
This is a repository copy of MCS-IOV:Real-time I/o virtualization for mixed-criticality 
systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159284/

Version: Accepted Version

Proceedings Paper:
Jiang, Zhe, Audsley, Neil orcid.org/0000-0003-3739-6590, Dong, Pan et al. (3 more 
authors) (2020) MCS-IOV:Real-time I/o virtualization for mixed-criticality systems. In: 
Proceedings - 2019 IEEE 40th Real-Time Systems Symposium, RTSS 2019. 40th IEEE 
Real-Time Systems Symposium, RTSS 2019, 03-06 Dec 2019 Proceedings - Real-Time 
Systems Symposium . IEEE , CHN , pp. 326-338. 

https://doi.org/10.1109/RTSS46320.2019.00037

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



MCS-IOV: Real-Time I/O Virtualization for

Mixed-Criticality Systems

Zhe Jiang1, Neil Audsley1, Pan Dong2, Nan Guan3, Xiaotian Dai1, Lifeng Wei4

1University of York, United Kingdom
2National University of Defense Technology, China

3The Hong Kong Polytechnic University, China
4Kylin Information Technology, China

{zhe.jiang, neil.audsley}@york.ac.uk

Abstract—In mixed-criticality systems, timely handling of I/O
is a key for the system being successfully implemented and
functioning appropriately. The criticality levels of functions and
sometimes the whole system are often dependent on the state
of the I/O. An I/O system for a MCS must provide simulta-
neously isolation/separation, performance/efficiency and timing-
predictability, as well as being able to manage I/O resource in an
adaptive manner to facilitate efficient yet safe resource sharing
among components of different criticality levels. Existing ap-
proaches cannot achieve all of these requirements simultaneously.
This paper presents a MCS I/O management framework, termed
MCS-IOV. MCS-IOV is based on hardware assisted virtualisation,
which provides temporal and spatial isolation and prohibits fault
propagation with small extra overhead in performance. MCS-
IOV extends a real-time I/O virtualisation system, by supporting
the concept of mixed criticalities and customised interfaces for
schedulers, which offers good timing-preditability. MCS-IOV
supports I/O driven criticality mode switch (the mode switch
can be triggered by detection of unexpected I/O behaviors,
e.g., a higher I/O utilization than expected) and timely I/O
resource reconfiguration up on that. Finally, We evaluated and
demonstrate MCS-IOV in different aspects.

I. INTRODUCTION

Safety-critical systems play an important role in many

medical and industrial fields (e.g. automotive, aerospace, etc.)

[27], [45], [68]. In safety-critical systems, integrating com-

ponents with different levels of criticalities (e.g. Automotive

Safety and Integrity Levels (ASILs) in ISO 26262 [41].)

onto a shared hardware platform has become increasingly

important [23], [26], [30]. This results from the diverse

functionalities required by modern safety-critical systems (e.g.

automated driving [49]), and the rapid evolution of executed

platforms [65]. Such systems are called Mixed-Criticality

Systems (MCS)s [26].

Traditionally, the MCS design enforces strong temporal,

spatial and fault isolation among software components of

different criticality levels, in order to prevent interference

from a lower criticality part to disrupt functionality, timing

and performance of a higher criticality part [26]. However,

strong isolation usually leads to huge resource waste and poor

performance [44]. In recent years, a significant trend in MCS

design is to provide certain form and level of resource sharing

(e.g., virtualization technology [64]) while keeping sufficient

temporal, spatial and fault isolation [53], [55].

In MCS, meeting real-time constraints is usually a key

requirement. According to safety assessment methods, e.g.,

Hazard Analysis (HA), Failure Modes and Effects Analysis

(FMEA), and Fault Tree Analysis (FTA), the failure of meeting

a deadline from a safety-related task can cause a hazard,

which may lead to a system-wide failure and eventually cause

an accident [42], [63], [67]. For example, the deadline miss

of a braking operation in an electric vehicle may cause a

severe car crash. In summary, a MCS usually should meet

the following requirements simultaneously: (i) Isolation, (ii)

Performance/Efficiency, (iii) Timing Predictability.

In the context of real-time systems, a widely studied MCS

model assumes that the Worst-Case Execution Time (WCET)

is estimated with different levels of confidence [22], [26], [39].

To certify the timing correctness of high-criticality tasks, it

is required to use WCET estimations with extremely high

confidence but typically very pessimistic (obtained by, e.g.,

static analysis). On the other hand, the timing correctness

of low-criticality tasks only requires to be validated using

WCET estimation with relatively lower confidence but much

less pessimistic (obtained by, e.g., testing) [70]. As for other

aspects in MCS design, resource sharing and isolation among

tasks of different criticality levels is a dilemma [26]. Com-

plete isolation leads to huge resource waste as the WCET

estimations used in the certification of high-criticality tasks

is very pessimistic. However, if resource sharing between

high-ciriticality and low-ciriticality tasks is allowed, both low-

ciriticality and high-criticality tasks have to be certified on the

high-criticality level due to the possible interference between

them [70].

Adaptive resource management [23], [24] is an effective

approach to address the above problem, the common idea of

which can be described as follows. The system first executes

at the low-criticality mode, in which the scheduling policy is

designed under the assumption that the execution time of each

task (either high-criticality or low-criticality) does not exceed

its low-criticality WCET bound. If this assumption is violated,

the system switches into the high-criticality mode, in which

the scheduling policy is designed assuming execution time of a



task may exceed its low-criticality WCET bound but does not

exceed its high-criticality WCET bound. In the high-criticality

mode, the scheduler either drop or only maintain a minimum

level of service for low-criticality tasks.

I/O is a vital part of embedded computer architectures [43],

[52] to interface with the physical world via sensors and

actuators, etc. The I/O behaviour greatly affects the execution

time of a computational task. However, I/O issue has been

ignored in most existing work on real-time MCS. In this

paper, we propose MCS-IOV, a new I/O architecture design for

MCS, which can fulfil the above mentioned common require-

ments of MCS, namely, isolation, performance/efficiency and

timing-predictability, as well as support adaptive I/O resource

management. More specifically, MCS-IOV has the following

features:

• MCS-IOV enables I/O virtualisation, and virtual ma-

chines are implemented as independent execution envi-

ronment for tasks, called criticality world. Hence, I/O

operations requested from different criticality worlds are

isolated in time, space and faults.

• MCS-IOV implements the majority of virtualisation and

I/O drivers in the hardware, which offloads system over-

head from the software and simplifies the I/O access

paths – the I/O performance can be improved compared

to native systems.

• MCS-IOV integrates the ready-built real-time I/O system

(BlueIO) and customised interfaces for theoretical anal-

ysis, which guarantees the timing predictability of I/O

operations.

• MCS-IOV provides a hardware-based system mode man-

ager, which supports (i) I/O-driven mode switch by

monitoring the I/O status and trigger mode switch timely

(instead of waiting until the overrun actually happens)

and (ii) adaptive I/O resource management up one that.

