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Detachment work of prolate spheroidal particles from fluid droplets: role of viscous

dissipation

Sergey V. Lishchuk1 and Rammile Ettelaie2

1Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
2Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK

The force–displacement curve for removal of an elongated solid particle from the surface of liquid
droplets or gas bubbles is calculated and compared to our previous reported results for spherical
particles. The surface adsorption energy for prolate particles is known to be larger than those of
spheres. We show that in fact the minimum possible work done upon removal of an elongated
particle from surface can be less than that for a sphere. This result is obtained when the dissipation
of interfacial energy, stored in the fluid film, attaching the particles to the surface during their
displacement, is properly accounted for. This dissipation is unavoidable, even if the particles are
removed infinitely slowly. Once the particle actually leaves the surface, the formed liquid bridge
relaxes thus dissipating any stored interfacial energy as the surface returns to its original undistorted
state. The difference between the work of removal of a particle from surface and its adsorption energy
is seen to become increasingly larger with smaller particle to droplet size ratios. For example, for a
size ratio of 1:100, the work of removal is 1.93 times greater than the adsorption energy. However,
we also find that for any given size ratio, there is a value of particle aspect ratio for which the work
of removal of particles (combined dissipated and adsorbed energy) attains its minimum value.

I. INTRODUCTION

Fluid interfaces laden with elongated particles have a
number of distinct properties. Anisotropy in capillary
[1–10] and fluctuation-induced [2, 11] interactions be-
tween ellipsoidal particles leads to self-assembled struc-
tures otherwise not observed for spherical particles [12–
16]. These also lead to stronger surface rheological re-
sponse [14]. As a result, ellipsoidal particles are very
efficient in stabilising emulsions [17, 18]. Ellipsoidal par-
ticles demonstrate the enhanced translation drag [19],
stronger sensitivity of the contact angle to surface chemi-
cal and topographical heterogeneities [20], and an ability
to suppress coffee ring effect [21, 22]. The fluid interfaces
laden with Janus ellipsoidal particles is exhibit an even
richer diversity of behaviours [23, 24].

In the absence of line tension, it is energetically
favourable for ellipsoids to be oriented parallel to the
interface to maximise the amount of displaced area of
the fluid interface [2]. However, particles may take other
orientations in order to reduce the contribution of line
tension to the free energy [25], or to adapt to the exter-
nal applied electric or magnetic fields [26, 27], or indeed
to relieve the compressional stress [17, 28]. During the
adsorption process, ellipsoidal particles dynamically take
different orientations before reaching the stable orienta-
tion [29–31]. In membrane biology, flipping of the ellip-
soidal shaped proteins may be responsible for suppressing
transmembrane proton transfer [32].

Faraudo and Bresme [25] found that, due to line ten-
sion, elongated particles can more easily be removed from
the fluid interface when compared to the spherical ones.
Line tension can affect the behaviour of the adsorbed par-
ticles if the particles are small enough [33–35], and thus
can be relevant to nanoparticles. For larger particles,
when the contribution of line tension to the free energy

is negligible, Davies et al. [36] developed a detachment
energy model for spheroids based on free energy differ-
ence between the particle at the interface and the ones
in the bulk. The authors have concluded that prolate
and oblate spheroidal particles attach to interfaces more
strongly because they reduce the interface area more than
spherical particles for a given particle volume.

Our work [37] revealed increasing role of post-
detachment dissipation of energy with increasing droplet-
to-particle size ratio in relation to the detachment work.
This indicated the existence of a significantly higher en-
ergy barrier to desorption of very small particles, com-
pared to the value suggested purely based on their ad-
sorption energy alone. Here we investigate the effect of
viscous energy dissipation in detachment of a spheroidal
particle from a fluid droplet. We investigate how the ac-
count of energy dissipation may qualitatively change the
behaviour of the minimum detachment work with the as-
pect ratio of particles.

