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ABSTRACT 1 

The use of virtual reality (VR) in transport research offers the opportunity to collect behavioural data in a 2 

controlled dynamic setting. VR settings are useful in the context of hypothetical situations where real-3 

world data does not exist and/or in situations which involve risk and safety issues making real-world data 4 

collection infeasible. Nevertheless, VR studies can contribute to transport-related research only if the 5 

behaviour elicited in a virtual environment closely resembles real-world behaviour. Importantly, as VR is 6 

a relatively new research tool, the best-practice in terms of the experimental design is still to be 7 

established. In this paper, we contribute to a better understanding of the implications of the choice of the 8 

experimental setup by comparing cycling behaviour in VR between two groups of participants in similar 9 

immersive scenarios – the first group controlling the manoeuvres using a keyboard and the other group 10 

riding an instrumented bicycle. We critically compare the speed, acceleration, braking and head 11 

movements of the participants in the two experiments. We also collect electroencephalography (EEG) 12 

data to compare the alpha wave amplitudes and assess the engagement levels of participants in the two 13 

settings. The results demonstrate the ability of VR to elicit behavioural patterns in line with those 14 

observed in the real-world and indicate the importance of the experimental design in a VR environment 15 

beyond the choice of audio-visual stimuli. The findings will be useful for researchers in designing the 16 

experimental setup of the VR for behavioural data collection.    17 

 18 

Keywords: virtual reality, instrumented bicycle, keyboard, EEG   19 



Bogacz, M., Hess, S., Calastri, C., Choudhury, C. F., Erath, A., van Eggermond, M. A., Mushtaq, 
F., Nazemi, M. & Awais, M.  

4 

 

INTRODUCTION 1 

Virtual reality (VR) has become an increasingly popular tool for travel behaviour research. This 2 

is because in the transport domain, it is often inherently difficult to collect real-life data in hazardous road 3 

circumstances. VR provides a high degree of experimental control, safety and ease of data collection, 4 

while at the same time allowing to collect data in a dynamic setting. Further, as in other domains, VR 5 

makes it possible to collect data in hypothetical future scenarios allowing to pre-test behavioural 6 

responses in the context of new modes and novel urban design. Consequently, it has been widely used in 7 

previous studies in a transport context. For example, Mai (1) evaluated VR as a tool to analyse pedestrian 8 

behaviour at midblock crossings and Frankenhuis et al. (2) explored male risk-taking behaviour while 9 

crossing a bridge in an immersive environment. Finally, Moussa et al. (3) tried to apply the Augmented 10 

Reality Vehicle system to left-turn manoeuvres at two-way stop-controlled intersections.  11 

Nevertheless, the potential disadvantages of VR include motion sickness, high costs and most 12 

importantly, the risk of an unrealistic representation of reality. The ecological validity of VR experiments 13 

is one of its main issues, as it is widely known that experimental designs which have a different degree of 14 

immersion or employ different equipment can elicit distinct behavioural responses. For example, Farooq 15 

et al. (4) elicited preferences over Connected and Autonomous Vehicles comparing three methods: an 16 

immersive reality technology, a conventional visual presentation and text-only descriptions. The findings 17 

showed that preference for autonomous vehicles increased from 40% in text-only case, through 50% in a 18 

visual presentation to 70% if VR was used. It was concluded that preferences elicited with immersive 19 

equipment were more consistent with real world preferences and the understanding of scenarios 20 

improved. Furthermore, Bogacz et al. (5), which looked at the differences in risk processing between 2D 21 

and 3D cycling scenarios in VR, showed that the behavioural patterns from the experiments were similar 22 

to the actual behaviour of cyclists on the roads. Moreover, the study found that the propensity to brake 23 

was higher in the 3D presentations compared to the 2D scenarios. Patterson et al. (6) conducted two 24 

experiments to investigate the influence of the presentation method on neighbourhood choice. The first 25 

one was based on the textual description of the living area, while the second used VR simulations of the 26 

neighbourhood. The results showed that preferences elicited with text-only surveys reflected participants’ 27 

subjective, imagined illustration of the described place, whereas, in the case of the visualizations, the 28 

preferences were based on the observed material. It suggests that VR technology allows for constructing 29 

experimental scenarios that give the researcher more control over factors that affect the respondents’ 30 

choices, but at the same time these studies clearly exhibit the fact that preferences are highly dependent 31 

on the presentation format. This effect is expected to be even stronger within immersive technology 32 

experiments, as they engage individuals to a larger extent than traditional survey methods. However, as 33 

VR is still an innovative and relatively new research tool, the best practices are yet to be established 34 

especially in the light of mixed evidence in the existing literature.  35 

In contrast, the domain of driving simulators represents an exception, as there has been extensive 36 

research on the factors that affect the behavioural congruence in simulated driving. For instance, 37 