There have been existing work on MCS design and anal-

ysis considering the I/O issues. However, MCS-IOV is the

first systematical solution that fulfils all the three common

requirements of MCS (isolation, performance/efficiency and

timing predictability) as well as supports adaptive I/O resource

management. Moreover, MCS-IOV supports I/O-driven mode

switch. In existing work, a mode switch is triggered by detec-

tion of actual task overrun. With MCS-IOV, the mode switch

can be triggered by detection of unexpected I/O behavior (e.g.,

a higher I/O utilization than expected) to enable the system

early detect potential overrun and better satisfy the timing

requirement in the high-criticality mode.

The rest of this paper is organised as follows: Section II

reviews and discusses the related work on MCS I/O systems

in both industry and academia. Section III proposes the design

of a mixed-criticality I/O system (MCS-IOV) based on the

proposed methodology, followed by implementation details in

Section IV. Section V presents the evaluation of the MCS-IOV

system. A discussion and conclusions are given in Sections VI.

II. STATE-OF-THE-ART

A. Industry State-of-the-Art

Currently, most commonly used safety-critical systems in

industry are not able to support a MCS execution context due

to lack of isolation support. Taking the automotive area as

an example, only a single-criticality system can be supported

by the latest SoCs targeting safety-critical systems from the

world’s top 3 (in terms of market share) automotive semi-

conductor suppliers [13].

NXP Semiconductors [11] have almost all current prod-

ucts with safety considerations. For example, the S32V234

processor, focusing on computer vision and machine learn-

ing, supports up to ASIL-B (ISO 26262) applications [9].

In these products, FS-SBCs are proposed specifically for

safety [8]. They contain S32x series MCUs (general purpose)

and MPC574x series MCUs (body control and gateway) [9],

[11]. However, FS-SBCs only support compliance with the

third critical level in ISO 26262 (i.e., ASIL-C). They are

expected to support the highest criticality level (ASIL-D)

within the next two years.

Infineon Technologies [10], are involved in different areas

of automotive, such as wireless control, power and security.

Among their products, the PRO-SIL family [7] is mainly

designed for safe-critical systems, including hardware, soft-

ware and other supporting features (e.g. for the development

process). The PRO-SIL family SoCs provide different method-

ologies to satisfy a high criticality level (SIL-3 in IEC 61508),

e.g., hardware redundancies (symmetric and asymmetric ar-

chitecture redundancies) [66], software redundancies, external

watchdog, core checks, etc. As shown in [66], the introduction

of these methodologies brings increased scalability, reduced

complexity and decreased power consumption compared to

traditional safety-related methodologies. However, a mixed-

criticality context sill can not be supported, due to lack support

on isolation.

Renesas Electronics [12] essentially classifies their automo-

tive products into three main categories: low power (e.g. sound

generator), power efficiency (e.g. engineering control) and

high performance (e.g. 3D graphics accelerators) [14]. Without

constraints on power and complexity of functionalities, the

RHx series (power efficiency category) achieves the best

safety features (ASIL C in ISO 26262). At the current stage,

their main concern is improving methodologies to satisfy

a higher criticality level with less power consumption and

better hardware efficiency (e.g. CRC operation, frequency

detection, RAM guard, etc.) [14], [15]. However, MCS is not

supported [12], [14] currently.

Instead of satisfying the essential requirements of a MCS,

the systems proposed from industry mainly focus on standard-

ised safety and security processes [57]. This issue has been

recognised and discussed by Graydon and Bate [36], as well

as Paulitsch et al. [57].



B. Prototypes for MCS I/O Systems

In order to satisfy isolation requirements in MCS I/O sys-

tems, different methodologies have been applied by prototype

systems developed in academia.

TDMA-based methodologies. TDMA provides temporal iso-

lation. For example, Carvajal and Fischmeister [28] proposed

an open-source framework (Atacama) for real-time Ethernet

for MCS. Cilku et al. [29] introduced a TDMA-based bus

arbitration scheme. Goossen et al. [35] used a TDMA-based

approach to schedule concurrent memory requests of the same

physical memory. TDMA is efficient in achieving temporal

isolation, not only in the MCS I/O system, but in the whole

MCS system. However, TDMA-based approaches cannot sat-

isfy the requirements on spatial and faults separation and

usually leads to resource waste.

TrustZone-based methodologies. ARM TrustZone was firstly

introduced into ARM application processor (Cortex-A) in

2004; recently, ARM released TrustZone-M for the new gener-

ation of ARM MCUs (Cortex-M) [59]. This technology is cen-

tred around the concept of two hardware-enforced protection

domains (secure world and non-secure world). Each world is

granted uneven privileges, with non-secure software prevented

from directly accessing secure world resources. LTZVisor [60]

and TZDKS [31] proposed MCS architectures using Trust-

Zone technologies, which achieve better system performance

compared to traditional TDMA-based approaches. Pinto et

al. then proposed Virtual-IO [56] based on LTZVisor, which

achieves a MCS I/O system with predictable I/O timing. The

main limitations of the TrustZone-based approach are twofold:

1) only two system modes can be supported; and 2) no adaptive

I/O resource management upon mode switches at runtime

supported.

Virtualisation-based methodologies. In virtualised systems,

the virtual machines (VMs) are logically isolated, which means

the applications executed in one VM can never affect another

VM, even if it breaks down. This is highly linked to the

requirement on isolation. For example, Groesbrink et al. [38]

utilised hypervisor-based virtualisation to separate system to

independant partitions (i.e. VMs). MultiPARTES [69] and

Airbus’ MP-IOV [55] used para-virtualisation [64] to es-

tablish an I/O virtualization system for a MCS; A ready-

built separation kernel (i.e., Quest-V [51]) was extended by

Missimer et al. [53] to support I/O virtualisation. In these

methodologies, different system modes are assigned to the

VMs, and a secondary scheduling between the VMs is also

built to guarantee the more critical I/O requests can be served

earlier (i.e., in [37], [38], partitioned RM scheduling of VMs

based on periodic servers with fixed period are implemented;

in [53], sporadic servers and priority inheritance bandwidth-

preserving servers are built to schedule I/O requests among

the VMs).

However these approaches involve complicated resource

management and complex paths of instructions. For a more

detailed analysis and discussion of virtualisation technologies,

please see our previous papers [44], [47].

Different from virtualization-based methodologies, Kim et

al. [48] proposed a methodology for MCS I/O systems from

a different perspective — i.e., operating system (OS) level.

As highlighted by Kim et al., OS is a largely ignored po-

tential interference of the I/O system in MCS. From OS

level, I/O accesses can be abstracted as memory accesses.

Hence, they proposed optimised memory management (i.e.,

isolating dynamic-memory allocations) and improved IPC-

related mechanisms (i.e., selective LLC bypass, concurrency

elimination, and LLC Locking) to improve I/O performance in

MCS and system performance. Drawbacks of this work are the

same as the virtualization-based approach. Moreover, isolation

provided from OS level is even weaker than the virtualization-

based approach [62].

Virtualisation relies on hardware [71], therefore different

hardware assistances have been promoted by today’s chip

manufacturers, in order to alleviate the issues virtualization

causes. For example, Intel’s Virtualisation Technology for

Directed I/O (VT-D) provides direct I/O access from VMs [40].

Munch et al. [54] proposed a MCS I/O virtualisation system

based on PCIe SR-IOV. The research was also extended in [55]

to use other hardware assistance (I/O MMU [25]). However,

even with hardware assistance, the I/O performance from the

criticality worlds (VMs) cannot reach the I/O performance

in a native system. Additionally, commonly used hardware

assistance in I/O virtualisation cannot solve the requirement

on predictability.

