
This is a repository copy of Cycling in virtual reality: modelling behaviour in an immersive 
environment.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/159229/

Version: Accepted Version

Article:

Bogacz, M, Hess, S orcid.org/0000-0002-3650-2518, Choudhury, C orcid.org/0000-0002-
8886-8976 et al. (5 more authors) (2021) Cycling in virtual reality: modelling behaviour in 
an immersive environment. Transportation Letters, 13 (8). pp. 608-622. ISSN 1942-7867 

https://doi.org/10.1080/19427867.2020.1745358

© 2020 Informa UK Limited, trading as Taylor & Francis Group. This is an author produced
version of a journal article published in Transportation Letters. Uploaded in accordance 
with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Cycling in virtual reality: modelling behaviour in an immersive 

environment  

Martyna Bogacza, Stephane Hessa, Charisma Choudhurya, Chiara Calastria, Faisal Mushtaqb,c, 

Muhammad Awaisb , Mohsen Nazemid , Michael van Eggermondd, Alex Erathd 

 

a Institute for Transport Studies & Choice Modelling Centre, University of Leeds, UK 
b School of Psychology, University of Leeds, UK 

c Centre for Immersive Technologies, University of Leeds, UK 
d Future Cities Laboratory Singapore-ETH Centre 

  



2 

 

Abstract 

Nowadays, immersive technologies are gaining popularity as a research tool in transport as they allow 

for a more dynamic approach to the exploration of road users’ behaviour providing at the same time full 

control over interventions. Nevertheless, their ecological validity is still to be established and therefore 

their use in the mathematical modelling of human behaviour in a transport setting has been scarce. In 

the present study, we aim to fill this gap by conducting a comparative study of cycling behaviour where 

both non-immersive and immersive presentation methods are used in a virtual reality setting. We then 

develop discrete choice models using the collected data. The results confirm our hypothesis that 

participants behave differently when shown a choice scenario in non-immersive and immersive settings. 

In particular, cycling in an immersive setting is characterised by a higher degree of engagement, i.e. 

more action switches. To gain a more complete understanding of the processes underlying interactions 

in immersive environments, we also captured neural activity (using electroencephalography recordings) 

during task performance. We focussed on oscillations in the alpha (α) band, a neural signature often 

associated with the filtering (gating) of sensory information. We found increased suppression in this 

signal in response to the immersive condition relative to the non-immersive. These results complement 

the behavioural findings and indicate that immersive environments may increase levels of task-

engagement.  

Keywords: road user behaviour, risk, cycling, virtual reality, EEG  
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1. Introduction 

The study of road users’ behaviour has direct implications for a number of issues: it is used in road 

safety, where human factors are a major contributor to traffic accidents (Rothengatter, 1997); policy 

making aimed at improving transport infrastructures (Cadar et al., 2017; Hood et al., 2011; Leao et al., 

2017; Melson et al., 2014); and the study of how travel mode choices affect traffic congestion 

(Madhuwanthi et al., 2016; Chen et al., 2018) and climate change (Hook, 2007).  

In this study we focus on cycling. Many studies have shown the numerous benefits of cycling in terms 

of sustainability and health; at the same time, existing research has highlighted a number of risks which 

represent a major obstacle to travelling by bicycle. In particular, unpleasant traffic conditions (Henson 

et al., 1997), personal security concerns (Davies et al., 1997), stress and danger (Gardner, 1998) and 

traffic and accidents (Davies & Hartley, 1999) are believed to be related to the low incidence of cycling 

as a commuting mode (Department of Transport, 2013). 

Nevertheless, data collection is a major challenge in this research area, and researchers have often 

resorted to experimental approaches when studying cyclist behaviour in risky settings, which give the 

analyst full control over interventions. Stated preference (SP) methods have been widely used in 

different formats in transport and beyond, such as SP surveys with visual elements (Wardman et al., 

1996), SP web surveys (Auld et al., 2012; Correia & Viegas, 2011), the Lottery Choice Task (Barreda-

Tarrazona, et al., 2011) or Balloon Analogue Risk Task (Gordon, 2007; Lejuez, et al., 2002; Vaca et al., 

2013). SP methods allow for the control of factors included in the study design, but their reliability in 

capturing real-life human behaviour has often been questioned because of the non-commitment bias 

(Chatterjee et al., 1983) and hypothetical bias due to the lack of consequentiality of actions (Li et al., 

2018; Harrison, 2006; Hensher, 2010 & Louviere et al., 2000). Moreover, an additional challenge arises 

in the case of risky situations on the road, as the majority of these SP methods are designed for static 

settings and fail to account for the dynamic changes in risk and hence potentially also risk perception. 

Given these limitations, it is important to seek techniques that increase the design realism compared to 

traditional SP experiments.  