II. MODEL

We consider the detachment process as shown in Fig-
ure 1. Stage I is the rotation of the particle from the min-
imum energy state to the vertical orientation. In stage II
the force is applied to the particle to displace it from the
equilibrium position until detachment. In stage III the
fluid interface relaxes to its equilibrium position. If stages
I and II are slow enough then there is no dissipation, and
the work done equals the free energy difference. How-
ever, energy dissipation in stage III, which occurs due to
fluid flow, is unavoidable. This is due to the relaxation
of the liquid bridge, and the dissipation of the interfacial
energy stored in it, once the particle leaves the surface.
We argue that the process shown in Figure 1 in the slow
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2

limit requires minimum work.
In order to calculate the work of detachment, we con-

sider the geometry shown in Figure 2. Two spheroidal
particles with three semi-axes a, a and Aa, where A is
the aspect ratio, are located at the opposite ends of the
droplet. This geometry is similar to the one used in our
previous studies [37, 38].

III. FORCE–DISPLACEMENT DIAGRAM

In order to facilitate analytical calculation, we consider
the limit of small ratio of particle to drop sizes,

ν ≡ a

R
≪ 1, (1)

where R is the radius of the droplet. The analysis pro-
ceeds in a similar manner to the case of spherical parti-
cles [37] with the appropriate modifications made due
to spheroidal shape. The derivation presented in the
Appendix yields the analytical expression for the depen-
dence between the force F and the displacement ∆r of
the particles from their equilibrium positions in the ab-
sence of any applied force. This dependence can be rep-
resented in a parametrical form as

F (κ) = πγaµ (2)

and

∆r(κ) = a

{

A
√

1− κ2 − µ

4

[

1 + 2 ln
(κ+ ξ)ν

4

]}

, (3)

where in these formulas

ξ =

√

κ2 − µ2

4
, (4)

µ =
2κ

(√
1− κ2 sin θ −Aκ cos θ

)

√

1 + (A2 − 1)κ2
, (5)

θ is the contact angle between the fluid interface and the
surface of the particle, and γ is the interfacial tension
between the droplet and its surrounding medium. The

FIG. 1. Sketch of detachment process with the lowest amount
of minimum work.

droplet

FF
R

ρ

z(ρ)

droplet

FF
R

ρ

z(ρ)

(a)

particle

a
ρc

α

(b)

FIG. 2. Geometry of the system considered in this work: (a)
two particles placed at the opposite ends of the droplet, and
(b) the liquid bridge formed during displacement of a particle
from the surface.

parameter κ changes between κmin and κmax, where κmin

is the solution of the equation

d∆r(κ)

dκ

∣

∣

∣

∣

κ=κmin

= 0, (6)

and κmax, the dimensionless radius of the contact line in
absence of the external force, is given by formula

κmax =
sin θ

√

1 + (A2 − 1) cos2 θ
. (7)

At the values of the aspect ratio A = 0 and A = 1 these
formulas reduce to the cases of spherical particles with
pinned [38] and free [37] contact lines, respectively. The
force–displacement dependence for different values of A
and ν is illustrated in Figure 3 and Figure 4, in which
the small radius of the particle, a, is being kept constant.
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FIG. 3. Dependence of force upon the position of the particles
at θ = 90◦, ν = 0.01, and A = 1, 1.4, 2, 2.8, 4, 5.6, 8 (from top
to bottom).
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FIG. 4. Dependence of force upon the position of the particles
at θ = 90◦, A = 4, and ν = 0.03, 0.01, 0.003, 0.001 (from left
to right).

IV. MINIMUM WORK OF DETACHMENT

In order to simplify further analysis, we consider the
special case of right contact angle (θ = 90◦). This allows
us to determine that the maximum force, which is given
by formula

F ∗ =
2πγa

A+ 1
(8)

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6  7  8  9  10

F
*  /

 (
γ 

a
)

A

FIG. 5. Dependence of the detachment force upon A, when
the contact angle θ = 90◦.
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∆
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 a
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FIG. 6. Dependence of particle displacement at a point
of maximum force upon A for θ = 90◦ and ν =
0.03, 0.01, 0.003, 0.001 (from bottom to top).

which is plotted in Figure 5 as a function of A, and occurs
at a particle displacement of

∆r∗ =− a

A+ 1
× (9)

×



ln

(√
A+

√
A+ 1

)

ν

4(A+ 1)
−A3/2

√
A+ 1 +

1

2



 .

