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Introduction

The genome is inherently unstable as the result of spontaneous 

chemical reactions as well as exposure to a wide variety of 

genotoxic agents. To deal with environmental and endogenously 

arising DNA lesions, cells have evolved responses that co­

ordinate cell cycle progression and DNA repair pathways to 

 ensure the integrity of the genome. Failure to maintain genomic 

integrity is a threatening condition; as examples, chromosomal 

aberrations and rearrangements are associated with cancer and 

contribute to carcinogenesis (Halazonetis et al., 2008).

When cells replicate their DNA in S phase, they generate 

structures that are sensitive to both endogenous and exogenous 

insults. Furthermore, oncogenes can induce lesions at replica­

tion forks, and subsequent induction of the DNA damage  

response occurs early during tumorigenesis and has been  

proposed to act as a barrier to tumor progression (Bartkova  

et al., 2006; Di Micco et al., 2006). This barrier can be im­

paired by several mechanisms such as p53 mutations, allowing 

cancer development. The continuous formation of DNA double­

strand breaks (DSBs) during replication may also contribute  

to the genomic instability that characterizes human cancers 

 (Halazonetis et al., 2008).

To deal with a variety of DNA lesions, cells harbor path­

ways composed of large networks of damage sensors, signal 

transducers, and effectors (Kastan and Bartek, 2004). The 

 initial response to replicative stress is activated mainly by the 

ATR (ataxia telangiectasia and Rad3­related protein) kinase, 

which targets proteins such as p53, H2AX, and the CHK1 

 kinase. ATR and CHK1 are critical for the response to exoge­

nous DNA­damaging agents. In addition, they are indispensable 

for regulating several processes during the unperturbed cell 

cycle where they control cell cycle progression by regulating 

replication and mitotic events (Ben­Yehoyada et al., 2007; 

Chen and Poon, 2008).

A key target of CHK1 is the CDC25A phosphatase, which 

is an activator of Cdks. CHK1 phosphorylation of CDC25A 

M
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Figure 1. High-throughput siRNA screen identifies WEE1 as a regulator of genomic integrity. (A) Schematic overview of the robot-automated high-
 throughput siRNA screen. U2OS cells were reverse transfected, and after incubation for 72 h, cells were stained with anti–-H2AX antibody and Hoechst. 
(B) Individual siRNAs were ranked according to the percentage of cells that were -H2AX positive (left), and genes were ranked according to their  
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RSA-derived p-value (right). The positions of WEE1 and CHK1 are indicated. (C) U2OS cells were transfected with three different siRNAs targeting WEE1 and 
harvested for flow cytometric analysis after 48 h. The bar plot is the mean of the percentage of -H2AX–positive cells of three experiments. (D) Immunoblot 
of cells treated as in C. (E) TIG-3-tert cells were transfected with WEE1 siRNA for 48 h and analyzed by flow cytometry and immunoblotting. (C and E) Error 
bars indicate SD from three experiments. (D and E) Molecular mass is indicated in kilodaltons. PCNA, proliferating cell nuclear antigen.

 

accelerates its degradation, leading to a slowing down of 

DNA replication and preventing entry into mitosis until the 

damage has been repaired (Bartek and Lukas, 2007). CHK1­

mediated phosphorylation and inhibition of the CDC25–Cdk 

pathway are implicated in the cell cycle checkpoint control of 

G1/S, S, and G2/M phases. CHK1 suppresses replicative dam­

age through regulation of DNA replication (Syljuåsen et al., 

2005). Additionally, CHK1 has been shown to induce repair 

of DNA lesions by stimulating homologous recombination 

(HR) repair (Sørensen et al., 2005) and DNA cross­link repair 

(Wang et al., 2007).

To identify critical regulators of genome integrity, we 

screened a human cell line with a kinome siRNA library for 

genes for which depletion leads to DNA damage in the absence 

of exogenous insults. The results show that the mitotic kinase 

WEE1 is crucial for genome integrity during S phase in a 

 manner dependent on Cdk activity. WEE1 controls a branch 

parallel to CHK1–CDC25A. These two pathways converge to 

control Cdk activity during normal S­phase progression to avoid 

the generation of harmful DNA lesions.