These lead to new challenges of the design of a MCS

I/O system. In this next section, we will have an overview

of the proposed MCS-IOV system, which could satisfy these

requirements. We will later come back to this discussion in a

case study in Section V-D.

III. MCS-IOV SYSTEM OVERVIEW

The proposed mixed-criticality I/O system (MCS-IOV) re-

lies on virtualisation and hardware assistance in its design

and implementation. In MCS-IOV, the isolation of independent

execution environment (i.e., criticality world) is achieved using

Virtual Machines [64]. Due to the introduction of virtualisa-

tion, the criticality worlds are logically isolated in time and

space and for faults. At the same time, each criticality world

is assigned a system mode, which can be changed by the

system integrator 1 during run-time. Moreover, the introduction

of hardware assistance offloads the majority of virtualisation

and low-layer I/O drivers onto the hardware and simplifies the

I/O access path. Therefore, the software overhead and system

performance (e.g. the I/O performance) can be improved,

compared to a native system. Meantime, MCS-IOV integrates

a ready-built real-time I/O system with customised interfaces

for theoretical analysis, which guarantees the predictability

of I/O operations (i.e., MCS-IOV hypervisor). The combined

design of hardware and software leads to the timely system

1System integrator is the person responsible for the integration of the
system, who pre-defines the condition of system mode change.



Fig. 1. MCS-IOV Architecture

mode changes being applied to both hardware and software

— avoiding criticality level inversion.

A. Context

In industry, a system architecture is often required to comply

with safety standards, which is a huge project that may require

large numbers of engineers to follow complicated procedures,

including safety concept analysis, safety mechanism imple-

mentation, verification, quantity analysis and system assess-

ment. Although MCS-IOV is a research prototype, we partially

follow ISO 26262 [41]. In the context of ISO 26262, MCS-

IOV is able to support four criticality levels, from ASIL A

(lowest) to ASIL D (highest). MCS-IOV has a general-purpose

design which can be applied to other safety standards and more

criticality levels.

B. General Architecture

The proposed architecture of MCS-IOV is shown in Fig-

ure 1. In the software layer, the RTOS kernel (e.g. FreeR-

TOS [6]) in each criticality world is able to executed in kernel

mode to achieve full functionality. At the same time, it can

provide a real-time environment for applications that need to

guarantee deadlines.

In the hardware layer, the MCS-IOV hypervisor is respon-

sible for system virtualisation (including resource allocation),

physical isolation between criticality worlds, and providing

high-layer access interfaces for user applications in the criti-

cality worlds. In the hypervisor, the of the criticality worlds

are stored in dedicated registers, which can be modified by

the system mode manager involved in the software layer dur-

ing run-time. In MCS-IOV hypervisor, customised interfaces

are enabled to support scheduling polices coming from new

research and analysis.

The architecture uses existing work in BlueIO [45] and

BlueTree [34], which are open-source and can be publicly

accessed. In our proposed system, BlueIO is used for I/O

virtualisation and BlueTree is used for memory accessing.

C. BlueIO

BlueIO is a scalable hardware-implemented real-time I/O

virtualisation system [45]. It follows the work of the Virtu-

alised Complicated Device Controller (VCDC) [44], which

scalably integrates I/O virtualisation and I/O drivers into the

hardware, with additional features of predictability and related

analysis. The BlueIO virtualises a physical I/O device to

multiple virtual I/O devices, provides access interfaces for

software applications and enables predictable I/O operations.

BlueIO can be physically connected to a multi-core or a

many-core system and is composed of three main parts (see

Figure 2):

Fig. 2. Structure of BlueIO (simplified and adopted from [45])

• I/O VMM – Maintains the virtualisation of I/O devices.

The main responsibility of I/O VMM is translating I/O

requests sent from each VM into actual I/O instructions

to operate a physical I/O. Considering that the function-

alities and features of I/O devices are different, it is

difficult to build a general purpose module to achieve



virtualisation for all types of I/O devices. In [45], they

propose a specific-purpose I/O VMM for commonly used

I/O devices, including UART, VGA, DMA, Ethernet, etc.

Further customised I/O VMM can be included in the

VCDC via documented interfaces [44].

• Low Layer I/O Drivers – Encapsulate specific I/O drivers

for a specific I/O device (e.g. read 16-bit data from a

particular address of the SPI flash.)

• Real-time I/O Controller – Binds I/O operations with

timing constraints, which allows real-time and timing-

accurate I/O operations [46].

D. BlueTree

BlueTree is a tree-like memory interconnect for many-

core systems that enables time-predictable memory read/write

from a number of CPUs [32], [33]. In this paper, BlueTree

is extended for real-time memory access of I/O devices, in

order to achieve particular functionalities (e.g. DMA-based

Ethernet communication [17]). We will not introduce the

implementation of the memory access module in this paper,

for more details please see [21], [32], [33].

IV. MCS-IOV DESIGN

MCS-IOV is included in a 2D mesh type open source

NoC [61]. The use of a NoC is not required by MCS-IOV,

as it is a general-purpose I/O system which is agnostic to the

type of bus and the CPUs. To support a complete MCS-IOV

system, the platform requires:

• Communication channels between MCS-IOV hypervisor

and CPUs;

• A global synchronisation timer;

• Memory access interface. In the proposed design, Blue-

Tree [32] is adopted as the memory access interface (see

Section III-D).

Fig. 3. Platform Overview (C - Processor Core; R - Router/Abiter; T -
Global Timer)

The use of MCS-IOV within the NoC is shown in Figure 3.

MCS-IOV hypervisor is physically connected to the home

port (via the physical link) of a router, the global timer

T , and the memory access interface (BlueTree). A complete

MCS-IOV system contains both software and hardware layers.

In the software layer, the independent criticality worlds and

the system mode manager are introduced. The MCS-IOV

hypervisor is introduced in the hardware layer.

A. Criticality Worlds and Guest OS

In the system, four independent criticality worlds are pro-

posed as virtual machines. The virtualisation has the following

features:

• Bare-metal virtualisation [64] – the guest OS in the

criticality world can be executed on processors directly,

without the host OS. Therefore, a guest OS is able to

execute in kernel mode to achieve full privileges.

• Para-virtualisation [50] – the kernel of the guest OS

requires modifying in the I/O management, which has

to be replaced by high level I/O drivers. This allows a

smaller OS software footprint and simplified I/O access

paths.

(a) Native System

(b) MCS-IOV

Fig. 4. FreeRTOS in Native System and MCS-IOV

Currently, in our proposed design, three OS kernels have

been modified to support I/O virtualisation: FreeRTOS [6],

µCosII [16] and Xilkernel [19]. In Figure 4, we use the FreeR-

TOS kernel as an example to demonstrate the modifications

in an OS kernel.