Underwood et al. (7), who assessed the comparability of driving on a road and in a simulator, concluded 38 

that driving simulators can demonstrate similar patterns of differences across drivers as observed on 39 

actual roads. However, this was only relative, in the sense that they were unable to create the same 40 

hazardous situations on a road as can be designed in a simulator. Furthermore, Godley (8) examined the 41 

validity of driving simulators by comparing driving behaviour in an instrumented car vs a simulator. They 42 

showed similar deceleration activity under both conditions. Yet, on the other hand, individuals tended to 43 

drive faster in the instrumented car relative to the simulator. To the best of our knowledge, there has not 44 

been any similar in-depth investigation on the factors that affect the behavioural congruence in the 45 

context of different variants of immersive cycling environments.  46 

 In this paper, we address this research gap and contribute to a better understanding of the 47 

implications of the choice of the experimental setup by comparing the cycling behaviour in VR between 48 

two groups of participants in similar immersive scenarios – the first group controlling the manoeuvres  49 

using a keyboard and the other group riding an instrumented bicycle. 50 
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These two types of equipment both have their advantages and drawbacks. The use of a keyboard 1 

significantly reduces the cost of the experiment as well as the setup time but diminishes the realism of the 2 

experiment. The employment of an instrumented bicycle in the experiment is more effort consuming and 3 

requires novel engineering design (e.g. measuring wheel and pedal rotation, braking force etc.) and is not 4 

portable. Nevertheless, the latter provides participants with an experience which resembles reality to a 5 

larger extent and allows analysts to obtain richer data from the sensors installed on the bicycle.  6 

This is also likely to be reflected in their neural activity, which can be used as an indicator of the 7 

level of engagement.  8 

There are several studies in cognitive psychology which have looked at the effects of the use of 9 

different input devices on the neural processing and the elicited behaviours. For example, key presses can 10 

be considered discrete decisions and while they have been widely used in PC-based experiments before 11 

(9), many studies have shown a continuous flow of information between the brain systems involved in 12 

motor processes as opposed to previous assumptions about sequential stages in motor outputs (10-11). 13 

These findings suggest that devices which allow for continuous rather than discrete input in terms of 14 

motor decisions better mimic the neural processing of such decisions. Moreover, a study by Rupp et al. 15 

(12) demonstrated that the use of a joystick, as opposed to a keyboard, resulted in lower mental workload 16 

in a difficult task, which could suggest that keyboards are unsuitable input devices in complex control 17 

tasks. Finally, a study by Chung et al. (13) investigated online shopping experience and purchase patterns 18 

using both mouse-controlled and touch interface settings. They found that shoppers who used a touch 19 

interface to browse products (vs. mouse) have a significantly higher engagement with their shopping 20 

experience. The studies mentioned above show that there are possible differences in behaviour resulting 21 

from the type of input device adopted, making the search for and testing of alternative solutions in 22 

dynamic experiments a research priority.  23 

In addition to comparing cycling behaviour in VR when using different devices to elicit 24 

preferences, we also set out to explore the latter’s impact on participants’ neural activity as a proxy 25 

measure of engagement. For this reason, we employed electroencephalography (EEG), a scalp-recorded 26 

measure of the electrical activity generated by the brain. Typically, in the transport literature, the use of 27 

EEG has largely focused on the investigation of driver fatigue and drowsiness (14-17), level of 28 

alertness/attention or cognitive performance (18). However, little has been done to evaluate the 29 

engagement of participants in the immersive environment from a neural perspective. In particular, the use 30 

of neuroimaging devices in applied experimental research has been heavily constrained by the signal-to-31 

noise ratio of EEG, where artefacts in the data can stem from physiological (e.g. ocular, facial and body 32 

muscle movements) and non-physiological sources (e.g. electric signals generated by nearby equipment, 33 

as shown by Puce et al. (19)). Therefore, VR experiments which allow a great degree of flexibility in 34 

participants’ head and body movements are more prone to producing artefactual data. However, recent 35 

wireless systems such as Emotiv EPOC+ (20) and Enobio (21) are designed for dynamic experimental 36 

setups and attempt to mitigate the impact of movement artefacts on the scalp-recorded EEG.  37 

In this paper, we compare a particular pattern of oscillatory brain activity known as occipital 38 

alpha (Į) to infer participant’s engagement in the task. Occipital Į, which is quantified through frequency 39 

analysis of the signal ranging from 8 to14 Hz, is one of the most commonly observed signatures of brain 40 

activity, with numerous studies demonstrating a relationship between oscillations in this frequency band 41 

and attentional processing (22-25). As such, the signal presents an ideal candidate to investigate the 42 

impact of presentation format on participants’ degree of task-relevant engagement. 43 