Results and discussion

High-throughput siRNA screen reveals a 

key role for Cdk regulators in the 

maintenance of genomic integrity

To uncover important factors involved in maintaining genomic 

integrity in human cells, we performed a robot­automated high­

throughput screen with a human kinome siRNA library. The 

 human osteosarcoma cell line U2OS was chosen as the model 

system because it has low levels of spontaneous DNA damage 

and is easy to transfect and handle. U2OS cells were reverse 

transfected with siRNA and placed in a standard cell incubator. 

After 72 h of depletion, cells were ixed, and the DNA damage 

marker phosphorylated H2AX (­H2AX) was visualized by  

immunoluorescent staining (Fig. 1 A). We then performed auto­

mated microscope image acquisition (Fig. S1 A), and a statisti­

cal analysis was performed to estimate candidate genes (König 

et al., 2007). The analysis revealed that the majority of siRNAs 

did not lead to marked DNA damage, suggesting that most ki­

nases are dispensable for genomic integrity in this cell line  

(Fig. 1 B). The entire statistically analyzed results of the screen 

are included in a supplemental Excel ile, which includes non­

kinase genes that were included as controls (Table S1). 15 ki­

nases had a p­value below 0.01 (Fig. S1 B), and further analysis 

using the PANTHER classiication system revealed that these 

kinases were mostly in functionally separate pathways (Fig. S1 C). 

Additional analysis by text mining revealed that several of these 

kinases have not been previously associated with a phenotype 

similar to genome integrity and DNA damage (Table S1, graphs 

1–15). However, the networks around each of these kinases 

contain many proteins that have been associated with such a 

phenotype. Also, analysis by text mining revealed that several 

of these kinases are indirectly connected to each other via one 

shared interaction partner (Table S1, Targets Subnetwork tab). 

While this manuscript was under review, a recent study with a 

quite similar approach was published (Paulsen et al., 2009).  

Kinases such as PLK1 and CHK1 scored in both screens; inter­

estingly, several kinases were identiied in only one of the 

screens, suggesting that siRNA screens are complementary. 

This is likely because of the large number of variables in these 

large­scale screening approaches, including differing siRNA 

sequences, choice of cell lines, growth conditions, and duration 

of siRNA treatment.

We noticed that WEE1 and CHK1, both negative regu­

lators of Cdk activity, were among our top­ranked candidates 

(Fig. 1 B and Fig. S1 B). We then focused our analysis on 

WEE1 and its downstream targets CDK1 and ­2. To validate  

the indings of the screen and exclude possible off­target 

 effects of the siRNA, we transfected cells with the three  

siRNAs targeting WEE1 from the library. Cells were analyzed 

by low cytometry 48 h after transfection, which showed that 

the depleted cells had high levels of phosphorylated H2AX 

in mid to late S phase, thereby conirming our screen results 

and indicating that the DNA damage is linked to replication  

(Fig. 1 C). Immunoblotting conirmed that WEE1 was effec­

tively depleted by the three siRNAs and that they all caused 

increased ­H2AX levels (Fig. 1 D). WEE1 depletion inhibited 

the phosphorylation of CDK1 on Tyr15, which is consistent 

with the published function of WEE1 (Fig. S1 D; Coleman and 

Dunphy, 1994; Kellogg, 2003). In line with this, the kinase 

activities of immunoprecipitated cyclin A and cyclin B1 were  

rapidly increased upon WEE1 depletion (Fig. S1 E; Chow  

et al., 2003). To understand whether the effect of WEE1 siRNA 

was speciic to transformed cells, we treated TIG­3­tert cells 

(nontransformed telomerized ibroblasts) with WEE1 siRNA. 

Depletion of WEE1 also induced marked DNA damage in 

these cells (Fig. 1 E) as well as other cell lines tested, including 

BJ­tert ibroblasts and HeLa cells (not depicted).

To be certain that the ­H2AX staining relected actual 

DNA damage, we cast live cells in agarose plugs and ran pulsed 

ield gel electrophoreses (PFGEs). After 24­h transfection with 

WEE1 siRNA, the cells had accumulated substantial damage in 

the form of DSBs as well as smaller fragments (Fig. S1 F).

WEE1 depletion leads to DNA damage 

during DNA replication in U2OS cells

Ablation of WEE1 has previously been shown to induce cell 

death (Yuan et al., 2003; Tominaga et al., 2006). It was a pos­

sibility that DNA damage after WEE1 knockdown was a sec­

ondary event occurring after induction of cell death pathways. 