Fig. 5. Structure of MCS-IOV Hypervisor (grey shading indicates the response path)

1) Isolation: In our proposed design, each criticality world

(guest OS) independently runs in kernel mode with full privi-

leges and without recognising the existence of other criticality

worlds or the hypervisor (MCS-IOV). The OS kernels running

independently with full privileges may result in illegal ac-

cesses, including illegal address accesses (e.g. criticality world

K1 tries to access an address space belonged to criticality

world K2) and illegal requests (e.g. criticality world K1 tries

to release an I/O being used by criticality world K2). MCS-

IOV hypervisor will detect and block these malicious requests

by checking a resource allocation table inside a dedicated

module (see Section IV-C). With the assistance of MCS-IOV

hypervisor, isolation in space and faults can be achieved. Note,

the allocation of hardware resources is decided by the system

integrator.

2) Resource Efficiency: Unlike the native OS kernel (Fig-

ure 4(a)), user applications in the modified kernel (Figure 4(b))

are able to directly access and operate virtualised I/O devices

through the provided high-layer interfaces, without the inter-

position of the OS kernel. The simplification of I/O access

paths and the hardware implementation of I/O drivers signifi-

cantly improves the resource efficiency with increased system

performance and decreased software overhead compared to a

traditional virtualised system, and even the native system.

Simultaneously, user applications running on a native OS

kernel can be directly ported to the modified kernel in the

MCS-IOV system, since the original interfaces on both OS

kernels and the (virtualised) I/O devices are kept.

B. System Mode Manager

In the software layer, parallel to the criticality worlds, the

system mode manager is also introduced. Different from the

criticality worlds, the system mode manager is allocated to

a dedicated processor and never uses shared resources such

as I/O resources. Its main responsibility is assigning system

modes to different criticality worlds during run time and

allocating the execution time of each criticality world (see

Section IV-C).

1) Run-time System Mode Switch: The system mode of

each criticality world is mapped to a corresponding dedicated

32-bit register inside MCS-IOV hypervisor. In the system

mode manager, there is only one process running continuously,

which is used by the system integrator to modify the system

modes of the criticality worlds by updating the corresponding

registers. For example, system mode manager can be config-

ured to switch the system mode of a criticality world(s) while

detecting the overload of I/O buffers.

2) Limitations: Due to blocked I/O operations by MCS-

IOV hypervisor [58], the mode switches of the criticality

world can only be issued after each complete I/O operation.

Hence, a delay in the mode switches will be introduced. The

maximum delay equals the worst-case execution time of the

corresponding I/O operation.

C. MCS-IOV Hypervisor

The MSC-IOV hypervisor consists of the following main

parts (see Figure 5):



• System Mode Manager Path: Provides the interface from

the system mode manager (see Section IV-B) to the MCS-

IOV hypervisor via the NoC mesh. Inside the system

mode manager path, the attributes of each criticality

world are stored in independent registers. Specifically, the

system modes can be accessed at addresses 0x00, 0x04,

0x08 and 0x0C respectively offset to the MSC-IOV’s

BaseAddress. Moreover, the time server2 allocated to

each criticality world can be configured at addresses

0x10, 0x14, 0x18 and 0x1C respectively offset to the

MSC-IOV’s BaseAddress. These two types of attributes

can be used as input parameters to the scheduler in I/O

pools.

• I/O Path: provides the interface between criticality worlds

and I/Os. As shown on the right of Figure 5, the I/O

path mainly contains the I/O pools and the BlueIO.

Specifically, the I/O pool schedules I/O requests and I/O

responses to different criticality worlds, whilst BlueIO

provides the functionality of I/O virtualisation and en-

capsulates the corresponding I/O drivers.

1) Configurability: As shown in Figure 5, the I/O pool can

be divided into two paths:

• The Request Path is responsible for transmitting I/O

requests from different criticality worlds to I/O devices.

• The Response Path (shown in grey) is responsible for

transmitting I/O responses from I/O devices back to the

corresponding criticality worlds.

In both paths, an independent scheduler is introduced to

schedule the I/O requests/responses to the different criticality

worlds. The scheduling policies of the schedulers are con-

figurable, and can be switched between the basic scheduling

polices (e.g. Fixed-Priority, Round-Robin) and customised

scheduling policies (e.g. dynamic time servers). An interface

to the system integrators to implement the scheduling polices

based on state-of-art theoretical analysis is also proposed.

2) Predictability: As described in Section IV-C, the I/O

path is composed of the I/O pools and BlueIO. As introduced

in [44] and [45], BlueIO enables I/O virtualisation with

improved predictability compared to a native system. At the

same time, the schedulers in each I/O pool support real-time

scheduling. Therefore, MCS-IOV significantly increases the

predictability of the I/O operations compared to a traditional

virtualised system.

3) Scalability: The design of the I/O pool is generic. Hence,

MSC-IOV can be easily expanded to support different I/Os

(e.g. CAN, LAN, etc.) by duplicating the I/O pool and then

connecting the new I/O pool between the many-core system

and the BlueIO.

V. EVALUATION

The MCS-IOV hypervisor was implemented using Bluespec

System Verilog [3] and synthesised on a Xilinx ZC706 devel-

opment board [20]. The following evaluation focuses on I/O

2Time servers are implemented to support some theoretical models, and
can be disabled by the system integrator if not required.

devices and I/O systems. NB We do not consider the effects

caused by the NoC and routing protocols.

In the evaluation, the MCS-IOV hypervisor was connected

to a 3×3 2D mesh type open source real-time NoC [61],

which contains 4 MicroBlaze processors running independent

criticality worlds. The OS kernel running in each criticality

world is a modified guest OS kernel (FreeRTOS v9.0.0)

described in Section IV-A. The software on MicroBlaze pro-

cessors is compiled using the Xilinx MicroBlaze GNU tool

chain [18]. The architecture is shown in Figure 6(c). To enable

a comparison, two baseline systems are introduced (with all

architectures running at 100 MHz):

• Baseline System – Native (BS-N) (Figure 6(a)): The NoC

system without hardware assistance. Scheduling related

to shared resources is undertaken by the routers/arbiter.

Each processor is deemed to be an independent criticality

world [26], [70].

• Baseline System – TZDKS [31] (BS-T) (Figure 6(b)):

The MCS built on ARM trust-zone technology. In the sys-

tem, four independent criticality worlds are implemented

in the secure and non-secure worlds of processor (1,0)

and processor (2,0) respectively.

(a) Baseline System: Native (BS-N) (b) Baseline System: T (BS-T)

(c) MCS-IOV System

Fig. 6. Experimental Platforms. R - Router/ Arbiter; M - MicroBlaze Processor;
A - ARM Processor; T - Global Timer; CW: Criticality World; SMM: System
Mode Manager.

The evaluation of MCS-IOV should mainly relate to the

essential requirements of separation, resource efficiency, pre-

dictability and run-time system mode switch. Specifically, the

separation requirement belongs to functionalities which were

introduced in Sections IV-A1 – temporal, spatial and fault

isolation can be simultaneously supported.



