MIROC_MOD_MIROC-ESM −1 −1

CEN_NASA-GISS_MOD_GISS-E2-R-CC −1 0

CEN_NASA-GISS_MOD_GISS-E2-R −1 0

CEN_NCAR_MOD_CCSM4 −1 −2

CEN_NSF-DOE-NCAR_MOD_CESM1-BGC −1 −1

CEN_BCC_MOD_bcc-csm1-1-m 0 −1

CEN_BNU_MOD_BNU-ESM 0 0

CEN_CCCma_MOD_CanESM2 0 −1

CEN_IPSL_MOD_IPSL-CM5A-LR 0 −1

CEN_MRI_MOD_MRI-CGCM3 0 1

CEN_NASA-GISS_MOD_GISS-E2-H 0 0

CEN_CSIRO-BOM_MOD_ACCESS1-0 1 1

CEN_CSIRO-BOM_MOD_ACCESS1-3 1 1

CEN_MOHC_MOD_HadGEM2-CC 1 1

CEN_MOHC_MOD_HadGEM2-ES 1 1

CEN_NASA-GISS_MOD_GISS-E2-H-CC 1 1

CEN_NOAA-GFDL_MOD_GFDL-CM3 1 1

CEN_NOAA-GFDL_MOD_GFDL-ESM2M 1 1

CEN_NSF-DOE-NCAR_MOD_CESM1-CAM5 1 1

CEN_NSF-DOE-NCAR_MOD_CESM1-WACCM 1 1

CEN_IPSL_MOD_IPSL-CM5B-LR 2 2

CEN_MIROC_MOD_MIROC5 2 3

CEN_NCC_MOD_NorESM1-M 2 3

CEN_NCC_MOD_NorESM1-ME 2 3

CEN_NOAA-GFDL_MOD_GFDL-ESM2G 2 3

Appendix D: GCM weightings from the analysis in

Sect. 6

The abbreviations of the 34 GCMs are derived from the in-

formation given in “Table S1 CMIP5 Models considered for

inclusion in the IMOGEN ensemble” in the supplementary

information of the paper Comyn-Platt et al. (2020).
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R package PTAk (https://CRAN.R-project.org/package=PTAk, last

access: 2 March 2020, Leibovici, 2010). The multiway data tables

used in the paper can be requested from the first author. CLM5.0

is publicly available through the Community Terrestrial System

Model (CTSM) git repository (https://github.com/ESCOMP/ctsm,

last access: 2 March 2020, Lawrence et al., 2019); all model

data are archived and publicly available at the UCAR/NCAR Cli-

mate Data Gateway, https://doi.org/10.5065/d6154fwh, last access:

2 March 2020, Oleson, 2018.
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