To investigate this, we performed more detailed analysis of the 

http://www.jcb.org/cgi/content/full/jcb.200905059/DC1
http://www.jcb.org/cgi/content/full/jcb.200905059/DC1
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Figure 2. WEE1 depletion leads to DNA damage in newly replicated DNA. (A) U2OS cells were transfected with WEE1 siRNA and processed for immuno-
blotting. Molecular mass is indicated in kilodaltons. PCNA, proliferating cell nuclear antigen. (B) Flow cytometry analysis for -H2AX and propidium iodide 
(PI) of cells 12, 24, 36, and 48 h after transfection with WEE1 siRNA. The boxed areas indicate -H2AX–positive cells.The bar plot is the mean of the 
percentage of -H2AX–positive cells of three experiments. (C) Immunofluorescence confocal microscopy of cells 12 and 18 h after transfection with WEE1 
siRNA. To detect ssDNA, cells were cultured in medium with 10 µM BrdU throughout the experiment; DNA was not denatured before staining against BrdU, 
-H2AX, and DAPI. (D) For the detection of replication-associated DSBs, cells were labeled with methyl-[14C]thymidine (14C-TdR) for 30 min. Control and 
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WEE1 samples were labeled 12 h after siRNA transfection. Cells were harvested 24 h after transfection, and DNA fragments were separated by PFGE. 
IR, ionizing radiation. (E) U2OS cells were depleted for the DNA replication proteins MCM2 and CDT1 for 48 h. WEE1 was depleted the last 20 h. Cells 
were processed for flow cytometry analysis with staining of -H2AX and DNA (PI). (B and E) Error bars indicate SD from three experiments. Bar, 10 µm.

 

early events after WEE1 knockdown. Immunoblotting revealed 

that WEE1 depletion lead to an activated DNA damage re­

sponse (Fig. 2 A), as measured by increased phosphorylation of 

the ATR targets H2AX, replication protein A (RPA), and CHK1 

(Ser317). Flow cytometry analysis revealed that ­H2AX stain­

ing was visible already 12 h after transfection and was strong 

24 h after (Fig. 2 B). Next, we asked whether the DNA damage  

arises in actively replicating cells. We depleted WEE1 for 12 h  

and then added the nucleotide analogue EdU for 4 and 8 h  

before ixation. We costained against ­H2AX and EdU, fol­

lowed by analysis of cells with low cytometry. The results of 

this experiment establish that the DNA damage exclusively  

occurs in EdU­positive cells (Fig. S2, A and B). In a second set of 

experiments, we depleted WEE1 for 18 and 24 h and then added 

the nucleotide analogue EdU for 10 min before ixation. Our 

low cytometry analysis of these samples revealed that most of 

the cells with DNA damage were actively replicating at 18 h  

after WEE1 depletion (Fig. S2 C); however, at later stages of  

depletion, these cells ceased replication and arrested in S phase.

We hypothesized that DNA damage from WEE1 deple­

tion was characterized by single­stranded DNA (ssDNA)  

formation, a common intermediate at replication­associated 

lesions. To test this, we incubated cells with BrdU and treated 

them with WEE1 siRNA. Cells were then ixed and immuno­

stained for ­H2AX and BrdU in the absence of HCl and DNase 

treatment. Confocal microscopy revealed strong pannuclear  

­H2AX staining, and the anti­BrdU staining revealed ssDNA 

at very early time points (Fig. 2 C). This could indicate process­

ing of DNA lesions in areas of DNA replication, where ssDNA 

is a key intermediate in DNA damage signaling and DNA repair 

processes. A key remaining question was whether the lesions 

were arising in areas of replicating DNA. To investigate this, we 

pulsed cells for 30 min with [14C]thymidine and ran PFGE to 

analyze the DNA fragments. Importantly, cells depleted for 

WEE1 experienced marked DNA damage in newly replicated 

areas. This was in contrast to cells treated with ionizing radia­

tion, which barely induced damage in replicating areas even 

though the degree of damage as measured by PFGE was 

 markedly higher (Fig. 2 D). To further analyze the connection 

between the damage phenotype and DNA replication, we 

 codepleted WEE1 and the important replication proteins CDT1 

and MCM2 (Tada, 2007). In both cases, the depletion of CDT1 

and MCM2 signiicantly reduced damage after WEE1 knock­

down (Fig. 2 E). Short­term depletion of CDT1 or MCM2 did 

not lead to major perturbations of cell cycle progression.  