The remainder of this paper is organized as follows. We present our specific hypotheses in the 44 

next section. The survey design and sample characteristics for the two experiments are discussed next, 45 

followed by the methodological approach of the study. We next turn to the results section, followed by 46 

the discussion that reviews the insights from the analysis. 47 

 48 

 49 

 50 

 51 
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HYPOTHESES 1 

Five hypotheses are put forward based on the evidence from the existing literature presented 2 

above and tested empirically using our data. They relate to cycling speed, head movements (an indicator 3 

of engagement with the surroundings beyond peripheral vision), acceleration and braking behaviour as 4 

well as neural processing. We now look at these five in turn. 5 

Cycling speed 6 

Hypothesis 1A: The average speed is higher in the keyboard-controlled experiment as opposed to 7 

instrumented bicycle one.  8 

 9 

Hypothesis 1B: There is more variance in speed in the instrumented bicycle experiment than in the 10 

keyboard experiment. 11 

 12 

It is hypothesized that the average speed will be higher in the keyboard-controlled experiment as it 13 

requires less physical effort to accelerate compared to an instrumented bicycle. Moreover, the 14 

acceleration is more instantaneous when using the keyboard. For the same reason, we expect that there 15 

will be more variation in the speed observed in the instrumented bicycle experiment, as more physical 16 

effort is needed to move through the scenarios, making it more difficult to maintain constant speed levels. 17 

 18 

Head movement 19 

Hypothesis 2: The average head movement is higher in the instrumented bicycle experiment than in the 20 

keyboard experiment. 21 

 22 

We expect that the use of the instrumented bicycle will induce participants to inspect the environment, 23 

resulting in more head movement (26-27). This would be due to the higher level of immersion in the 24 

environment, due to the improved design compared to the keyboard, and due to the fact that braking in 25 

case of any hazardous circumstances on the road will take longer on the instrumented bike compared to 26 

instantaneous reaction while pressing the arrows on the keyboard.  27 

 28 

Acceleration & Braking 29 

Hypothesis 3: There is more variance in the acceleration behaviour in the instrumented bicycle 30 

experiment than in the keyboard experiment. 31 

 32 

Hypothesis 4: There is more variance in the braking behaviour in the instrumented bicycle experiment 33 

than in the keyboard experiment. 34 

 35 

Hypotheses 3 and 4 stem from the fact that the use of the instrumented bicycle provides more scope to 36 

control behaviour, as participants intertwine acceleration and deceleration more often compared to a 37 

keyboard. Cycling on the bike requires more physical effort and time to switch between subsequent 38 

actions or respond to changing conditions on the road, whereas acceleration and braking are more 39 

instantaneous with the keyboard. 40 

 41 

Neural processing 42 

Hypothesis 5: The mean amplitude of the alpha wave is higher in keyboard-controlled experiment 43 

compared to that of the instrumented bicycle. 44 

 45 

Hypothesis 5 is based on the evidence from a large body of work showing the Į wave to be a well-46 

established correlate of attentional processing with an increase in amplitude found as participants’ 47 

attention drifts away from the task (17, 28). On the other hand, current understanding in neuroscience 48 

holds that a low Į wave implies increased excitability, and thus an increased response to external stimuli 49 
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(29-30). Therefore, we hypothesize that if the keyboard-controlled experiment engages participants to a 1 

lower extent, the mean Į amplitude is expected to be higher as opposed to the instrumented bicycle data.  2 

 3 

EXPERIMENTAL DESIGN 4 

This section describes the common experimental procedure used for the two experiments. It also 5 

discusses the components that were different between keyboard-controlled and instrumented bike 6 

experiment as well as the basic characteristics of the two samples. 7 

Keyboard-controlled experimental setup 8 

The experimental session started with the participant being seated on a chair and having an 9 

Emotiv Epoc+ EEG headset (31) and an Oculus Rift VR (32) head mounted display (HMD) placed on 10 

their head. The Emotiv headset uses 14 electrodes (at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 11 