A new opportunity to increase the ecological validity of behavioural research, defined as “the 

applicability of the results of laboratory analogues to non-laboratory, real-life settings” (McKechnie,  

1977), has arisen in recent years through the increasing prevalence and affordability of virtual reality 

(VR) technology (Brookes et al., 2018). Virtual reality is typically defined as the computer-generation 

of three-dimensional interactive environments (Wann & Mon-Williams, 1996) and used to create 

naturalistic and immersive experiences. Virtual reality experiences are often deployed through head-

mounted displays (HMDs), which allow experimenters to tightly control the visual input and track 
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behavioural responses. This approach has been shown to add a level of realism to experiments, even 

when subjects are aware of the artificial nature of the scenarios (Rovira et al., 2009; Slater et al., 2006). 

The success of VR in the creation of realistic experiences has been demonstrated in previous studies in 

a transport context (Farooq et al., 2018, Moussa et al., 2012), transport risk research (Frankenhuis et al., 

2010; Underwood et al., 2011), urban design research (Erath et al., 2017) and social context (Patterson 

et al., 2017).  

The aforementioned studies have shed promising light on the elicitation of real behaviour in road 

situations despite the lack of consequentiality. The findings suggest that participants engage to a greater 

extent with the presented environment and actively take part in the events, even if in a virtual way. 

Nonetheless, further verification is advisable, as a recent study by Mai (2017), which compared 

pedestrians’ behaviour at midblock crossings between a PC-based VR and real crosswalk, showed 

ambiguous findings, where walking speed differed significantly between two environments, however 

the proportion of decisions to cross were similar. Furthermore, a study by Godley et al. (2002), which 

examined the validity of driving simulators by comparing driving behaviour in an instrumented car vs a 

simulator showed similar deceleration activity under both conditions. Yet, on the other hand, individuals 

tended to drive faster in the instrumented car relative to the simulator. From a technical standpoint, 

studies which involve the use of simulated environments face the potential problem of artefacts 

stemming from the limited view field, lagged graphics update or low spatial resolution (Loomis et al., 

1999). Studies involving fast motion such as that implied by driving or cycling are particularly prone to 

such issues due to so-called Simulator Adaptation Syndrome (SAS). This emerges mainly with time 

discrepancies between the driver’s actions (commands) and the simulator’s response to the given input. 

SAS is hypothesised to take place because participants adopt real driving as a reference point, and as a 

consequence, any delays in the simulator’s reaction can lead to headaches, motion sickness, nausea or 

eye strain (Mollenhauer, 2004). Taken together, extant research shows that VR can be used effectively 

in road behaviour research, but also highlights the need to establish its ecological validity. We aim to 

advance this research with a study design that allows for a direct comparison of cycling behaviour as 

well as risk perception by manipulating the level of immersion participants experience (non-interactive 

information presented on a two-dimensional display vs. interactive, 360-degree virtual environment). 

Importantly, recent studies by Lin et al. (2017) and Powell et al. (2017) investigated cycling behaviour 

in virtual environments where the former study was limited to the descriptive analysis of the results 

while the later was mainly focussed on the hardware design of the bicycling simulator.  

In addition to using VR to increase ecological validity, we also set out to explore the impact of this 

presentation method on participants’ neural activity as a proxy measure of engagement. We used 

electroencephalography (EEG), a scalp-recorded measure of electrical activity generated by the brain. 
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Whilst this technique has low spatial resolution (and thus, mapping of observed responses to subcortical 

structures is a fundamental challenge in contrast to other neuroimaging approaches such as functional 

magnetic resonance imaging (fMRI), cf. Glover, 2011), EEG has a high temporal resolution. As such, it 

is able to capture brain activity in the order of milliseconds (da Silva, 2013) and it is widely used in the 

study of risk and decision-making (Gui et al., 2010; Mushtaq et al. 2016). High temporal resolution is 

particularly important in the context of our experiment, as naturalistic cycling behaviour involves 

continually monitoring the environment and making fast reactions.  

It is also worth noting that, until recently, the use of EEG in an experimental design often involved large 

bulky equipment with cables connecting a user’s scalp directly to an amplifier interfacing with a 

recording PC, thus limiting its use in experiments designed to examine ecological validity. Recent 

advances in wireless EEG technology allow for it to be used in conjunction with VR in a relatively 

unobtrusive manner.  

The signal-to-noise ratio of EEG is another factor that has constrained possibilities in applied 

experimental research: artefacts in EEG data can stem from physiological (e.g. ocular and facial muscle 

movements) and non-physiological sources (e.g. electric signals generated by nearby equipment (Puce 

& Hämäläinen, 2017)). Virtual reality experiments which allow a great degree of flexibility in  

participant head and body movement are more prone to producing artefactual data. Today’s wireless 

systems such as Emotiv Epoc+ (Duvinage et al., 2012) and Enobio (Ratti et al., 2017) are designed for 

dynamic experimental setups and attempt to mitigate the impact of movement artefacts on the scalp-

recorded EEG. However, these systems still require rigorous data pre-processing routines to minimise 

the influence of artefacts and ensure adequate signal-to-noise ratio.  