Together, these data substantiate the novel concept that WEE1 

plays a major role in supporting correct DNA replication, 

thereby preventing loss of genomic integrity. Cessation of DNA 

replication at later stages after WEE1 knockdown correlated 

with premature entry into mitosis, as measured by increased 

histone H3 Ser10 phosphorylation and DNA condensation (un­

published data). Premature mitotic entry is commonly observed 

after loss of WEE1 (Russell and Nurse, 1987; Harvey and  

Kellogg, 2003; Stumpff et al., 2004; Tominaga et al., 2006). 

However, because DNA damage after WEE1 knockdown initi­

ates rapidly in newly replicated areas, our data suggest that this 

damage is independent of premature mitotic entry.

DNA damage after WEE1 depletion is 

dependent on CDK1 and -2

WEE1 is a kinase that phosphorylates and thereby inhibits 

CDK1 and ­2, which normally promote S phase and mitotic 

 entry (Fig. S1, D and E; Coleman and Dunphy, 1994; Kellogg, 

2003). This prompted us to investigate whether CDK1 and ­2 

played a role in the S­phase damage observed after WEE1 de­

pletion. We codepleted WEE1 with either CDK1 or ­2 for 36 h 

and analyzed the cells by low cytometry. Knockdown of CDK1 

rescued the WEE1 depletion phenotype (Fig. 3, A and B), with 

no visible effects on the cell cycle (Fig. S2 D). We further de­

pleted CDK2 with WEE1, and this also had an inhibitory effect 

on the induction of DNA damage. Furthermore, we observed 

similar indings in TIG­3­tert cells depleted for WEE1 and 

CDK1 and ­2 (Fig. S2 E). To substantiate these data, we de­

pleted WEE1 in the presence of the Cdk inhibitor roscovitine, 

and as expected, roscovitine completely repressed the pheno­

type. Immunoblotting conirmed that depletion of CDK1 and ­2 

suppressed WEE1­mediated DNA damage as well as phosphory­

lated RPA (Fig. 3 C). Thus, the excess DNA damage after WEE1 

depletion is mainly through deregulated CDK1 and ­2 activity. 

These data highlight the crucial role played by enzymes that re­

strain Cdk activity in maintaining the integrity of the genome in 

S phase. The inhibitory Cdk phosphorylation mediated by 

WEE1 is antagonized by CDC25A, the phosphatase which acti­

vates Cdks in S and G2 phases of the cell cycle (Chen and Poon, 

2008). To investigate the role of CDC25A in DNA damage after 

WEE1 siRNA transfection, we cotransfected WEE1 and 

CDC25A for 24 h. Flow cytometry revealed almost similar 

amounts of ­H2AX–positive cells after CDC25A and WEE1 

codepletion compared with WEE1 depletion alone (Fig. 3 D). 

Consistently, WEE1­depleted cells and WEE1­ and CDC25A­

codepleted cells had equal amounts of ­H2AX and phosphory­

lated RPA, as measured by immunoblotting (Fig. 3 E), although 

CDC25A was partly down­regulated after WEE1 depletion 

alone because of an activated DNA damage response (Fig. 2 A). 

Thus, the DNA damage induced by WEE1 depletion appears 

largely independent of CDC25A.