The value of ∆r∗, the displacement at which the max-
imum force occurs before the particle is detached from
the surface, is plotted against A in Figure 6. The force-
displacement curves are linear for small displacements,
with a clear deviation from the linear behaviour occur-
ring at displacements close to the point of detachment.
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FIG. 7. Dependence of the Hooke–de Gennes constant upon
A for θ = 90◦ and ν = 0.03, 0.01, 0.003, 0.001 (from top to
bottom).
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FIG. 8. Dependence of the detachment work upon A for
θ = 90◦ and ν0 = 0.03, 0.01, 0.003, 0.001 (from bottom to
top). The coverage area is fixed. The dashed line shows the
adsorption energy.

The so called Hooke–de Gennes constant, defined as

k =

(

dF

d∆r

)

∆r=0

, (10)

is given by formula

k =
2πγ

A2 − 1
2 − ln ν

2

. (11)

and is plotted in Figure 7. The above formulas also re-
duce at A = 0 and A = 1 to the cases of spherical par-
ticles with pinned [38] and free [37] contact line, respec-
tively.
We compare the detachment work at different particle

elongations in two ways. First, we fix the fluid interface

area covered by a particle at equilibrium. We choose this
area to equal that taken by a spherical particle of radius
a0. In this case we have a = A−1/2a0 and ν = A−1/2ν0,
where ν0 ≡ a0/R. The detachment work for the stage II
is then calculated by numerical integration of the force–
displacement diagram,

WII = −
∫ 1

κmin

F (κ)
d∆r(κ)

dκ
dκ, (12)

where F (κ) and d∆r(κ) are given by Eqs (2) and (3),
respectively, and κmin is the solution of the equation (6).
Note that the exact work required to remove the par-
ticle from the surface, and in particular the dissipated
component of it, are path dependent. The value corre-
spondent to the situation depicted in Figure 1 represents
the minimum possible value for this quantity and serves
as a lower limit for W .
As ν decreases, the dependence of the force upon the

displacement of the particles becomes more linear. This
allows us to obtain an approximate analytic expression
for the detachment work at stage II in small particle to
droplet size ratio limit, as being the area of the triangle
on the force–displacement diagram:

WII =
1

2
k (∆r∗)

2
, (13)

where Hooke–de Gennes constant, k, and particle dis-
placement corresponding to maximum force, ∆r∗, are
given by formulas (11) and (9), respectively. This work
should be augmented by energy increase due to particle
rotation in stage I,

WI = πγa2(A− 1). (14)

The total minimum work of detachment at θ = 90◦ thus
equals

W =WI +WII = πγa2

{

A− 1 + (15)

+

[

ln
(
√
A+

√
A+1)ν

4(A+1) −A3/2
√
A+ 1 + 1

2

]2

(A+ 1)2
(

A2 − 1
2 − ln ν

2

)

}

.

The dependence of the total detachment work W = WI+
WII upon the aspect ratio A at fixed area is depicted
in Figure 8 and shows that with increasing elongation
of particles the work of pulling out the particle quickly
decreases compared to the work required to rotate the
particle in the initial stage (stage I).
Instead of fixing the coverage area, we can also consider

the case of a fixed particle volume. For a fixed volume of
the particle we have a = A−1/3a0 and ν = A−1/3ν0. This
case was considered by Davies et al. [36], who suggested
that prolate and oblate spheroidal particles attach to in-
terfaces more strongly. However, if we take into account
the energy dissipation, this conclusion changes, and the
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FIG. 9. Dependence of the detachment work upon A for a
contact angle θ = 90◦ and ν0 = 0.03, 0.01, 0.003, 0.001 (from
bottom to top). The particle volume is fixed. The dashed line
shows the adsorption energy, not accounting for any energy
dissipation.

 0

 1

 2

 3

 0.0001  0.001  0.01  0.1  1

A
*

ν0

FIG. 10. Dependence upon ν0 of the aspect ratio A∗ for which
the detachment work at fixed particle volume is minimal at
θ = 90◦.

detachment work takes its minimum value at an aspect
ratio A∗ > 1, as shown in Figure 9 and Figure 10.
Oblate spheroids are not considered in the present

work because in this case the process with minimum de-
tachment work involves anisotropic configurations which
are difficult to analyse analytically.