In the transport literature, the use of EEG has largely focussed on the investigation of driver fatigue and 

drowsiness (Awais et al., 2017; Lal & Craig, 2001; Eoh et al., 2005; Craig et al., 2012), level of alertness, 

attention or cognitive performance (Klimesch, 1999), except for the studies by Schweizer et al. (2013) 

and Vorobyev et al. (2015) which combined brain-imaging techniques and risky driving tasks. Although 

these studies have contributed to a better understanding of brain activity associated with driving in 

various conditions, the impact of different presentational methods while driving/cycling on human brain 

processes still remains unclear.  

In this study, we focussed our analysis on a particular pattern of oscillatory brain EEG activity known 

as occipital alpha (α) – which is quantified through frequency analysis of the signal, focussing on signal 

power in the 8-14 Hz range. Occipital alpha is one of the most commonly observed signatures of brain 

activity, with numerous studies demonstrating a relationship between oscillations in this frequency band 

and attentional processing (Klimesch, 2012). Current understanding in the field of neuroscience holds 
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that low α power implies increased excitability, and thus an increased response to external stimulation, 

most likely reflecting neural mechanisms involved in the gating of task-irrelevant information (Jensen 

& Mazaheri, 2010; Klimesch et al., 2007). As such, the signal presents an ideal candidate to investigate 

the impact of presentation format on participants’ degree of task-relevant engagement. 

Additionally, in terms of methodological approach, we develop mathematical models on the collected 

data to gain in-depth insights into cyclist behaviour beyond the statistical description of the data. The 

use of models allows us to see the extent to which the behaviour differs between immersive and non-

immersive environments and provides new means to evaluate the theory proposed in the hypotheses. 

Moreover, the mathematical models used in the study give more flexibility in establishing the 

relationship between cyclists’ behaviour and the independent variables and enable us to capture more 

accurately the complexity of the dynamic process (Cavagnaro et al., 2013). 

To summarise, the research objectives of the present paper are threefold. Firstly, we aim to compare 

cycling behaviour under two different elicitation methods, namely non-immersive and immersive videos 

and validate virtual reality as a research tool. Secondly, we measure the stated perceived risk and stated 

willingness to cycle (WTC) in the non-immersive and immersive scenarios to compare the stated 

attitudes towards cycling in these conditions as well as comparing behavioural responses (e.g. in terms 

of acceleration behaviour). Finally, we incorporate a neural perspective with an aim to investigate 

differences in neural processing of cycling scenarios in non-immersive and immersive presentations. 

The remainder of this paper is organised as follows. We present our specific hypotheses guided by the 

literature in the next section. The data collection design and sample characteristics are presented next, 

followed by the methodological approach of the study. We next turn to the results section, followed by 

the discussion section which reviews the insights from the analysis. 

2. Hypotheses 

Five hypotheses are put forward and tested empirically in our work. They relate to cycling behaviour, 

risk perception and neural processing, and we now look at these three groups in turn. 

Cycling behaviour:  

 Hypothesis 1A: there is a difference in cycling behaviour between the non-immersive and 

immersive scenarios;  

 Hypothesis 1B: the number of switches between different actions (accelerating, braking and 

free-wheeling) is higher in the immersive compared to non-immersive scenarios.  
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These two hypotheses are based on the findings of previous studies, as discussed in the introduction (see 

Rovira et al., 2009; Slater et al., 2006; Farooq et al., 2018; Frankenhuis et al., 2010; Underwood et al., 

2011; Erath et al., 2017; Patterson et al., 2017), which show that the immersive environment engaged 

participants to a larger extent.  

Risk perception and willingness to cycle: 

 Hypothesis 2A: the stated risk is higher in immersive compared to non-immersive setting;  

 Hypothesis 2B: the stated willingness to cycle is lower in immersive compared to non-

immersive setting.  

The immersive representation seeks to elicit behaviour similar to a real-world context and should thus 

amplify the riskiness compared to the non-immersive presentation, holding everything else the same. 

Consequently, a higher risk perceived in immersive setting should be associated with lower willingness 

to cycle under this condition compared to non-immersive one.  

Neural processing: 

 Hypothesis 3: the peak amplitude of the  waves in trials with non-immersive presentations 

format are higher than in the immersive presentation conditions, reflecting differences in task-

relevant attentional processing. 

3. Data collection & sample information 

This section describes the experimental procedure and its components focusing on the details of the 

combined research approach employed in this experiment as well as the basic characteristics of the 

sample. 