F8 and AF4) sampling across the scalp. The system was selected as its compact design allowed it to be 12 

used jointly with the VR HMD. As a first step, the baseline brain activity was recorded with the sampling 13 

rate of 128 Hz, while participants had their eyes open and focused their gaze on one point on the screen 14 

for 15 seconds. The same procedure was then repeated with their eyes closed. Importantly, before the 15 

main part of the experiment started, the participants had an opportunity to familiarise themselves with the 16 

equipment in a trial run. 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

The experiment used 6 scenarios with an immersive presentation of traffic from the perspective of the 34 

cyclist. All the scenarios had a number of common elements. Firstly, the cyclist was riding on the 35 

pavement. Secondly, in each scenario, there were four locations where a potential collision with other 36 

road users could occur, namely, two junctions and two points along the cycling lane where pedestrians 37 

could cross to reach the bin on the right side of the bike lane, as seen in Figure 1. Thirdly, all the 38 

scenarios featured pedestrians as well as cars and the percentage of pedestrians and cars which would 39 

cross the bike lane or turn at the junction was constant. At the same time, there were also random 40 

components in each scenario which stemmed from the fact that in each scenario, the specific movements 41 

of crossing pedestrians and turning cars were presented randomly, while keeping their overall percentage 42 

the same across all the scenarios. This resulted in differences between scenarios in terms of the actual 43 

number of pedestrians or cars at the “collision locations” when the cyclist was passing by these points. 44 

This was clearly also influenced by the speed of the cyclist, and hence the point in time at which the 45 

“collision locations” were reached. Altogether, these elements gave basis for the complex traffic scenarios 46 

which participants were required to navigate. The scenarios encompassed a 360-degree view of the road 47 

which surrounded the participant and responded to their head movements. Importantly, based on the 48 

feedback received during initial pre-testing of the set-up, sound was also included to capture both visual 49 

and auditory cues that are available to cyclists in real-life settings. The volume of vehicles was consistent 50 

Figure 1: The immersive scenarios used in the experiment. 
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with their distance to the cyclist so that the sound of an approaching car increased as it got closer to the 1 

cyclist.  2 

The experiment comprised the same 6 scenarios. The repetition was used because we also 3 

collected neural data which requires a higher number of trials in order to obtain more stability in the EEG 4 

signal. The task for the participant was to cycle through the scenario at the desired pace until the finish 5 

line at the end of each scenario. In order to navigate through the scenario, participants used the keyboard 6 

to adjust their speed but had no ability to turn left or right. They pressed the up arrow to accelerate and the 7 

down arrow to brake. The keyboard was placed on the table in front of them, and before the experiment 8 

began, they were guided by the experimenter to find the appropriate keys on the keyboard. The 9 

experimental setup of a keyboard-controlled experiment can be seen on right-hand side of Figure 2.  10 

The visual stimuli in the experiment come from VR road simulations developed by Future Cities 11 

Laboratory (33) using Unity 3D Game Engine (34). These stimuli involve pre-programmed environments 12 

where the cars and pedestrian movements do not respond to the actions of the cyclist. That is to say, other 13 

road users do not accelerate or decelerate in reaction to the chosen action of the cyclist (participant), 14 

therefore collisions between the cyclist and cars/pedestrians were possible. Collisions were detected if a 15 

cyclist overlapped visually with any other agent. Even though participants were specifically instructed to 16 

avoid any collisions, there were 19 instances (3.2% of all scenarios by all participants) of collisions with 17 

other road users. When this happened, the experiment was interrupted, and the participant was asked to 18 

start again from the beginning of that scenario. 19 

The initial number of recruited participants was 50, from which 4 participants were removed due 20 

to failure to complete the whole experiment, leading to a final sample size of 46 participants (18 males, 28 21 

females), comprising staff and students of the University of Leeds as well as members of the general 22 

public. The mean age of the participants was 30.7 years, with a standard deviation of 10.88 years.  23 

 24 

Instrumented bike experimental setup 25 

The experimental design for the instrumented bicycle data collection was similar to the keyboard 26 

counterpart in terms of the audio and visual stimuli used and number and types of cycling scenarios. The 27 

experimental session commenced by familiarizing the participant with the instrumented bicycle, including 28 

demonstrating how to use a hand brake (all the participants could ride a bike in reality). Subsequently, the 29 

participant mounted the bike and the HTC Vive head mounted display (HMD) (35) and Enobio (36) 30 

devices were placed on their head. The Enobio headset uses 8 electrodes (at FP1, FP2, Fz, C3, Cz, C4, P3 31 

and P4) sampling across the scalp. The system allowed joint use with HTC Vive HMD. As a first step, the 32 

baseline brain activity was recorded with the sampling rate of 128 Hz, while participants had their eyes 33 

open and focused their gaze on one point on the screen for 1 minute. The same procedure was then 34 

repeated with eyes closed. Before the main part of the experiment started, participants could familiarise 35 

themselves with the use of the bicycle and the environment in a trial session. 36 

The experiment consisted of 6 immersive presentations of traffic scenarios from the perspective 37 

of the cyclists, shown in random order. The visual stimuli proceeded from the same source as before. 38 

Similarly, the participant was asked to cycle through the scenario at the desired pace until the finish line 39 

at the end of each scenario. In order to navigate through the scenario, the participant used the pedals of 40 

the bicycle and had no ability to turn left or right. To brake, the participant used a hand brake positioned 41 

on the right side of the handlebar. The instrumented bike can be observed on the left-hand side of Figure 42 