Endogenously arising DNA damage after 

CHK1 depletion is dependent on CDC25A

Inhibition and depletion of CHK1 led to DNA damage in  

S phase via deregulation of Cdk activity (Fig. S3 A). CHK1  

inhibits CDC25A directly; thus, DNA damage occurring upon 

CHK1 inhibition has been suggested to be mediated through 

deregulation of the CDC25A–Cdk pathway, leading to elevated 

http://www.jcb.org/cgi/content/full/jcb.200905059/DC1
http://www.jcb.org/cgi/content/full/jcb.200905059/DC1
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Figure 3. DNA damage accumulating after WEE1 depletion is dependent on CDK1 and -2 but not CDC25A. (A) U2OS cells were transfected with WEE1 
siRNA with and without 100 nM CDK1 or -2 siRNA for 36 h or with 25 µM of the Cdk inhibitor roscovitine (Rosco) added 12 h after transfection. Cells 
were processed for flow cytometry analysis with staining of -H2AX and DNA (PI). (B) Mean of three experiments treated as in A. (C) Immunoblot of cells 
treated as in A. (D) U2OS cells were transfected with a WEE1 and CDC25A siRNA pool (50 nM of each siRNA), harvested after 24 h and stained for 
-H2AX and with PI and analyzed by flow cytometry. (B and D) Error bars indicate SD from three experiments. (E) Immunoblot of cells treated as in D.  
(C and E) Molecular mass is indicated in kilodaltons.
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Figure 4. Endogenously arising DNA damage after CHK1 depletion is dependent on CDC25A. (A) U2OS cells were transfected with CHK1 siRNA and a 
CDC25A siRNA pool (50 nM of each siRNA). After 48 h, cells were fixed, stained for -H2AX and with PI, and analyzed by flow cytometry. The bar plot 
is the mean of the percentage of -H2AX–positive cells of three experiments. (B) Cells were treated as in A and prepared for immunoblotting. Molecular 
mass is indicated in kilodaltons. (C) TIG-3-tert cells were transfected with the indicated siRNA and, 24 h later, trypsinized and seeded. Cells were counted 
at the indicated time. Data are the mean of three experiments. (D) TIG-3-tert cells were transfected with CHK1 siRNA and a CDC25A siRNA pool and, 
after 24 h, 2 mM HU was added. Confocal microscopy was performed on cells immunostained with an antibody against RAD51 and DAPI for DNA.  
(E) Quantification of D. 100 cells were counted in triplicates. (A, C, and E) Error bars indicate SD from three experiments. Bars, 5 µm.
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Both WEE1 and CHK1 are crucial for negatively regulat­

ing Cdk. Whereas WEE1 inhibits Cdks by direct phosphoryla­

tion, CHK1 negatively controls Cdk activity indirectly through 

its control over CDC25A stability (Ben­Yehoyada et al., 2007). 

Cdk activity is also negatively regulated by MYT1 (Chen and 

Poon, 2008), and siRNA depletion of this kinase also leads to 

DNA damage, although not as notable as WEE1 knockdown 

(unpublished data). In conclusion, our data support a model in 

which genomic integrity during DNA replication is maintained 

by the precise regulation of Cdk activity mediated through two 

parallel pathways by WEE1 and CHK1–CDC25A. Future  

directions of our research deal with the elucidation of the key 

targets of Cdk activity that control genomic integrity.

Materials and methods

Cell culture and chemicals
The human U2OS osteosarcoma cell line and telomerized human normal 
fetal lung fibroblast cell line TIG-3 was grown in Dulbecco’s modified 
Eagle’s medium (Invitrogen) with 10% FBS. For siRNA-mediated knockdown, 
U2OS cells were transfected using Oligofectamine (Invitrogen) according 
to the manufacturer’s protocol. TIG-3 cells were reverse transfected using 
Lipofectamine RNAiMAX (Invitrogen). The following oligonucleotide se-
quences were ordered from Sigma-Aldrich: WEE1-1, 5-GGAAAAAGG
GAAUUUGAUG[dT][dT]-3; WEE1-2, 5-GGGAAUUUGAUGUGCGACA-
[dT][dT]-3; WEE1-3, 5-GGUAUAUUCAUUCAAUGUC[dT][dT]-3; CDK1,  
5-GAUGUAGCUUUCUGACAAAAA[dT][dT]-3; CDK2, 5-GUUUCAGUA-
UUAGAUGCAC[dT][dT]-3; CDC25A-1, 5-GGCGCUAUUUGGCGCUU-
CA[dT][dT]-3; CDC25A-2, 5-CCUGACCGUCACUAUGGAC[dT][dT]-3;  
CHK1, 5-GGGAUAUUAAACCAGAAAA[dT][dT]-3; RAD51, 5-UUGAG-
ACUGGAUCUAUCAC[dT][dT]-3; MCM2, 5-UCAUCGGAAUCCUUCAC-
CA[dT][dT]-3; and CDT1, 5-GCGCAAUGUUGGCCAGAUC[dT][dT]-3.

Experiments with siRNA-transfected cells were performed as indi-
cated in the figure legends. Inhibition of CHK1 kinase activity was 
achieved by the addition of 100 nM Gö6976 (EMD). Cdk activity was  
inhibited by the addition of 25 µM roscovitine (EMD).