The single experimental session started with the briefing of the participant who was blinded to the 

purpose of the experiment. Therefore, the real objectives of the study were not presented to participants 

and the instructions they were given were worded in such a way as to minimise the experimenter’s 

effect. After the introduction, the participant was seated and had an Emotiv Epoc+ EEG headset 

(EMOTIV EPOC+, 2018) and an Oculus Rift VR (Oculus, 2018) HMD placed on their head. The 

Emotiv headset uses 14 electrodes (at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4; 

Figure 1) sampling across the scalp. The system was selected as its compact design allowed it to be used 

jointly with the VR HMD. As a first step, the baseline brain activity was recorded with the sampling 

rate of 128 Hz, while participants had their eyes opened and focussed their gaze on one point on the 

screen for 15 seconds. The same procedure was then repeated with eyes closed.  
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Figure 1: Electrodes position on the scalp (Khazi et al., 2012) 

 

Power in the α wave band (8-14 Hz) is typically highest during relaxation and low levels of arousal 

(Lagopoulos et al., 2009) and also increases with the degree of disengagement from the external, visual 

environment (Hawkins et al., 2015; Ergenoglu et al., 2004; Van Dijk et al., 2008; Mathewson et al., 

2009).  

The experiment encompassed two distinct treatments, where we used a within-subject design. Both 

treatments consisted in a presentation of traffic scenarios from the perspective of the cyclist, however, 

they differed in the method of presentation: one of them was a non-immersive video, while the other 

used an immersive virtual reality setting. Both of these conditions were presented using the VR headset 

in order to avoid potential confounds. The non-immersive video was shown within the boundaries of 

the static simulation of a screen displayed in front of the participant in the virtual environment. In this 

condition, a participant observed the simulated scenarios as if they were watching it on a computer 

screen so that it was not responsive to any movements of the participant (the left pane of Figure 2). In 

contrast, the immersive condition was a 360-degree view of the road which surrounded the participant 

and responded to their head movements (the right pane in Figure 2). Importantly, based on the feedback 

received during initial pre-testing of the set-up, sound was included in both the immersive and non-

immersive conditions, to capture visual and auditory cues that are available to cyclists in real-life 

settings. The volume of vehicles was consistent with their distance to the cyclist so that the sound of an 

approaching car increased as it got closer to the cyclist. We believe that this allowed us to better replicate 

reality and conduct an analysis where we considered the impact on cycling behaviour of vehicles not 

only in front of the cyclists that can be seen but we also looked at the impact of cars approaching behind 

the bicycle which could have been heard. 
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Figure 2: The non-immersive and immersive views used in the experiment 

 

The visual stimuli in the experiment come from VR road simulations developed by Future Cities 

Laboratory (Schramka et al., 2017) using Unity 3D Game Engine (Unity, 2017). These stimuli involve 

pre-programmed environments and they do not respond to the actions of the cyclist. We used two types 

of traffic scenarios as seen in Figure 3, namely, cycling on the pavement (on the left) and cycling on the 

side of the road (on the right). The number of people and vehicles differed in the scenarios influencing 

their riskiness. The risky scenarios were characterized by a higher number of people and more cars 

passing by as seen in Figure 3. 

Figure 3: A high-risk condition in the pavement and road scenarios 

 

The entire experiment comprised of 12 immersive and 12 non-immersive scenarios resulting in the 

overall number of 24 scenarios and used an orthogonal design where a combination of road/pavement 

and low/high risk scenarios was shown in non-immersive/immersive environment in random order. 

Importantly, each participant performed all 24 scenarios and the same scenarios were used in non-

immersive and immersive presentations for the same participant, but the order of the treatments 

(immersive/non-immersive) as well as the scenarios within each treatment were randomised across 

participants. The number and types of scenarios is summarised in Table 1.  



10 

 

Table 1: Number and types of scenarios used. 

Number of scenarios Immersion Scenario riskiness Road type 

3 Immersive High Road 

3 Immersive High Pavement 

3 Immersive Low Road 

3 Immersive Low Pavement 

3 Non-immersive High Road 

3 Non-immersive High Pavement 

3 Non-immersive Low Road 

3 Non-immersive Low Pavement 

The task for the participant was to cycle through the scenario at the desired pace until the finish line at 

the end of each scenario. In order to navigate through the scenario, participants used the keyboard to 

adjust their speed, but had no ability to turn left or right. They pressed the up arrow to accelerate and 

the down arrow to brake. The keyboard was placed on the table in front of them, and before the 

experiment began, they were guided by the experimenter to find the appropriate keys on the keyboard. 

It is important to note that the use of a keyboard as opposed to an instrumented bicycle has a significant 

impact on the scope of the study and the modelling approach. For example, due to the use of a keyboard, 

we decided to model cycling decisions as a discrete (i.e. accelerate vs brake vs freewheel) instead of a 

continuous choice (e.g. level of acceleration). Moreover, the use of a keyboard makes the cycling 

experience less realistic because it removes the component of physical effort associated with cycling, 

and acceleration is more instantaneous when a keyboard is used. On the other hand, the advantages of 

the use of a keyboard cannot be ignored. Given the exploratory nature of this study, the simpler design 

contributes to less body movement that could adversely impact the quality of the EEG data in what is 

already a relatively complex experiment. It results that the use of an instrumented bicycle should be 

considered for future studies, but the keyboard used in this study provides a benchmark that future 

studies can build on. 