2. The instrumented bike belongs to Future Cities Laboratories in Singapore.  43 

 44 
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 1 

Figure 2: Instrumented bicycle (FCL Singapore) and keyboard-controlled experiments (University of Leeds) 2 

The scenarios used in these experiments allowed for recording of cycling behaviour with respect 3 

to changing traffic environment. The specific variables of interest, which are described in detail in the 4 

next section, included the cycling speed, braking activity, acceleration, horizontal head movements as 5 

well as the EEG signal. We put forward several hypotheses based on these variables, as specified in the 6 

section above. 7 

Fifty participants were recruited for the experiment, however 2 of them were removed due to 8 

failure to complete the whole experiment, leading to a final sample size of 48 participants (29 males, 19 9 

females), comprising staff and students of the National University of Singapore as well as the members of 10 

the general public. The mean age of the participants was 26.5 years, with 6.7 years standard deviation. 11 

 It is important to emphasize that the small sample size in both experiments is a typical issue faced 12 

by researchers working with VR and/or driving simulator data (37- 38, 3) as the experiment duration is 13 

much longer and the associated cost much higher compared to typical stated preference (SP) studies. 14 

METHODS 15 

In this section, we present the methodology used to test our hypotheses. We conducted a 16 

between-subject comparison of the behaviour in two samples, where one sample used a keyboard and the 17 

other used the instrumented bike to cycle through the scenarios. As a result of this experimental design, 18 

none of the participants took part in both treatments. To compare the behaviour, we analysed the 19 

following variables: acceleration, braking, speed and head movement. We also looked at the difference in 20 

mean Į amplitude in the two experiments. The sampling rate for all variables except EEG was 4 Hz. 21 

To test the proposed hypotheses, we conduct a Welch’s t-test (39) on the mean values of Speed, 22 

sideways movements of the head (Head Yaw) as well as Į-wave amplitude. This test was chosen due to 23 

the slightly unequal sample sizes, where keyboard sample contains 46 participants and the instrumented 24 

bicycle sample includes 48 participants. Furthermore, the F-test (40) was used to make inferences about 25 

the variances in Speed, Acceleration and Braking between two experiments. The individual variables 26 

produced during the experiments were the following:  27 

 28 

Acceleration  29 

The acceleration variable (a) is the rate of velocity gain and is measured in metre per squared second 30 

(m/s2). The formula used to calculate acceleration can be seen in Equation 1: 31 

 32 a ൌ ο௩ο௧        (1) 33 

 34 

Where ǻ denotes changes in velocity (v) and time (t), respectively. 35 

 36 
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Braking 1 

In the instrumented bicycle experiment, braking is measured as the degree of deviation of the braking pad 2 

from its default position. It ranges from 0  to 15o. In the keyboard setting, the braking variable recorded 3 

the degree to which the down-arrow key was pressed, and the values range from 0 to 1. In order to be able 4 

to compare these values, we performed a min-max normalization on the values of Braking for the 5 

instrumented bicycle.  6 

 7 

Speed 8 

The speed is expressed in kilometres per hour (km/h). In the keyboard-controlled experiment, the 9 

maximum speed was capped at 25 km/h. This level was chosen based on the previous literature which 10 

showed that the average speed of cycling in the real world is between 13.5-16 km/h with standard 11 

deviation ranging from 3.2 - 8.4 km/h (41-43). Differently, in the instrumented bicycle experiment, there 12 

was no limit on the maximum speed. The restriction on the keyboard-controlled experiment was imposed 13 

in order to avoid unreasonable speeds, which could have been easily achieved with the constant pressing 14 

of the key, and to minimize the risk of motion sickness.  15 

 16 

 17 

Head movement  18 

The head movement is based on head yaw - the sideways movement of the head. It is measured in degrees 19 

from the default position (looking straight ahead), and can range from -180o to +180o, where turning the 20 

head (as well as the torso) to the left produces negative values while a movement to the right results in 21 

positive scores.   22 

 23 

EEG 24 

For the EEG analyses, we examined differences in mean Į amplitude in keyboard-controlled and 25 

instrumented bicycle experiments. As the EEG signal collected through the scalp are inherently noisy, we 26 

undertook a number of steps to eliminate artefacts and improve the signal-to-noise ratio. Specifically, we 27 

first applied a 1-20 Hz bandpass filtering (BPF), a linear transformation that retains the components of the 28 

data within this specific band of frequencies (44) and removes frequencies outside of this range that may 29 

stem from physiological sources such as galvanic skin responses or external environmental sources such 30 

as electronic equipment (45). Next, we cleaned the data to remove noise stemming from eyeblinks 31 