TABLE I
HARDWARE OVERHEAD (IMPLEMENTED IN FPGA)

Involved

I/O

Supported

Criticality Levels

Hardware Consumption

LUTs
% of

ZC706
Registers

% of

ZC706
BRAMs DSP

Power

(mW)

Maxium

Frequency (Mhz)

LIN

4 831 0.38% 874 0.20% 0 0 13 324

8 962 0.44% 1,093 0.25% 0 0 15 318

16 1,159 0.53% 1,339 0.32% 0 0 16 311

LIN+CAN

4 2,164 0.99% 1,967 0.45% 0 0 23 288

8 2,426 1.11% 2,317 0.53% 0 0 25 277

16 2,820 1.29% 2,842 0.65% 0 0 29 260

LIN+CAN

+ETH

4 4,416 2.02% 4,416 1.01% 0 0 43 249

8 4,787 2.19% 4,984 1.14% 0 0 47 236

16 5,334 2.44% 6,007 1.39% 0 0 55 204

TABLE II
HARDWARE OVERHEAD (IMPLEMENTED IN VLSI)

Involved

I/O

Supported

Criticality Levels

Hardware Consumption

AND AIO DEEPOS HA INV MUX NAND NOR OAI OR XNOR XOR Total

LINX

4 513 2,381 2,188 39 2,782 43 1,929 1,442 1,849 232 18 22 13,438

8 601 2,649 2,344 40 3,238 45 1,984 1,501 1,887 249 19 24 14,581

16 694 3,010 2,683 52 3,586 54 2,618 1,822 2,314 314 23 30 17,200

LIN+CAN

4 1,080 5,271 5,281 83 6,112 89 4,401 3,168 4,034 519 37 51 30,126

8 1,258 6,502 5,808 96 6,793 118 4,731 3,493 4,566 627 44 52 34,088

16 1,435 6,642 6,360 108 8,028 135 5,782 4,236 5,880 699 57 63 39,425

LIN+CAN

+ETH

4 2,594 11,604 9,704 178 13,171 208 8,747 7,074 9,349 1,034 79 114 63,856

8 2,719 11,984 10,949 217 16,049 214 9,897 7,463 10,419 1,249 103 114 71,377

16 2,735 12,884 13,328 238 16,767 236 11,959 8,815 10,242 1,319 103 129 78,755

Hence, the evaluated metrics mainly focus on resource

efficiency, predictability and run-time system mode switch.

A. Resource Efficiency

The resource efficiency of an evaluated system is classified

as both software and hardware overhead and performance,

which are evaluated in this section.

1) Software Overhead: In this section, we evaluate the

memory footprint of MSC-IOV and the different versions of

FreeRTOS running in the three evaluated systems (memory

size tools: the Xilinx Microblaze GNU tool chain [18] and the

ARM GNU tool chain [1]). In the evaluation, the native version

of FreeRTOS (FreeRTOS BS-N) was fully-featured [5], and

it is the foundation of the other FreeRTOS kernels. Table 7

presents the collected measurements.

Fig. 7. Memory Footprint of MCS-IOV and RTOS kernels in the Evaluated
Systems (nsw: non-secure world; sw: secure world)

As can be seen, an extra 23 KB memory footprint is

introduced in MCS-IOV, resulting from the introduction of the

system mode manager, which is 7.12% of the native freeRTOS.

The native full-featured FreeRTOS (FreeRTOS BS-N) requires

337,616 bytes (≈330KB). The higher memory footprint com-

pared to the official version [6] results from introducing the

drivers for the Ethernet, CAN and LIN. When it comes to

the BS-T, there is no increment on the OS kernel running in

the non-secure worlds (FreeRTOS BS-T nsw). However, the

OS kernel running in the secure worlds (FreeRTOS BS-T sw)

suffers from a 26.77% increment of software overhead, which

is mainly introduced by virtualisation and the corresponding

monitor [31]. In the MCS-IOV system, the FreeRTOS MCS-

IOV only consumes 234,798 bytes (≈229KB) memory foot-

print, which is 69.4% and 57.8% of the FreeRTOS BS-N

and FreeRTOS BS-T sw, respectively. The main reason behind

such a low memory footprint is the implementation of para-

virtualisation (see Section IV-A), which significantly removes

the software overhead.

2) Hardware Overhead: The BS-N (Figure 6(a)) does

not require any extra hardware assistance. However, the

BS-T (Figure 6(a)) requires the support of ARM TrustZone

technology, which is integrated into all ARM Cortex-A and

the latest Cortex-M33 processors [2]. In this section, we

evaluate the hardware overhead of MCS-IOV (i.e., MCS-IOV

hypervisor) in both FPGA and VLSI.

In the FPGA implementation (Table I), Vivado (v2018.3) is

used to synthesise and implement MCS-IOV hypervisor on the

Xilinx ZC706 FPGA board [20]. The hardware consumption is

mainly summarised as the use of LUTs, registers, BRAMs and

power consumption. For the VLSI (see Table II), a Cadence

RTL encounter compiler (v11.20) [4] is used to synthesise the

MCS-IOV hypervisor into the gate level using the open source

MOSIS SCMOS TSMC 0.18µm library (OSU SOC v2.7).



Fig. 8. I/O Throughput (T-1: Task 1; T-2: Task 2; T-3: Task 3)

The hardware consumption is summarised in the use of the

essential logic gates.3 In both evaluations, we increased the

number of I/O devices involved and the supported criticality

levels respectively in order to show the scaled hardware

consumption.

The resource efficiency of MCS-IOV hypervisor is shown

in Tables 1 and 2, note that even the MCS-IOV supporting

LIN, CAN and Ethernet with 16 criticality levels only requires

2.44% LUTS and 1.39% registers of the ZC706 FPGA board.

Moreover, as shown in Tables 1 and 2, hardware con-

sumption linearly increases with the number of I/Os and

CPUs. At the same time, the number of supported I/Os

dominates hardware consumption. For example, compared to

a 4-criticality system with LIN and CAN (FPGA: 2,164 LUT

and 1,967 registers; VLSI: 30,126 gates), an extra 30.30%

LUTs and 44.44% registers, or 30.87% gates are required

to support an extra 8 criticality levels. However, to support

an extra I/O device (Ethernet), an additional 104.04% LUTs,

124.44% registers or 111.96% gates are consumed.

3) Performance: In this section, we evaluate the perfor-

mance of three architectures via the I/O throughput. The I/O

device used in the experiments is an SPI nor-flash (model:

S25FL128S). In the criticality worlds of each architecture,

three software applications are set to run and continuously

read data (32 bits) from the flash. The bytes written from

each application per second is recorded as the I/O throughput

(KB/s). In each criticality world, Round-Robin is used as the

scheduling policy for the software applications. Meantime, the

execution time of each criticality world is allocated as 10%,

20%, 30% and 40% (from ASIL A to ASIL D). All exper-

iments were implemented 1,000 times. NB, other theoretical

models can be also applied.

As shown in Figure 8, the behaviours of I/O throughput

in each architecture are subject to the scheduling policies

and time allocations of the MCS context. In the criticality

worlds of BS-T, due to the introduction of virtualisation,

3In order to make the numbers readable, the names of the gates are
summarised. For example, the 2-entries OR gate and 4-entries OR gate are
summarised to the OR gate in the table.

I/O throughput suffers from approximately 30% reductions

compared to BS-N (low resource efficiency). Thanks to the

hardware implementation of virtualisation and I/O drivers, in

each criticality world of the MCS-IOV, better performance on

I/O throughput is always achieved, which is about 300%, and

425%, respectively compared to BS-N and BS-T. Moreover,

as shown in the normalised comparison, the average I/O

performance in each criticality world of MCS-IOV is always

close to the best case, which is more than 95%.