After crossing the finish line, the participant responded verbally to two questions: “How risky was the 

scenario?” and “How likely are you to cycle in this scenario?”. The answers were measured on a 7-

point Likert scale where 1 was the minimum perceived risk/willingness to cycle and 7 was the maximum 

perceived risk/willingness to cycle. In addition to the acceleration and braking behaviour, and the stated 

risk and willingness to cycle answers, the study used the mobile EEG headset to collect the 

neuroimaging data. After this stage of the experiment, the participants were asked to complete a socio-

demographic survey. At the end of the experiment, we conducted a short and informal interview to 

capture any feedback or comments which were not included in the survey such as which scenario type 

was riskier or which element within the scenarios was the most hazardous. The entire experiment did 

not exceed 90 minutes where the duration of each task was between 1- 2 minutes and varied depending 
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on the cycling speed of the participant. Furthermore, the transition time between tasks was 

approximately 10-15 seconds.  

The initial number of recruited participants was 50, from which 4 participants were removed due to 

failure to complete the whole experiment, leading to a final sample size of 46 participants (18 males, 28 

females), comprising staff and students of the University of Leeds as well as the members of the general 

public. The mean age of the participants was 30.7 years, with 10.88 years standard deviation. 

Importantly, for the EEG data analysis, an additional 16 participants were dropped due to low quality of 

the EEG data. The resulting EEG data sample size is small, but this is exploratory work and future 

studies will be able to add additional evidence with more data. It is important to emphasise that the small 

sample size is a classic issue faced by researchers working with VR and/or driving simulator data (see 

Di Stasi et al., 2012; Katsis et al., 2011; Moussa et al., 2012) as the experiment durations are much 

longer and the associated costs are much higher compared to typical SP studies. 

4. Methodology 

The variety of data collected along the course of this study leads to a multi-stage statistical analysis 

using behavioural data, stated responses on perceived risk and willingness to cycle and EEG traces, 

allowing us to address the three research objectives of this study.  

4.1. Cycling behaviour data 

In terms of the first research objective, we look at the behaviour when cycling through the interactive 

scenarios, with three possible actions: acceleration, braking and freewheeling (i.e. not accelerating or 

braking, which is set as a reference category).  

We use a multinomial logit model (MNL) (McFadden, 1974) for the choice of the action in every quarter 

second. The model assumes that the probability of participant n performing action i at time t and in 

scenario s increases with the value of the deterministic component of utility (Vi,n,t,s). The utility 

associated with a particular action is a function of the current state (i.e. accelerating, freewheeling, 

braking), the attributes of the scenario (e.g. road, pavement), condition type (e.g. non-immersive and 

immersive), the position of other agents (eg. distance to vehicle/pedestrian in front, distance to the 

car/pedestrian on the back etc.) and the speed of the cyclists at time t-1 (i.e. in the previous quarter 

second). For this last variable, we tested different lag values ranging from 0.25 second to 2 seconds in 

quarter-second intervals. The speed variable was included in the models in a linear, quadratic and cubic 

fashion to determine any nonlinearity in the relationship between the speed and the dependent variable. 

No socio-demographic effects were captured given the small sample size.  
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We use a joint model for the road and the pavement scenarios and for non-immersive and immersive 

environments but incorporate shift parameters (i.e. additive interaction terms) to allow us to investigate 

and compare the behaviour undertaken in non-immersive and immersive scenarios and between the two 

types of scenarios. 

The utility associated with the decision of a cyclist n to choose one of the three actions (Acc=accelerate, 

Br=brake, FW=freewheel) at time t in scenario s can, therefore, be expressed as follows, where 

freewheeling is used as the baseline:  

 𝑉𝐴𝑐𝑐𝑛,𝑡,𝑠 = 𝛿𝐴𝑐𝑐𝑡,𝑠 +  (𝛽𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐 + Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐I ⋅ 𝑥𝐼𝑛,𝑠 + Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐𝑟𝑜𝑎𝑑 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠+ Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝐼𝑛,𝑠 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠) ⋅ 𝑥𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝑛,𝑡,𝑠   + (𝛽𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐 + Δβ,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐𝐼 ⋅ 𝑥𝐼𝑛,𝑠 + Δ𝛽,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐𝑟𝑜𝑎𝑑 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠+ Δ𝛽,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐𝑟𝑜𝑎𝑑I ⋅ 𝑥𝐼𝑛,𝑠 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠  ) ⋅ 𝑥𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝑛,𝑡,𝑠 + 𝛽𝑆𝑝𝑒𝑒𝑑𝐴𝑐𝑐 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠+ 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝐴𝑐𝑐 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠2 + 𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝐴𝑐𝑐 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠3   

(1) 

 