(movement artefacts were corrected using a multiple source analysis method (46-47)). Finally, we 32 

computed the power spectrum of the EEG data using Welch’s method (48) which estimates the power 33 

spectra based on the Fast Fourier Transform (FFT) (49). Because of our interest in occipital Į, we 34 

performed a region-of-interest analysis and took an average of the activity from electrodes O1, O2, P7, 35 

P8, T7 and T8 in the keyboard-experiment and electrodes P7, P8, C3, C4 in the instrumented bicycle to 36 

increase the stability of the signal (50).  37 

 38 

RESULTS  39 

In this section, we present visual profiles of Speed and Braking for the two experiments and an 40 

overview of the descriptive statistics in Table 1. The table highlights clear differences between the mean 41 

values of the variables of interest in the two samples. Next, these differences are tested more rigorously 42 

using t-test and F-test, and the results are reported for each variable.  43 

 44 

Table 1: Summary statistics of the variables of interest 45 

Variable 
Units of 

measurement 
Mean values 

in the 
keyboard-

Standard 
deviation values 
in the keyboard-

Mean values in 
instrumented 

Standard 
deviation values 
in instrumented 
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controlled 
experiment 

controlled 
experiment  

bicycle 
experiment 

bicycle 
experiment 

Speed km/h 22.90 4.93 14.32 7.03 
Head Yaw degrees 1.76 8.52 4.93 27.71 

Break degrees 0.03 0.10 0.23 0.25 
Acceleration m/s2 0.11 1.29 0.02 2.68 
 1 

In Figure 3, we plot the profiles of the variables Speed and Braking for two randomly chosen participants 2 

cycling in similar immersive scenarios but in the two different experimental settings. The graphs highlight 3 

that both experiments captured participants’ behaviour correctly, as higher values of Braking are 4 

associated with lower Speed. At the same time, it is clear that the employment of the instrumented bike 5 

resulted in a considerably higher amount of variation in Speed and Braking compared to the keyboard 6 

experiment, where the profiles are smoother and less dynamic.  7 

 8 

 9 

Figure 3: Profiles of Braking and Speed in the two experiments for two randomly chosen participants. 10 

Speed 11 

The one-sided Welch’s t-test performed on the mean values of Speed at the individual level showed that 12 

the mean Speed is significantly higher in the keyboard-controlled experiment (t = -16.163, df = 70.134, p-13 

value ~ 0). This result is in line with our Hypothesis 1A, where we expected that the lack of physical 14 

effort and consequently relative easiness in developing higher speed would result in higher average speed 15 

in the keyboard-controlled experiment. Moreover, when we compared the variances in mean Speed, we 16 

found that the variance in the instrumented bicycle experiment was significantly higher compared to the 17 

keyboard-controlled counterpart (F (47,45) = 3.9252, p-value = 0.000004777). Again, this result 18 

conforms to our Hypothesis 1B. We show that the use of the bicycle induces people to adjust their speed 19 

more often. It is also interesting to look at the density histogram of Speed in these two experiments 20 

(Figure 4). We can see the near bell-shaped distribution of Speed in the experiment using the bicycle, 21 

where the values are centred around the mean and there is more variation observed in contrast with the 22 

keyboard-controlled experiments. A peak near zero can be observed in the instrumented-bicycle setting: 23 

this relates to small movements when participants slowed down to stop (while waiting to cross the street 24 

or give priority to pedestrians who crossed their bike lane). In contrast, in the keyboard experiment, we 25 

observe a skewed distribution of Speed where the majority of observations correspond with the maximum 26 

possible level, equal to 25 km/h. This suggests that the removal of physical effort and the use of a 27 

keyboard contributes to the choice of maximum speed regardless of the scenario conditions.  28 
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 1 

Figure 4: Histograms of Speed in the two experimental settings. 2 

 3 

Head movement 4 

Head movement is an indication that the participant is making an effort to gather information beyond the 5 

peripheral vision. The one-sided Welch’s t-test of Head Yaw demonstrated that the average head 6 

movement is significantly higher in the instrumented bicycle experiment as opposed to the keyboard-7 

controlled setting (t = 2.3944, df = 89.987, p-value = 0.009362). This is in line with our Hypothesis 2, 8 

where we expected more head movement to the sides in the instrumented bicycle experiment due to more 9 

complex mechanism of control over the bicycle compared to keyboard, which in turn required 10 

participants to explore the environment to a larger extent in order to be able to react more quickly. The 11 

density histogram of the Head Yaw values (Figure 5) shows this trend, as it includes a wider range of 12 

values for instrumented bicycle compared to the keyboard experiment. It suggests that the use of the 13 

instrumented bicycle induces participants to inspect the environment more than a keyboard due to the 14 

higher level of immersion in the environment and due to the fact that braking in case of any hazardous 15 

circumstances on the road will take longer on the instrumented bike compared to instantaneous reaction 16 

while pressing the arrow on the keyboard.  17 
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 1 