B. Predictability

As shown in the evaluation results of Section V-A3 (see

Figure 8), in each criticality world, there is less variance in

the I/O performance in the MCS-IOV than the other baseline

systems, showing better predictability.

Furthermore, the experiments in this section are designed

to measure the I/O predictability by evaluating the Ethernet

response time (loop back mode). Specifically, in the critical-

ity worlds of each architecture, three software applications

continuously send 1 KB Ethernet packets using the MAC

protocol. Information about the I/O response time is recorded

and summarised. A lower I/O response time (for both average

and worst-case) indicates a higher I/O performance and better

resource efficiency, and a lower variance means better pre-

dictability. In each criticality world, Round-Robin is used as

the scheduling policy for software applications. The execution

time of each criticality world is set as 10%, 20%, 30% and

40% (from ASIL A to ASIL D). All experiments were run

1,000 times. NB, other theoretical models can also be applied.

As shown in Table III, among criticality worlds with the

same system modes, the I/O operations in the MCS-IOV

system always have a shorter response time (in both average

and worst cases). This indicates that MCS-IOV has a better

resource efficiency than the baseline systems. Furthermore,

when it comes to variation in the 1,000 experiments, the

I/O response time in the MCS-IOV always has less variation.

Specifically, when the criticality worlds are executed in highest

critical system mode (ASIL D), the MCS-IOV only suffers

from 16.8% and 18.6% variation respectively, compared to



TABLE III
I/O RESPONSE TIME OF LOOP BACK 1KB ETHERNET PACKETS IN EVALUATED SYSTEMS (UNIT: µs)

Citicality World
Baseline System: Native System Baseline System: TZDK MCS MCS-IOV

Average Worst-case Variation Average Worst-case Variation Average Worst-case Variation

VM1 (ASIL D) 72.85 77.43 8.35 78.25 83.51 7.51 22.33 23.22 1.41

VM2 (ASIL C) 164.32 181.82 25.33 180.14 193.32 21.21 51.25 53.52 3.83

VM3 (ASIL B) 250.99 278.49 42.21 282.17 299.02 31.29 77.49 80.21 4.28

VM4 (ASIL A) 351.09 393.63 70.21 378.32 402.03 45.38 103.93 107.33 6.60

BS-N and BS-T. When the lowest system mode (ASIL A) is

assigned, these numbers are decreased to 9.4% and 14.5%.

These experimental results demonstrate significant improve-

ments in the predictability of the MCS-IOV system.

C. Delay of System Mode Switches

In this section, we evaluate the delay of system mode

switches in MCS-IOV (this functionality is not supported

in the baseline systems). The experiment setup is based on

the experimental configurations in Section V-B. Additionally,

instructions of system mode switch on each criticality world

are requested randomly during runtime. The time from an

instruction request until it can be completely issued was

recorded as the delay of system mode switch. The experiments

were run 1,000 times.

Fig. 9. Delay of System Mode Switches in MCS-IOV

As shown in Figure 9, the average delay of system mode

switches among different criticality worlds (from ASIL A

to ASIL D) are: 139.497 µs, 105.641 µs, 93.11 µs and

71.15 µs. In criticality worlds with lower system modes,

significant variances were seen between the average delay

and the worst case: 101% (ASIL A) and 112% (ASIL B).

Conversely, in the criticality worlds with higher system modes,

the variances decreased to 64.72% (ASIL C) and 68.52%

(ASIL D), respectively. Although the delay to system mode

switches is controlled at the microsecond level in MCS-IOV,

the predictability still requires further improvement in the

future.

D. Case Study

In this case study, we consider a 16 PE (Microblazes) real-

time NoC, with a 5x5 2D mesh architecture, and a single

Ethernet device. Specifically, PE 0 - 7 execute the main func-

tions (i.e., task sets), and PE 8 - 15 generate I/O contentions

to the system. The task sets contain 40 high-criticality tasks,

and 40 low-criticality tasks. The release period of the tasks

are all set to be 20 ms, with deadline equals to period; and

the computational execution time of each task is between 0.5

ms and 1 ms. During each execution of the task, a 2 KB

Ethernet packet is sent respectively at three time points: 0.25,

0.5 and 0.75 of the task execution time (See Figure 10). N.B.,

according to 1,000 times experimental results, the average I/O

response time of sending a 2 KB Ethernet packets from one of

the NoC nodes without any I/O contention is 27.10 us (0.0271

ms) — around 3% of the execution time of a task.

Fig. 10. Example of a Task Repetitively Requesting an Asynchronous I/O

In each experiment, 80 tasks are randomly allocated to PE0

- PE7 (10 tasks per PE). The initial utilisation of each PE

is set to be 50% with Round-Robin scheduling policy. Three

evaluated system models (i.e. non-MCS, MCS with AMC and

MCS-IOV) are respectively executed with different number

of I/O contentions (I). In AMC models, the WCET of each

task (without I/O contention) is achieved via experimental

measurements, and the optimistic estimation of the WCET

is set to be 2.5 and 1.5 times of the experimental results

respectively in AMC 2.5 and AMC 1.5 4. As only two system

modes are evaluated, we mapped ASIL A and B as the low-

criticality level, and ASIL C and D as the high-criticality

level in the MCS-IOV system. Specifically, in the MCS-IOV

system, PE 0 and 1 are configured to criticality world A; PE

2 and 3 are configured to criticality world B; PE 4 and 5 are

configured to criticality world C; PE 6 and 7 are configured

to criticality world D. Furthermore, the system mode manager

of the MCS-IOV is configured to switch the system mode of

all the criticality worlds by detecting the overall usage of I/O

pool being greater than 80% (MCS-IOV 80) and 40% (MCS-

4In AMC-x, the WCET of each task is set to be x times of its measured
maximum execution time (without I/O contention). Meantime, the system is
designed to switched to the high-critical mode while any task being detected
to exceed its WCET.



IOV 40) respectively. Each experiment executes 200 ms (10

periods), and all the experiments are performed 1,000 times.

Fig. 11. Case Study: Deadline Miss Rate

Figure 11 demonstrates the deadline miss rates of the three

evaluated models (five systems) with different number of I/O

contentions. The experiments shows:

• The ‘short’ I/O operation can significantly increase the

execution time of tasks. For example, in a non-MCS

system, the average deadline miss of the system increases

to 66%, when I = 8.

• Compared to a non-MCS, conventional MCS (i.e., AMC)

can somehow alleviate the issue. However, with the

number of I/O contentions increasing, the deadline miss

rate also increased dramatically. Specifically, when I < 5,

the deadline miss rate is around 5% (mainly caused by

criticality level inversion); when I > 5, the deadline

miss rate increased dramatically (mainly caused by I/O

contention).

• Schedulability of MCS-IOV is significantly improved

compared to conventional methodologies, because of en-

hanced I/O performance and hardware support of run-

time system mode switches. Specifically, enhanced I/O

performance decreases the impact of I/O to task execution

time; and the hardware support of run-time system mode

switches effectively avoid the criticality level inversion.

• In MCS-IOV systems, as the number of I/O contention

increases, the schedulability of the system will be signif-

icantly decreased in a certain situation (I = 7). This is

the maximum capacity of the system.