𝑉𝐵𝑟𝑛,𝑡,𝑠  =  δ𝐵𝑟𝑡,𝑠 +  (𝛽𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐵𝑟 + Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐵𝑟I ⋅ 𝑥𝐼𝑛,𝑠 + Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐵𝑟𝑟𝑜𝑎𝑑 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠+ Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐵𝑟𝑟𝑜𝑎𝑑I ⋅ 𝑥𝐼𝑛,𝑠 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠) ⋅ 𝑥𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝑛,𝑡,𝑠+ (𝛽𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐵𝑟 + Δ𝛽,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐵𝑟I ⋅ 𝑥𝐼𝑛,𝑠 + Δ𝛽,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐵𝑟𝑟𝑜𝑎𝑑 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠+ Δ𝛽,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐵𝑟𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝐼𝑛,𝑠 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠  ) ⋅ 𝑥𝑑𝑖𝑠𝑡𝑒𝑟𝑒𝑎𝑟𝑛,𝑡,𝑠 + 𝛽𝑆𝑝𝑒𝑒𝑑𝐵𝑟 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠+ 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝐵𝑟 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠2 + 𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝐵𝑟 ∙ 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠3  

 

(2) 

𝑉𝐹𝑊  =  0 (3) 

In Equation (1) and (2), 𝛿𝐴𝑐𝑐𝑡,𝑠 and 𝛿𝐵𝑟𝑡,𝑠 are alternative specific constants (ASC) which we will look at 

in more detail below, where the subscripts show the time and scenario dependent nature of these ASCs. 

The other components look at the impact of the other agents in the scenario and the cyclist’s speed at 

time t-1 on the utilities, where: 

 𝑥𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝑛,𝑡,𝑠 and 𝑥𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝑛,𝑡,𝑠 are the variables representing the distance (measured in metres) at 

time t to the nearest car/pedestrian in front and the back of the bicycle respectively, in scenario 

s for individual n;  



13 

 

 𝑥𝐼𝑛,𝑠  and 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 are dummy variables indicating whether for individual n, scenario s is an 

immersive scenario or a road scenario, respectively (equal to 1 if true, 0 otherwise), where the 

index n reflects the fact that the order was different across participants 

 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠, 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠2  and 𝑥𝑠𝑝𝑒𝑒𝑑𝑛,𝑡−1,𝑠3  are the variables representing the cyclist’s speed 

(measured in km/h) at time t-1, for individual n in scenario s. We use polynomials up to degree 

3 to allow for non-linear impacts.  

We estimate baseline parameters that explain the overall sensitivity to these attributes, along with 

shifts in these sensitivities for different types of scenarios. In particular: 

 𝛽𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐   and 𝛽𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐  are the baseline parameters representing the impact on the utility 

for acceleration by the distance to the nearest car/pedestrian in front and behind the bicycle, 

respectively; 

 𝛽𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐵𝑟  and 𝛽𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐵𝑟  are the baseline parameters representing the impact on the utility 

for braking by the distance to the nearest car/pedestrian in front and behind the bicycle, 

respectively; and 

 𝛽𝑠𝑝𝑒𝑒𝑑𝐴𝑐𝑐 , 𝛽𝑠𝑝𝑒𝑒𝑑−𝑠𝑒𝑐𝑜𝑛𝑑𝐴𝑐𝑐 and 𝛽𝑠𝑝𝑒𝑒𝑑_𝑡ℎ𝑖𝑟𝑑𝐴𝑐𝑐 are the baseline parameters representing the impact 

on the utility for acceleration by the speed of the cyclist at the previous time point in first, second 

and third order, respectively; 

 𝛽𝑠𝑝𝑒𝑒𝑑𝐵𝑟 , 𝛽𝑠𝑝𝑒𝑒𝑑_𝑠𝑒𝑐𝑜𝑛𝑑𝐵𝑟 and 𝛽𝑠𝑝𝑒𝑒𝑑−𝑡ℎ𝑖𝑟𝑑𝐵𝑟 are the baseline parameters representing the impact on 

the utility for braking by the speed of the cyclist at the previous time point in first, second and 

third order, respectively; and 

 The various Δ parameters are interaction terms capturing the shift in the values of the associated 𝛽 parameters in specific types of scenarios – for example, Δ𝛽,𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐Iand Δβ,𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐Icapture the shift in the values of 𝛽𝑑𝑖𝑠𝑡𝑓𝑟𝑜𝑛𝑡𝐴𝑐𝑐  and 𝛽𝑑𝑖𝑠𝑡𝑟𝑒𝑎𝑟𝐴𝑐𝑐  for the immersive 

scenarios. We allow for shifts by cycling environment (road vs base of pavement), by 

presentation type (immersive vs base of non-immersive) as well as a joint immersive-road shift. 

Importantly, the non-immersive scenarios did not allow participants to look behind their back 

although participants were indirectly aware of both the pedestrians and vehicles behind. For the 

pedestrians, this is because the respondent will have just overtaken them. For the vehicles, 

though the participants are unlikely to overtake, they are aware of their presence as they could 

hear the approaching car from behind. 