Figure 5: Histograms of Head Yaw in the two experimental settings. 2 

 3 

Acceleration 4 

The results of the one-sided F-test showed that the variance of Acceleration is significantly larger in the 5 

instrumented-bike experiment (F (47,45) = 3.1474, p-value = 0.00008789).  This is in line with our 6 

Hypothesis 3: we expected higher variation in acceleration due to the presence of physical effort and 7 

higher difficulty in maintaining constant speed. The density histogram for Acceleration presented in 8 

Figure 6 reflects the results of the test, as we observe that the Acceleration values are accumulated near 9 

the mean with little variation in the keyboard-controlled experiment and have a near bell-shape 10 

distribution in the other experiment.  11 



Bogacz, M., Hess, S., Calastri, C., Choudhury, C. F., Erath, A., van Eggermond, M. A., Mushtaq, 
F., Nazemi, M. & Awais, M.  

14 

 

 1 

Figure 6: Histograms of Acceleration in the two experimental settings. 2 

Braking 3 

The result of one-sided F-test showed that the variance of Braking is significantly larger in the 4 

instrumented-bike experiment (F (47,45) = 3.8141, p-value = 0.000007114). This result conforms to our 5 

Hypothesis 4 that more variance is present in the instrumented-bicycle experiment. Again, the density 6 

histogram of Braking in Figure 7 visually reflects the results of the test, as there is more variation in an 7 

experiment that used an instrumented bicycle. 8 
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 1 

Figure 7: Histograms of Braking in the two experimental settings. 2 

 3 

Amplitude of Į wave 4 

The one-sided Welch’s t-test demonstrated that the mean Į amplitude is lower in the instrumented bicycle 5 

experiment as opposed to the keyboard-controlled at the 90% confidence level (t  = 1.35, df = 40.79, p-6 

value = 0.09), which is in line with our Hypothesis 5, where we expected a lower Į amplitude in 7 

instrumented bicycle experiment due to the more immersive setting and higher cognitive engagement 8 

compared to the keyboard.  9 

 10 

 11 

DISCUSSION 12 

VR experiments can effectively contribute to transport research only if the behaviour elicited in a 13 

virtual environment closely resembles real-world behaviour. Hence, it is important to be able to 14 

discriminate between different experimental designs that employ immersive technologies. The objective 15 

of the present paper was to compare the cycling behaviour elicited in two separate experiments which 16 

used the same visual stimuli but different devices to control the navigation through the simulated 17 

scenarios. The first one employed a keyboard and the second one an instrumented bicycle. In order to 18 

draw conclusions about the behaviour, we analysed participants’ speed, acceleration, braking and head 19 

movements, along with data about their neural activity. The results are summarized in Table 2, where we 20 

also show examples from the existing literature which reached similar results in different experimental 21 

contexts. This highlights not only that our findings are in line with the literature, but that we confirm 22 

these results for the context of cycling and for the joint use of immersive technology and EEG. 23 

Table 2: Summary of results 24 

No. Hypotheses Result Similar conclusions in the 
literature  
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1A 
Average speed is higher in the keyboard-
controlled experiment than in instrumented 
bicycle one. 

True Bella (51) with driving simulator 

1B 
There is more variance in speed in the 
instrumented bicycle experiment than in the 
keyboard experiment. 

True 
Godley et al. (8) with driving 

simulator 

2 
The average head movement is higher in the 
instrumented bicycle experiment than in the 
keyboard experiment. 

True 

Sitzmann et al. (26) focusing on 
head movement in VR; Underwood 

et al. (7) with driving simulator 
context 

3 
There is more variance in the acceleration 
behaviour in the instrumented bicycle 
experiment than in the keyboard experiment. 

True 
Reymond et al. (52) with driving 

simulator 

4 
There is more variance in the braking behaviour 
in the instrumented bicycle experiment than in 
the keyboard experiment. 