In order to demonstrate the criticality level inversion clearly,

Figure 12 specifies the average deadline miss rate of each

evaluated system in each period while the number of I/O

contention equalling to 8 (I = 8).

As shown in Figure 12, AMC-based systems and MCS-

IOV systems are all switched to the high-critical mode in the

first period. In AMC-based systems, the deadline miss rates

can be only stabilised after 8 periods, due to criticality level

inversion (i.e., black box in Figure 12). Conversely, With the

support from hardware in MCS-IOV systems, criticality level

inversion can be eliminated (i.e., the deadline miss rates can

be stabilised immediately after system model switch).

Fig. 12. Case Study: Deadline Miss Rates of Three Systems in Each Period
Box: Criticality Level Inversion (Except non-MCSs, System Model Switches
Occur in the First Period)

VI. CONCLUSION

In safety/life-critical systems, MCSs are proliferating at

a rapid pace in both academia and industry, mainly due to

the various functionalities required by modern safety-critical

systems and fast evolution of execution platforms. In MCS,

the I/O system is vitally important, since the system modes of

the whole system are often determined by the use of I/O. In

a MCS I/O system, multiple features are often simultaneously

required – isolation/separation, performance/efficiency, and

predictability. Currently, existing approaches cannot achieve

all these requirements at the same time.

MCS-IOV is the first systematical solution that fulfils all

the three common requirements of MCS as well as supports

adaptive I/O resource management. Moreover, MCS-IOV sup-

ports I/O-driven mode switch — e.g., the mode switch can

be triggered by detection of unexpected I/O behaviors (e.g.,

a higher I/O utilization than expected) to help the system

to better satisfy the timing requirement in the high-criticality

mode.

VII. ACKNOWLEDGEMENTS

This work is supported by the Research Grants Council of

Hong Kong (GRF 15204917 and 15213818). Meantime, Zhe

Jiang would like to present his deepest appreciation to his new

family members: Mrs. Yanting Dai and Mr. Akira Jiang for

the support of a very tough time. Especially, Mr. Akira Jiang,

you will be always alive in Zhe Jiang’s heart.

REFERENCES

[1] ARM gnu tool chain website. https://developer.arm.com/open-source/
gnu-toolchain/gnu-rm. Accessed September 23, 2018.

[2] ARM official website. https://www.arm.com/. Accessed September 27,
2017.

[3] Bluespec inc. bluespec system verilog (bsv). http://www.bluespec.com/
products/. Accessed September 27, 2017.

[4] Encounter rtl compiler. https://www.cadence.com/. Accessed Otc 16,
2018.

[5] Freertos i/o official website. http://www.freertos.org/FreeRTOS-Plus/
FreeRTOS Plus IO/FreeRTOS Plus IO.shtml. Accessed September 27,
2016.

[6] Freertos official website. http://www.freertos.org/. Accessed September
27, 2017.



[7] Infineon: 32-bit TriCore Microcontroller. https://www.infineon.com/cms/
en/product/microcontroller/32-bit-tricore-microcontroller/. Accessed
Jan 12, 2019.

[8] NXP: Functional Safety System Basis Chips (FSSBC). https://www.nxp.
com/docs/en/brochure/SBCAUTOBRA4.pdf. Accessed Jan 12, 2019.

[9] NXP: NXP S32x Series. https://www.nxp.com/products/processors-
and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-
platform/. Accessed Jan 12, 2019.

[10] The official website of infineon. https://www.infineon.com/. Accessed
Jan 12, 2019.

[11] The official website of nxp. https://www.nxp.com/. Accessed Jan 12,
2019.

[12] The official website of renesas electronics. https://www.renesas.com.
Accessed Jan 12, 2019.

[13] The overview of global automotive semiconductor markets from
2018 to 2020. https://www.researchandmarkets.com/reports/4702372/
automotive-semiconductor-market-report-trends. Accessed Jan 12,
2019.

[14] Renesas: Micro controllers. https://www.renesas.com/eu/en/products/
microcontrollers-microprocessors.html. Accessed Jan 12, 2019.

[15] Renesas: Rh850 micro-controller familiy. https://www.renesas.com/eu/
en/products/microcontrollers-microprocessors/rh850.html. Accessed Jan
12, 2019.

[16] uCos official website. https://www.micrium.com/rtos/kernels/. Accessed
September 27, 2017.

[17] Xilinx 1g/2.5g ethernet subsystem manual. https://www.xilinx.com/
support/documentation/ip documentation/tri mode ethernet mac/v9 0/
pg051-tri-mode-eth-mac.pdf. Accessed August 27, 2016.

[18] Xilinx microblaze gnu tool chain. https://www.xilinx.
com/support/documentation/sw manuals/xilinx2014 1/
ug1043-embedded-system-tools.pdf. Accessed September 23, 2018.

[19] Xilinx official website. https://www.Xilinx.com. Accessed July 5, 2017.
[20] Xilinx zc706 official website. https://www.xilinx.com/products/

boards-and-kits/ek-z7-zc706-g.html. Accessed April 12, 2017.
[21] N. Audsley. Memory architectures for noc-based real-time mixed

criticality systems. Proc. WMC, RTSS, pages 37–42, 2013.
[22] S. Baruah and A. Burns. Implementing mixed criticality systems in ada.

In International Conference on Reliable Software Technologies, pages
174–188. Springer, 2011.

[23] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In 2010 16th IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 13–22. IEEE, 2010.
[24] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for

mixed criticality systems. In Real-Time Systems Symposium (RTSS),

2011 IEEE 32nd, pages 34–43. IEEE, 2011.
[25] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer, and

L. Van Doorn. The price of safety: Evaluating iommu performance. In
The Ottawa Linux Symposium, pages 9–20, 2007.

[26] A. Burns and R. Davis. Mixed criticality systems-a review. Department

of Computer Science, University of York, Tech. Rep, pages 1–69, 2013.
[27] R. W. Butler and G. B. Finelli. The infeasibility of quantifying the

reliability of life-critical real-time software. IEEE Transactions on

Software Engineering, 19(1):3–12, 1993.
[28] G. Carvajal and S. Fischmeister. An open platform for mixed-criticality

real-time ethernet. In Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2013, pages 153–156. IEEE, 2013.
[29] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A tdma-based

arbitration scheme for mixed-criticality multicore platforms. In Event-

based Control, Communication, and Signal Processing (EBCCSP), 2015

International Conference on, pages 1–6. IEEE, 2015.
[30] A. Crespo, A. Alonso, M. Marcos, A. Juan, and P. Balbastre. Mixed

criticality in control systems. IFAC Proceedings Volumes, 47(3):12261–
12271, 2014.

[31] P. Dong, A. Burns, Z. Jiang, and X. Liao. Tzdks: A new trustzone-
based dual-criticality system with balanced performance. In 2018 IEEE

24th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 59–64. IEEE, 2018.
[32] J. Garside and N. C. Audsley. Prefetching across a shared memory tree

within a network-on-chip architecture. In ISSoC, pages 1–4, 2013.
[33] M. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A

globally arbitrated memory tree for mixed-time-criticality systems. IEEE

Transactions on Computers, 2016.
[34] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens.