Robot-automated screen
The automated screen was performed using a liquid handling station 
(STAR; Hamilton Robotics). U2OS cells were reverse transfected with an 
siRNA library targeting the human kinome (Applied Biosystems). The  
library is comprised of three independent siRNA constructs per target, 
with each construct being individually spotted. In brief, 4 µl siRNA was 
added to 2.5 µl OptiMEM (Invitrogen) to each well of a 384-well plate 
(Corning). To this, a 6.4 µl OptiMEM/0.1 µl Oligofectamine mix was 
added and left to stand for 15 min, after which 27 µl of cells was added 
to give a total cell density of 2,800 cells per well. The final concentration 
of siRNA was 100 nM. Cells were incubated for 72 h, followed by 
Hoechst staining (bisBenzimide H 33342; Sigma-Aldrich), 4% para-
formaldehyde fixation, permeabilization, and phosphorylated H2AX  
antibody staining, in conjunction with an Alexa Fluor 594 secondary  
antibody. Cells were left at 4°C in PBS before imaging. The cells were 
imaged on an IN Cell Analyzer 1000 (GE Healthcare), and 10 images 
per well were acquired using a 20× objective to count 2,000 cells per 
well. The acquired images were then analyzed using the IN Cell  
Analyzer Workstation 3.5 software (GE Healthcare).

Statistical analysis
To minimize the risk of misinterpretation of gene activity because of off-
target effects of the siRNAs, we computed a statistical score that mod-
eled the probability of a gene “hit” based on the collective activities of 
multiple siRNAs per gene using the statistical method redundant siRNA  
activity (RSA) analysis (König et al., 2007). Using the RSA method, we  
first ranked the siRNAs according to their score. Afterward, a p-value  
was assigned to each gene, and this value indicated how likely it was  
to observe this distribution of siRNAs for one gene at a high position in 
the list by chance. The calculation of the p-values was based on the  
iterative hypergeometric distribution (König et al., 2007). For this study, 
the RSA analysis was performed based on the percentage of -H2AX– 
positive cells.

Cdk activity (Syljuåsen et al., 2005). We tested this hypothesis 

by codepleting CHK1 and CDC25A with siRNA. To obtain 

eficient down­regulation of CDC25A, we used a pool of two 

siRNAs targeting CDC25A (Fig. S3 B). CHK1­depleted cells 

accumulated substantial DNA damage, whereas cells treated 

with both CHK1 and CDC25A siRNA developed signiicantly 

less DNA damage when analyzed by low cytometry (Fig. 4 A). 

Immunoblotting revealed that CDC25A knockdown not only 

suppressed ­H2AX but also phosphorylation of RPA (Fig. 4 B).  

Similar results were obtained in TIG­3­tert cells (Fig. S3 D). 

CHK1 inhibition with inhibitors leads to DNA damage shortly 

after drug addition (Syljuåsen et al., 2005). To investigate 

whether this rapid response was dependent on CDC25A, we 

treated U2OS cells for 2 h with the CHK1 inhibitor Gö6976 

48 h after transfection with CDC25A siRNA. In line with our 

results for CHK1 depletion by siRNA (Fig. 4, A and B), the 

CDC25A depletion signiicantly repressed DNA damage in the 

S phase after Gö6976 treatment (Fig. S3 C).

CDC25A plays a role in the unperturbed cell cycle  

(Ben­Yehoyada et al., 2007); to address the concern that the 

CDC25A siRNA was slowing down replication, which would 

affect the result, we pulsed cells with BrdU after 48 h of 

CDC25A siRNA transfection and chased the cells for 8 h. Flow 

cytometric analysis revealed that the progression through S 

phase at these time points was largely unaffected by the lower 

cellular concentration of CDC25A (Fig. S3 E). Thus, repression 

of DNA damage after CDC25A depletion is not caused by mark­

edly slowed progression through S phase or G1­phase arrest.

Finally, we asked whether CDC25A accumulation could 

be an important determinant of the proliferative capability of 

cells depleted for CHK1 because coknockdown of CDC25A 

with CHK1 abolished the majority of DNA damage. Impor­

tantly, TIG­3­tert cells depleted for CHK1 proliferated very 

poorly, whereas this phenotype was partly rescued by codeple­

tion of CDC25A. In fact, cells depleted for both CDC25A and 

CHK1 proliferated with similar kinetics as CDC25A­depleted 

cells (Fig. 4 C). Inspired by this result, we wondered whether 

the role of CHK1 in the cellular response to replication fork 

stalling induced by hydroxyurea (HU) could be mediated partly 

via the CHK1–CDC25A pathway, perhaps operating in a coop­

erative fashion with the CHK1–RAD51 pathway. To address 

this issue, we treated cells with siRNA to CDC25A and CHK1 

in the presence and absence of HU. CHK1 depletion largely 

prevented the formation of RAD51 foci after HU. As CHK1 and 

CDC25A codepletion also led to a marked reduction in RAD51 

foci formation after HU, we found little evidence for a major 

role of the CHK1–CDC25A pathway in controlling RAD51 

foci formation after HU (Fig. 4, D and E). In line with this  

result, WEE1 depletion could not block RAD51 foci formation 

after HU (Fig. S3 G). We noticed that cells depleted for CHK1 

could form RAD51 foci, although at much reduced numbers 

(Fig. 4 E). Because HR is required to support proliferation, the 

ability to form some RAD51 foci may provide some HR repair 

to help cells cope with the DNA damage after CHK1 depletion. 