True 
Godley et al. (8) focusing on 
braking behaviour in driving 

simulator 

5 
The mean amplitude of Į wave is higher in the 
keyboard-controlled experiment compared to an 
instrumented bicycle. 

True 
Argento et al. (53) in the context of 

brainwave entertainment in VR 

 1 

Overall, the results show significant differences in behaviour. A more active and varied behaviour 2 

is observed in the instrumented bicycle experiment as compared to the keyboard-controlled study. For 3 

instance, the average speed is lower and more heterogeneous in the instrumented bicycle experiment, 4 

suggesting that participants dedicate more time to explore the environment. Moreover, the average speed 5 

in the instrumented bicycle experiment of 14.32 km/h is closer to the average speed of cycling in reality, 6 

which ranges between 13.5-16 km/h, in contrast to the keyboard counterpart where average speed was 7 

considerably higher in spite of the cap of 25km/h. It suggests that the use of the instrumented bicycle 8 

instead of the keyboard allows for better approximation of the real cycling kinematics. 9 

More variation in acceleration and braking, as well as more head movement is also observed in 10 

the instrumented bicycle setting, implying a higher degree of engagement with the environment. This is 11 

further confirmed by the analysis of the EEG data, where a lower amplitude of the Į wave in the 12 

instrumented bicycle experiment suggests higher mental engagement in the task compared to the 13 

keyboard-controlled one.  14 

Our work provides evidence that the instrumented bicycle is more effective than the keyboard 15 

controls in eliciting behavioural patterns demonstrated by previous naturalistic studies of cycling 16 

behaviour. We use these studies as a benchmark due to the lack of evidence in the previous literature with 17 

regard to typical, real-life cycling behaviour in absolute terms. Moreover, our results are consistent with 18 

previous studies conducted in other contexts that investigated the effects of the use of various input 19 

devices on behaviour, as presented in the introduction and in Table 2. The use of a keyboard, or in fact 20 

any other input device such as a joystick or touchpad, makes the cycling experience clearly less realistic 21 

as the user does not need to exert physical effort, a crucial component associated with cycling. It then 22 

follows that changes in action could be seen as less consequential as they do not impact on physical 23 

fatigue. This relates both to the actual action (e.g. accelerate) as well as the degree thereof. On the other 24 

hand, the advantages of the use of a keyboard or other simple devices cannot be ignored. Their use as an 25 

input device is cheaper and less time consuming than the employment of the stationary bicycle. They are 26 

also more portable which makes it easier to collect data in different locations. Moreover, if VR is used 27 

jointly with neuroimaging devices, then a simpler input device offers a more static approach, reducing the 28 

extent of potential noise in the neural data stemming from body movements. The choice of the input 29 

device for VR experiments is thus not an arbitrary decision and should be aligned with the objectives of 30 

the study to not constrain the spectrum of behaviour which can be captured and minimise the potential 31 
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biases resulting from the mere choice of the controller. The decision of an appropriate input tool also has 1 

to be weighed against technical capabilities such the budget, duration of the experiment and comfort of 2 

the participants as well as a possibility of joint use with other equipment employed in the study. In this 3 

paper, we compare only two devices. However, it is important to take into consideration other available 4 

appliances such as a 3D mouse, joystick, steering wheel, gamepad or hybrid controller which may offer 5 

different benefits depending on the design of the study.  6 

The results thus emphasize the importance of the experimental setup in a VR experiment beyond the 7 

choice of appropriate visual stimulus. The findings extend understanding of the effects of the use of 8 

distinct input devices within the VR domain by demonstrating that the use of an instrumented bicycle 9 

increases the realism of the cycling simulations by influencing the manoeuvring decisions. These results 10 

were further reinforced by the analysis of neural data. Further research needs to be conducted to 11 

generalize these findings. In particular, we recommend testing different cycling scenarios as well as 12 

experiments focusing on different aspects of travel behaviour to  compare participants’ actions in the 13 

experimental setting with real-world decisions. The findings shed light on the level of behavioural 14 

congruence of the state-of-the-art VR studies which will be valuable in the interpretation and the level of 15 

confidence in the results of different VR studies. It is also expected to be a valuable resource to 16 

researchers and practitioners planning to administer VR-based data collection and help them to better 17 

design the experimental setup as there has been a significant interest in using VR for modelling cycling 18 

behaviour (54-55). By comparing and contrasting the behaviour of cyclists in the two VR environments, 19 

the paper is expected to provide guidance to researchers investigating cycling behaviour in dynamic 20 

setting and hence improve the modelling of speed and acceleration of cyclists which can feed into safety 21 

research or capacity analyses for instance. The findings are also expected to be useful for planners who 22 

are interested in deploying VR to more realistically test the impact of different urban designs on the 23 

propensity to cycle, indicating, for example, the road and pavements features which contribute to the 24 

higher perception of safety among cyclists. The research findings can hence help transport and urban 25 

planners in making more informed choices regarding urban infrastructure. Finally, VR tools are 26 

increasingly being used in designing vehicles of the future – the interaction between connected and 27 

automated vehicles (CAVs) and other road users. The findings can help researchers modelling the 28 

interaction between cyclists and CAVs in designing their experiments and better interpreting the results 29 

by giving an idea about the comparative realism of the collected data. 30 

 31 
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