A generic, scalable and globally arbitrated memory tree for shared

dram access in real-time systems. In Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition, pages 193–198.
EDA Consortium, 2015.

[35] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfig-
urable real-time sdram controller for mixed time-criticality systems. In
Proceedings of the Ninth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, page 2. IEEE Press,
2013.

[36] P. Graydon and I. Bate. Safety assurance driven problem formulation
for mixed-criticality scheduling. Proc. WMC, RTSS, pages 19–24, 2013.

[37] S. Groesbrink, L. Almeida, M. de Sousa, and S. M. Petters. Towards
certifiable adaptive reservations for hypervisor-based virtualization. In
2014 IEEE 19th Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 13–24. IEEE, 2014.
[38] S. Groesbrink, S. Oberthür, and D. Baldin. Towards adaptive resource

management for virtualized real-time systems. In 4th Workshop on

adaptive and reconfigurable embedded systems, 2012.
[39] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient

scheduling of certifiable mixed-criticality sporadic task systems. In Real-

Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages 13–23. IEEE,
2011.

[40] R. Hiremane. Intel virtualization technology for directed i/o (intel vt-d).
Technology@ Intel Magazine, 4(10), 2007.

[41] I. ISO. 26262: Road vehicles-functional safety. International Standard

ISO/FDIS, 26262, 2011.
[42] F. Jahanian and A. K.-L. Mok. Safety analysis of timing properties in

real-time systems. IEEE Transactions on software engineering, (9):890–
904, 1986.

[43] Z. Jiang. Real-Time I/O System for Many-core Embedded Systems. PhD
thesis, University of York, 2018.

[44] Z. Jiang and N. Audsley. Vcdc: The virtualized complicated device
controller. In 29th Euromicro Conference on Real-Time Systems (ECRTS

2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
[45] Z. Jiang, N. Audsley, and P. Dong. Blueio: A scalable real-time

hardware i/o virtualization system for many-core embedded systems.
ACM Transactions on Embedded Computing Systems (TECS), 18(3):19,
2019.

[46] Z. Jiang and N. C. Audsley. Gpiocp: Timing-accurate general purpose
i/o controller for many-core real-time systems. In Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2017, pages 806–811.
IEEE, 2017.

[47] Z. Jiang, N. C. Audsley, and P. Dong. Bluevisor: A scalable real-time
hardware hypervisor for many-core embedded systems. In 2018 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 75–84. IEEE, 2018.
[48] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and D. E.

Porter. Supporting i/o and ipc via fine-grained os isolation for mixed-
criticality real-time tasks. In Proceedings of the 26th International

Conference on Real-Time Networks and Systems, pages 191–201. ACM,
2018.

[49] M. Kyriakidis, R. Happee, and J. C. de Winter. Public opinion on
automated driving: Results of an international questionnaire among 5000
respondents. Transportation research part F: traffic psychology and

behaviour, 32:127–140, 2015.
[50] J. A. Landis, T. V. Powderly, R. Subrahmanian, A. Puthiyaparambil, and

J. R. Hunter Jr. Computer system para-virtualization using a hypervisor
that is implemented in a partition of the host system, July 19 2011. US
Patent 7,984,108.

[51] Y. Li, M. Danish, and R. West. Quest-v: A virtualized multikernel for
high-confidence systems. arXiv preprint arXiv:1112.5136, 2011.

[52] A. Ma and M. Zhang. Computer system architecture. Computer, 6:L1–1,
2001.

[53] E. Missimer, K. Missimer, and R. West. Mixed-criticality scheduling
with i/o. In 2016 28th Euromicro Conference on Real-Time Systems

(ECRTS), pages 120–130. IEEE, 2016.
[54] D. Muench, O. Isfort, K. Mueller, M. Paulitsch, and A. Herkersdorf.

Hardware-based i/o virtualization for mixed criticality real-time systems
using pcie sr-iov. In Computational Science and Engineering (CSE),

2013 IEEE 16th International Conference on, pages 706–713. IEEE,
2013.

[55] D. Münch, M. Paulitsch, O. Hanka, and A. Herkersdorf. Mpiov:
scaling hardware-based i/o virtualization for mixed-criticality embedded
real-time systems using non transparent bridges to (multi-core) multi-
processor systems. In Proceedings of the 2015 Design, Automation



& Test in Europe Conference & Exhibition, pages 579–584. EDA
Consortium, 2015.

[56] A. Oliveira, J. Martins, J. Cabral, A. Tavares, and S. Pinto. Tz-virtio:
enabling standardized inter-partition communication in a trustzone-
assisted hypervisor. In 2018 IEEE 27th International Symposium on

Industrial Electronics (ISIE), pages 708–713. IEEE, 2018.
[57] M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench, and

J. Nowotsch. Mixed-criticality embedded systems–a balance ensuring
partitioning and performance. In 2015 Euromicro Conference on Digital

System Design, pages 453–461. IEEE, 2015.
[58] J. L. Peterson and A. Silberschatz. Operating system concepts, volume 2.

Addison-Wesley Reading, MA, 1985.
[59] S. Pinto, D. Oliveira, J. Pereira, N. Cardoso, M. Ekpanyapong, J. Cabral,

and A. Tavares. Towards a lightweight embedded virtualization archi-
tecture exploiting arm trustzone. In Emerging Technology and Factory

Automation (ETFA), 2014 IEEE, pages 1–4. IEEE, 2014.
[60] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral. Ltzvisor:

Trustzone is the key. In LIPIcs-Leibniz International Proceedings in

Informatics, volume 76. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017.

[61] G. Plumbridge, J. Whitham, and N. Audsley. Blueshell: a platform
for rapid prototyping of multiprocessor nocs and accelerators. ACM

SIGARCH Computer Architecture News, 41(5):107–117, 2014.
[62] M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current

technology and future trends. Computer, 38(5):39–47, 2005.

[63] O. Rozenfeld, R. Sacks, Y. Rosenfeld, and H. Baum. Construction job
safety analysis. Safety science, 48(4):491–498, 2010.

[64] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on
concepts, taxonomy and associated security issues. In Computer and

Network Technology (ICCNT), 2010 Second International Conference

on, pages 222–226. IEEE, 2010.
[65] K. Seeger. Semiconductor physics. Springer Science & Business Media,

2013.
[66] J. W. Sheaffer, D. P. Luebke, and K. Skadron. A hardware redundancy

and recovery mechanism for reliable scientific computation on graphics
processors. In Graphics Hardware, volume 2007, pages 55–64. Citeseer,
2007.

[67] D. H. Stamatis. Failure mode and effect analysis: FMEA from theory

to execution. ASQ Quality press, 2003.
[68] N. R. Storey. Safety critical computer systems. Addison-Wesley

Longman Publishing Co., Inc., 1996.
[69] S. Trujillo, A. Crespo, and A. Alonso. Multipartes: Multicore virtual-

ization for mixed-criticality systems. In Digital System Design (DSD),

2013 Euromicro Conference on, pages 260–265. IEEE, 2013.
[70] S. Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In Real-Time Systems

Symposium, 2007. RTSS 2007. 28th IEEE International, pages 239–243.
IEEE, 2007.

[71] C. Waldspurger and M. Rosenblum. I/o virtualization. Communications

of the ACM, 55(1):66–73, 2012.