The parameters to represent the impact of the current action on the choice of the next one are included 

in the utility function via the alternative specific constants (δ) using the expressions below, where we 
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show the full specifications, with some effects dropping out in actual model estimation due to low 

significance: 

𝛿𝐴𝑐𝑐𝑛,𝑡,𝑠  =  (𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐  + 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐𝐼  ⋅  𝑥𝐼𝑛,𝑠  + 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐𝑟𝑜𝑎𝑑  ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 +  𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝑟𝑜𝑎𝑑𝑛,𝑠 ⋅ 𝑥𝐼𝑛,𝑠) ⋅  𝑥𝐴𝑐𝑐𝑡−1+ (𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟  + 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝐼  ⋅  𝑥𝐼𝑛,𝑠+  𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑟𝑜𝑎𝑑  ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 +  𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠⋅ 𝑥𝐼𝑛,𝑠) ⋅  𝑥𝐵𝑟𝑡−1+ (𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊  + 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊𝐼  ⋅  𝑥𝐼𝑛,𝑠  +  𝛥 𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊𝑟𝑜𝑎𝑑  ⋅  𝑥𝑟𝑜𝑎𝑑𝑛,𝑠  + 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝑟𝑜𝑎𝑑𝑛,𝑠⋅ 𝑥𝐼𝑛,𝑠)  ⋅ 𝑥𝐹𝑊𝑡−1 

(4) 

𝛿𝐵𝑟𝑛,𝑡,𝑠  =  (𝛿𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐 + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐𝐼  ⋅  𝑥𝐼𝑛,𝑠 + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐𝑟𝑜𝑎𝑑  ⋅  𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 ⋅ 𝑥𝐼𝑛,𝑠) ⋅ 𝑥𝐴𝑐𝑐𝑡−1+ (𝛿𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟  + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝐼  ⋅  𝑥𝐼𝑛,𝑠 + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑟𝑜𝑎𝑑  ⋅  𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝑟𝑜𝑎𝑑𝑛,𝑠 ⋅ 𝑥𝐼𝑛,𝑠) ⋅   𝑥𝐵𝑟𝑡−1+ (𝛿𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊  +  𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊𝐼  ⋅  𝑥𝐼𝑛,𝑠  + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊𝑟𝑜𝑎𝑑 ⋅  𝑥𝑟𝑜𝑎𝑑 𝑛,𝑠 + 𝛥𝛿,𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊𝑟𝑜𝑎𝑑𝐼 ⋅ 𝑥𝑟𝑜𝑎𝑑𝑛,𝑠⋅ 𝑥𝐼𝑛,𝑠) ⋅  𝑥𝐹𝑊𝑡−1  

(5) 

 

Where 𝛿𝐴𝑐𝑐𝑛,𝑡,𝑠 and 𝛿𝐵𝑟𝑛,𝑡,𝑠 are the alternative-specific constants for acceleration and braking, 

respectively, for individual n at time t in scenario s. We have normalized the alternative-specific constant 

of freewheeling to zero. The estimated values for 𝛿𝐴𝑐𝑐𝑛,𝑡,𝑠 and 𝛿𝐵𝑟𝑛,𝑡,𝑠 capture the influence of the most 

recently performed action on the choice of the next action. Specifically: 

 𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐 , 𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑎𝑘𝑒  and 𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊  are the baseline parameters that 

represent the impact of acceleration, braking and free-wheeling, respectively, at time t-1 and 

scenario s, on acceleration behaviour at time t; 
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 𝛿𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟 , 𝛿𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐 and 𝛿𝐵𝑟−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊 are the baseline parameters that represent 

the impact of acceleration, braking and free-wheeling, respectively, at time t-1 and scenario s, 

on braking behaviour at time t; 

 𝑥𝐴𝑐𝑐𝑡−1  , 𝑥𝐵𝑟𝑡−1  and 𝑥𝐹𝑊𝑡−1  indicate which particular action (acceleration, braking, freewheeling, 

respectively) was performed at time t-1. At time t=1, the previous state is set to freewheeling, 

i.e. do nothing. 

 The various Δ parameters are interaction terms capturing the shift in the values of the associated 𝛿 parameters in specific types of scenarios - for example, Δ𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐I , 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑎𝑘𝑒I  and 𝛥𝛿,𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊I  are the interaction terms that capture the shift in 

the values of the baseline parameters 𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐴𝑐𝑐, 𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐵𝑟𝑎𝑘𝑒  

and 𝛿𝐴𝑐𝑐−𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝐹𝑊, respectively, for the immersive scenarios. We allow for shifts by cycling 

environment (road vs base of pavement) and by presentation type (immersive vs base of non-

immersive) as well as a joint immersive-road shift. 

With this specification, and using a type I extreme value error term, the probability (P) of participant n 

choosing action i (out of 3 possible actions) at time t in scenario s is given by: 

𝑃𝑖𝑛𝑡𝑠(𝛽) =  𝑒𝑉𝑖,𝑛,𝑡,𝑠∑ 𝑒𝑉𝑖,𝑛,𝑡,𝑠3𝑖=1 , 
(6) 

where β is a vector combining all model parameters and Vi,n,t,s is the deterministic component of the 

utility for alternative i, as shown in Equations 1-3. 