V. CONCLUSION

We have considered deformation of a spherical droplet
or a bubble containing a pair of prolate spheroidal par-
ticles on its surface in the case when equal but op-
posite forces are applied to the particles. The force-

displacement curves, calculated as the particles are pulled
apart, are found to be linear for small displacements. The
deviation from the linear force–displacement behaviour
occurs close to the point of detachment.

We have investigated the effect of viscous dissipation
of energy upon the minimum detachment work for dif-
ferent aspect ratios of the particles. Even in an idealised
situation such a dissipation occurs as a liquid bridge con-
necting the particle to the surface relaxes, once the parti-
cle has left the interface. Any stored energy in the liquid
bridge from the distortion of the interface has to be dis-
sipated as a result. We have found that, even in the
absence of line tension, it is easier to remove elongated
particles from fluid interfaces than spheres because of a
smaller degree of this viscous dissipation of stored inter-
facial energy.

The force–displacement relationship obtained in this
work can be directly verified in the experiments car-
ried out with a spheroidal particle attached to a beam
or cantilever [39, 40]. The complete detachment pro-
cess sketched in Figure 1 can be realised, for example,
by using magnetic particles for which both reorientation
[26, 27] and detachment [41] in the external magnetic
field can be controlled.

In the more common case of a fluid interface subjected
to flow, it is more problematic to realise the process of
detachment of the adsorbed particle with minimum work,
as calculated here. This is because the forces acting on
a particle favour different pathways [42] or result in a
very fast process in which the energy dissipated even be-
fore the breaking of the liquid bridge cannot be neglected
[43]. Investigation of the detailed detachment dynamics
in each system and flow type is necessary to determine
how different the detachment work from its minimum
possible value will turn out to be.

If the particles or droplets are too large or too small,
the model we presented should be modified by taking ac-
count of possible new physics. If the size of the droplet R
is not small compared to the capillary length λc =

√

γ/ρg
(g is the gravitational acceleration, ρ is the density of
the fluid) then gravity force should also be taken into ac-
count. Conversely, in the case of small, nanometre sized
particles a number of new effects can come into play. Line
tension τ , already mentioned in Introduction, becomes
important for particle sizes comparable to τ/γ [33–35].
This modifies the contact angle between nanoparticle and
fluid interface [35, 44, 45]. The significance of the rough-
ness and porosity of the particles upon the contact angle
also increases with decreasing size of the particle [44]. At
very small particle sizes the effects of thermal fluctuations
may become noticeable [46].

Another modification of the model would be required
at the nanoscale in the case when there is a surfactant
film adsorbed at the interface. In this case there is an
additional contribution to the surface free energy due to
deformation of the surfactant-laden fluid interface [47].
This contribution is important when the radius of cur-
vature of the interface becomes comparable with

√

κ/γ,
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where κ is the bending rigidity of the interface. Such
curvatures are expected for nanometre-sized particles.
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Appendix: Derivation of force–displacement relation

This Appendix presents the derivation of the paramet-
rical dependence between the force F and the displace-
ment ∆r of the particles in the small-particle limit ν ≪ 1.
The derivation closely follows the case of the spherical
particles, described in detail in Ref. [37], but with modi-
fications made to account for the spheroidal shape of the
particles.

The axially symmetric shape of the droplet at arbitrary
outward displacement of the particles is unduloid, which
can be described in cylindrical polar coordinates (ρ, z) by
formula [37]

z = ρ+E(ϕ, k) +
cρ0
2ρ+

F (ϕ, k). (A.1)

Here F (ϕ, k) and E(ϕ, k) are incomplete elliptic integrals
of first and second kind, respectively, where we have de-
fined

sinϕ =

√

ρ2+ − ρ2

ρ2+ − ρ2−
, (A.2)

k =

√

1−
ρ2−
ρ2+

, (A.3)

ρ± =

√

1− c±
√
1− 2c

2
ρ0. (A.4)

The constants ρ0 and c arise from the solution of the
second-order Euler-Lagrange differential equation, which
corresponds to the variational problem of minimisation of
the area of the droplet surface, and are determined by the
boundary conditions at the particle-droplet interface and
the condition of incompressibility of the droplet [37]. The
derivative of the function z(ρ) is expressed in elementary
functions as

z′ = −
1
2cρ

2
0 + ρ2

√

ρ20ρ
2 −

(

1
2cρ

2
0 + ρ2

)2
(A.5)