In support of this, our proliferation assays revealed that RAD51­

depleted cells were more affected than CHK1­ and CDC25A­

codepleted cells (Fig. S3 F).
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Text mining protein interaction networks and phenotype associations
The protein interaction networks were derived from text mining interactions 
partners from a resource that integrates protein interaction phrases  
retrieved from the Biomolecular Interaction Network Database (BIND; 
Bader et al., 2003) with the cocitations of protein pairs extracted from the 
same sentence as these interaction terms in the >19 million abstracts in the 
Medline database. In this resource, the protein citations and their symbols, 
names, and synonyms are extracted from Medline using the PubGene gene 
and biological association database (Jenssen et al., 2001). Each of the 
target genes are connected to putative interaction partners in the larger 
network we generated if the interaction partner shares connections to  
at least two of the top-ranked target genes. Protein interaction networks 
were also generated from this resource around the individual top-ranked 
target genes to illustrate their highest-scoring article gene cocitations from 
the PubGene database.

To assign a phenotype association to the target genes and the their 
interaction partners in the networks, we manually compiled a list of 66  
relevant terms from the Gene Ontology and Medical subject headings that 
are associated to the phenotype of genome integrity and DNA damage. 
The terms are listed in Table S1. The number of times a target gene or an 
interaction partner is cocited in an article with the phenotype terms accord-
ing to the PubGene database was recorded. We then used the Cytoscape 
network visualization software (Shannon et al., 2003) to visualize the 
networks and color code the genes in the network according to their 
strength of association to the phenotype in the literature. In this color- 
coding scheme, the intensity of green color of a gene in a protein inter-
action network is governed by the number of times that gene is cocited with 
the combined phenotype terms in Medline. This intensity was illustrated as 
an attribute of the gene in the Cytoscape software using the logarithm 
of the number of articles as the score of color intensity for each gene. 
Genes that were not associated to the phenotype in Medline articles were 
colored gray. Furthermore, in the visualization of the protein interaction 
networks, the target genes were shaped as diamonds with red outer edges, 
and connections between the targets were colored red.

Immunoblotting and antibodies
Cells were lysed on ice in radioimmunoprecipitation assay buffer (50 mM 
Hepes, pH 7.5, 150 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 10% glyc-
erol, 1% IgePal630, 1% deoxycholic acid [Na salt], 0.1% SDS, 1 mM 
PMSF, 5 µg/ml leupeptin, 1% aprotinin, 50 mM NaF, and 1 mM DTT). 
 Proteins were separated by SDS-PAGE and transferred to a nitrocellulose 
membrane. The membranes were incubated in primary antibody diluted in 
5% milk, followed by incubation with secondary antibody (peroxidase-
 labeled anti–mouse or –rabbit IgG; 1:10,000; Vector Laboratories). Films 
were developed using an x-ray machine (Valsoe; Ferrania Technologies). 
Phospho-CHK1 antibody (CHK1-pSer317) and phospho-p53 (pSer15) 
 antibody were purchased from Cell Signaling Technology. Antibodies 
against MCM7 (DCS-141) and CHK1 (DCS-310) have been described 
previously (Sørensen et al., 2005). Anti-Wee1 (C-20), anti-CDC25A (F-6), 
anti–cyclin A1 (H-432), anti–p-Cdc2 p34 (Thr14/Tyr15), anti-Cdk2  
(D-12), and anti-RAD51 (H-92) were purchased from Santa Cruz 
 Biotechnology, Inc. Anti–phosphorylated H2AX (JBW103) and anti–
 phosphorylated histone H3 Ser10 were purchased from Millipore. Anti–
proliferating cell nuclear antigen (PC10) was purchased from Abcam, and 
anti-RPA (Ab-3) and anti-Cdc2/Cdk1 (Ab-1) were purchased from EMD. 
Antiactin (clone C4) was purchased from Millipore. p53 (DO-1) was a gift 
from K. Helin (Biotech Research and Innovation Centre, University of 
 Copenhagen, Copenhagen, Denmark). Monoclonal anti-BrdU (clone BU-1) 
antibody was purchased from GE Healthcare.