Incompressibility of the droplet implies conservation of

droplet volume which, in turn, is given by formula

V =
4π

3

{[

(

1− c

4

)

ρ20 −
3

2
ρ2c

]

ρ+E(ϕc, k)

−
[

ρ2−ρ+

2
+

3

4

cρ20ρ
2
c

ρ+

]

F (ϕc, k)

+
ρc
2

√

(

ρ2+ − ρ2c
) (

ρ2c − ρ2−
)

+
3

2
ρ2cr −A

[

a3 −
(

a2 − ρ2c
)3/2

]

}

, (A.6)

where the contact radius ρc is defined as shown in Fig-
ure 2. This formula explicitly includes the aspect ratio
of the spheroidal particles to account for protrusion of
particles into the droplet and therefore the region of the
droplet that is occupied by a part of the particle.
To obtain the explicit formula for the free energy of

the system, we need the expressions for the contact ar-
eas between different constituent phases. Integrating the
surface area of the spheroid perturbing out of the droplet,
we can represent the interfacial areas of a spheroidal par-
ticle in contact with fluids 1 and 2 as

S1p = 2πa2

[

1 +
A2

√
A2 − 1

arcsin

√
A2 − 1

A2

−
√

1− κ2
√

1 + (A2 − 1)κ2

− A2

√
A2 − 1

arcsin

√
1− κ2

√
A2 − 1

A2

]

(A.7)

and

S2p = 2πa2

[

1 +
A2

√
A2 − 1

arcsin

√
A2 − 1

A2

+
√

1− κ2
√

1 + (A2 − 1)κ2

+
A2

√
A2 − 1

arcsin

√
1− κ2

√
A2 − 1

A2

]

,

(A.8)

where

κ ≡ ρc
a
. (A.9)

As the particles are displaced from their equilibrium po-
sitions, the radius of the contact line, ρc, made at the
contact between the solid and the fluid media 1 and 2,
alters and therefore also κ. As a result, the free energy
of the system, up to a constant additive term, is

F = γ1pS1p + γ2pS2p + γS12, (A.10)

where γ1p and γ2p are surface tensions of the surface of
the particles in contact with fluids 1 and 2, respectively.
This leads to

F = 4πγ

[

ρ+ρ0E(ϕc, k)−
a2

2
B(κ) cos θ

]

, (A.11)
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where again to simplify the expression we defined

B(κ) =
√

1− κ2
√

1 + (A2 − 1)κ2

+
A2

√
A2 − 1

arcsin

√
1− κ2

√
A2 − 1

A2
. (A.12)

The external force applied to the particles is given by
the derivative of the free energy with respect to distance
2r between them,

F =
dF
d(2r)

, (A.13)

We express free energy, volume and droplet profile as
functions of the independent parameter κ defined by
Eq (A.9). Then the force can be expressed as a func-
tion of κ by formula

F (κ) =
1

2

(dF/dκ)

(dr/dκ)
. (A.14)

In order to calculate the derivatives in Equa-
tion (A.14), we need to express the free energy F and
particle position r as functions of κ in small ν limit. We
define dimensionless quantities

λ ≡ ρ0 −R

a
(A.15)

and

µ ≡ c

ν
, (A.16)

and express them as functions of κ.
The actual contact angle at the surface of the particles

in the absence of line tension is equal to contact angle
at flat surface, θ. To express µ in terms of κ, we will
henthforth use this result and fix the actual contact angle
equal to θ expressed as

θ = arctan
Aκ√
1− κ2

− arctan z′(ρc). (A.17)

Substituting Eq. (A.5) and taking the limit ν → 0 we
obtain Eq. (5).
To express λ in terms of κ we expand the volume given

by Eq. (A.6) in powers of ν. Using the expansions of the
elliptic integrals [37]

F (ϕc, k) = − ln
(κ+ ξ)ν

4
+ o(ν0) (A.18)

and

E(ϕc, k) = 1−
{

κ2

2
+

µ2

16

[

2 ln
(κ+ ξ)ν

4
− κ− ξ

κ+ ξ

]}

ν2

+ o(ν2), (A.19)

we obtain an approximate equation for the volume of the
droplet

V =
4πR3

3

[

1 + 3
(

λ− µ

4

)

ν

+
3

16

(

16λ2 − 12λν − µ2
)

ν2 + o
(

ν2
)

]

. (A.20)

Requiring the volume of incompressible fluid in the
droplet, given by equation (A.20), to be constant we can
express λ in terms of κ as a series in ν:

λ =
µ

4
+

3µ2

16
ν + o(ν1). (A.21)

Note that the assumption of incompressibility of inner
fluid is also valid in the case of gaseous (e.g. air) bubbles,
as discussed in Ref. [37].