Flow cytometry
Cells were prepared for flow cytometry as previously described (Jørgensen 
et al., 2007). For BrdU pulse-chase proliferation assays, cells were pulse 
labeled with 10 µM BrdU (Roche) for 5 min, fixed in 70% ethanol, and  
incubated in 2 M HCl for 30 min. Cells were stained with mouse antibody 
to BrdU (1:100) for 1 h. For EdU analysis, cells were either pulsed for 10 min 
with 10 mM EdU at 18 or 24 h after transfection or labeled continuously 
with 0.5 mM EdU from 12 h after transfection. Cells were fixed in 70%  
ethanol and stained with mouse anti–-H2AX (1:500; Millipore) for 1 h,  
followed by 30-min incubation with Alexa Fluor 405 anti–mouse IgG 
(1:500; Invitrogen). EdU was detected with a Click-iT EdU Cell Prolifera-
tion Assay kit (Invitrogen), and DNA was stained with CellCycle 633 
 (Invitrogen) according to the manufacturer’s instruction. Flow cytometry 
analysis was performed on a BD LSRII using BD FACSDiva software. The 
EdU-positive and -negative populations were gated, and the percentage 
of -H2AX–positive cells within each population was determined.

Microscopy and immunofluorescence
Microscopy and immunofluorescence were performed as previously 
 described (Jørgensen et al., 2007). For detection of RAD51 foci, cells were 
fixated in 3% newly made paraformaldehyde for 20 min at room tempera-
ture. The cells were rinsed twice in PBS 0.05% Tween 20, permeabilized 
in PBS with 0.3% Triton X-100, and rinsed once in PBS 0.05% Tween 20 
before incubation of primary antibodies overnight, incubation with Alexa 
Fluor 488 or 594 anti–mouse or –rabbit secondary antibodies for 1 h, and 
mounting using Vectashield mounting medium (Vector Laboratories) con-
taining DAPI. Pictures were acquired on a microscope (Axiovert 200M 
LSM 520; Carl Zeiss, Inc.) using a 63× c-Apochromat objective with NA 
1.2 in H2O. Pictures were taken at room temperature using LSM 510 META 
software and LSM image examiner software (Carl Zeiss, Inc.). The pictures 
were exported in preparation for printing using Photoshop (Adobe) and  
Illustrator (Adobe).

PFGE
25-cm2 flasks were inoculated with 106 cells 24 h before siRNA transfec-
tion. Pulse labeling of the replication forks with [14C]thymidine (4.8 µM; 
9.25 kBq/ml) for 30 min was performed 12 h after transfection. Cells were 
harvested 24 h after transfection. Irradiated samples were labeled immedi-
ately before irradiation and harvested immediately. Harvested cells were 
melted into 1% agarose plugs (InCert Agarose; Lonza; 5 × 105 cells/plug) 
and incubated for 48 h in 0.5% EDTA, 1% N-laurylsarcosyl, and 1 mg/ml 
proteinase K at 20°C. Plugs were washed four times in Tris-EDTA buffer 
 before they were loaded onto a 1% agarose (chromosomal grade) gel and 
separated by PFGE for 20 h (CHEF-DR II system; Bio-Rad Laboratories; 
120° angle, 60–240-s switch time, and 4 V/cm). DNA was visualized 
on the gel by ethidium bromide staining. For detection of radioactivity, the 
gel was dried and exposed to a phosphoimager plate for 96 h. Quantifica-
tion was performed in Image Gauge software (FLA-3000; Fujifilm).

Online supplemental material
Fig. S1 shows the top-ranking genes from the screen as well as additional 
data on WEE1 depletion. Fig. S2 shows that DNA damage after WEE1 
depletion occurs in S phase and that it is dependent on CDK1 and -2. 
Fig. S3 shows that DNA damage after CHK1 depletion is dependent 
on CDK1 and -2 and CDC25A and also contains data on the role of 
RAD51 after CHK1 and WEE1 depletion. Table S1, included as an Excel  
file, shows the results from the siRNA screen as well as bioinformat-
ical analysis. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.200905059/DC1.
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