Using the above expressions, we can write the free en-
ergy of the system in the following approximate form,
valid for small ν = a/R:

F(κ) =F0 − 2πa2γ

{

κ2 +
µ2

4

[

ξ

κ+ ξ
+ ln

(κ+ ξ)ν

4

]

+B(κ) cos θ

}

+ o(νo), (A.22)

where

F0 = 4πR2γ (A.23)

is free energy of undeformed droplet without adsorbed
particles, and ξ is defined by Eq. (4).

In order to calculate force using Eq. (A.14), we also
need the expression for the position of the particles, r,
as a function of the parameter κ, too. Expressing the
position of the particles as a sum of the r coordinate of
the contact line and the displacement of particle centre
with respect to contact line,

r = z(ρc) +A
√

a2 − ρ2c , (A.24)

and expanding in ν the function z(ρc) given by Eq. (A.1),
we obtain

r(κ) = R+ a

{

A
√

1− κ2 − µ

4

[

1 + 2 ln
(κ+ ξ)ν

4

]}

+ o(ν0), (A.25)

which is equivalent to Eq. (3). Substituting Eqs (A.22)
and (A.25) into Eq. (A.14), we finally obtain formula (2)
for the force.

Page 7 of 9 Soft Matter

So
ft
M
at
te
rA

cc
ep
te
d
M
an
us
cr
ip
t

P
u
b
li

sh
ed

 o
n
 0

6
 A

p
ri

l 
2
0
2
0
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
L

ee
d
s 

o
n
 4

/7
/2

0
2
0
 6

:2
5
:1

9
 P

M
. 

View Article Online

DOI: 10.1039/C9SM02385B



8

[1] J. C. Loudet, A. M. Alsayed, J. Zhang and A. G. Yodh,
Phys. Rev. Lett., 2005, 94, 018301.

[2] H. Lehle, E. Noruzifar and M. Oettel, Eur. Phys. J. E,
2008, 26, 151–160.

[3] M. Oettel and S. Dietrich, Langmuir, 2008, 24, 1425–
1441.

[4] J. Guzowski, M. Tasinkevych and S. Dietrich, Phys. Rev.
E, 2011, 84, 031401.

[5] L. Botto, E. P. Lewandowski, M. Cavallaro and K. J.
Stebe, Soft Matter, 2012, 8, 9957–9971.

[6] G. B. Davies and L. Botto, Soft Matter, 2015, 11, 7969–
7976.

[7] P. Galatola, Phys. Rev. E, 2016, 93, 022604.
[8] B. J. Newton, R. Mohammed, G. B. Davies, L. Botto

and D. M. A. Buzza, ACS Omega, 2018, 3, 14962–14972.
[9] J. H. Lim, J. Y. Kim, D. W. Kang, K. H. Choi, S. J. Lee,

S. H. Im and B. J. Park, Langmuir, 2018, 34, 384–394.
[10] A. M. Luo, J. Vermant, P. Ilg, Z. Zhang and L. M. Sagis,

J. Coll. Int. Sci., 2019, 534, 205–214.
[11] E. Noruzifar and M. Oettel, Phys. Rev. E, 2009, 79,

051401.
[12] J. C. Loudet and B. Pouligny, EPL, 2009, 85, 28003.
[13] J. C. Loudet and B. Pouligny, EPL, 2011, 34, 76.
[14] B. Madivala, J. Fransaer and J. Vermant, Langmuir,

2009, 25, 2718–2728.
[15] S. Dasgupta, M. Katava, M. Faraj, T. Auth and

G. Gompper, Langmuir, 2014, 30, 11873–11882.
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