4.2. Risk perception and willingness to cycle data 

In this section, we look at the modelling of the stated risk and stated willingness to cycle (WTC) in non-

immersive and immersive scenarios. We use an ordered logit model (cf. Greene & Hensher, 2010) as 

the dependent variables were measured on a 7-point Likert scale, where we do this separately for risk 

and the WTC. Consequently, Yns is an observed value of perceived risk/WTC for individual n in scenario 

s which can take M different possible values, going from m = 1,. . . , 7. The probability of observing 

value m is expressed as: 

𝑃𝑌𝑛𝑠=𝑚 = 𝑒𝑚−𝑉𝑛,𝑠1 + 𝑒𝑚−𝑉𝑛,𝑠 − 𝑒𝑚−1−𝑉𝑛,𝑠1 + 𝑒𝑚−1−𝑉𝑛,𝑠 
(7) 
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The model assumes a deterministic component of utility (Vn,s) that is a function of scenario attributes 

and demographic characteristics, controlling for the non-immersive and immersive presentation, and  

are a set of threshold parameters which are to be estimated. Many different effects were tried1, and the 

final utility functions for stated risk and WTC can be seen below: 

𝑉𝑠𝑡𝑎𝑡𝑒𝑑 𝑟𝑖𝑠𝑘𝑛,𝑠 = Δ𝑆𝑅,𝐼 ⋅ 𝑥𝐼𝑛,𝑠 + Δ𝑆𝑅,𝑟𝑜𝑎𝑑 ⋅ 𝑥𝑟𝑜𝑎𝑑𝑛,𝑠 + Δ𝑆𝑅,𝑚𝑎𝑙𝑒 ⋅ 𝑥𝑚𝑎𝑙𝑒𝑛 + 𝛥𝑆𝑅,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐· (𝑥𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠 + 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠) + 𝛥𝑆𝑅,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝑟𝑜𝑎𝑑 · 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠 + 𝛥𝑆𝑅,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝐼 · (𝑥𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠+ 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠) · 𝑥𝐼𝑛,𝑠 + 𝛥𝑆𝑅,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝑟𝑜𝑎𝑑,𝐼 · 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝑛𝑠 ⋅ 𝑥𝐼𝑛,𝑠  

(8) 

𝑉𝑊𝑇𝐶𝑛,𝑠 = Δ𝑊𝑇𝐶,𝐼 ⋅ 𝑥𝐼𝑛,𝑠 + Δ𝑊𝑇𝐶,𝑟𝑜𝑎𝑑 ⋅ 𝑥𝑟𝑜𝑎𝑑𝑛,𝑠 + Δ𝑊𝑇𝐶,𝑚𝑎𝑙𝑒 ⋅ 𝑥𝑚𝑎𝑙𝑒𝑛 + 𝛥𝑊𝑇𝐶,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐· (𝑥𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠 + 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠)+ 𝛥𝑊𝑇𝐶,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝑟𝑜𝑎𝑑 · 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠 + 𝛥𝑊𝑇𝐶,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝐼· (𝑥𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠 + 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠) · 𝑥𝐼𝑛,𝑠+ 𝛥𝑊𝑇𝐶,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝑟𝑜𝑎𝑑,𝐼 · 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝑛𝑠 ⋅ 𝑥𝐼𝑛,𝑠 

(9) 

In an ordered logit model, the probabilities are driven by comparisons between the utility and the 

thresholds. When all attributes (𝑥) in Equation (8) and (9) are zero, we have the base scenario for all 

characteristics (i.e. non-immersive, pavement, female, etc). We then allow for shifts in the utility 

depending on the user and scenario characteristics. In addition to previously described attributes, we 

have that 𝑥𝑟𝑜𝑎𝑑,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠 and 𝑥𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡,ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑛,𝑠  are the variables indicating high traffic 

condition on the road and pavement, respectively, in scenario s, for person n. There are high and low 

traffic scenarios used in the experiment which differ in the overall traffic volume. The high traffic 

scenarios used more than 200 pedestrians and 40 cars, on pavement and road respectively. 

                                                   

1 The explanatory variables tested in the model, both with and without interactions, include age groups (18-24, 25-

29, 30-39, 40-49, 50-59 years and above 60 years old), education levels (O level, A level, vocational qualifications, 

undergraduate, Masters and postgraduate doctoral degree), marital status, number of children (zero, one and more 

than 2 children) and being an active car driver.  
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We estimate parameters that explain the shifts in utility for different types of scenarios. For example, 

and for ease of notation not showing the subscripts SR (for stated risk) and WTC (for willingness to 

cycle) in the text, 𝛥ℎ𝑖𝑔ℎ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐,𝐼  captures the shift in the utility (and hence the likely responses) for the 

high traffic immersive scenarios. We allow for shifts by gender (male vs female), cycling environment 

(road vs pavement), presentation type (immersive vs non-immersive) as well as a joint immersive-road 

shift. 

4.3. EEG data 

For the EEG analyses, we examine differences in peak α power under non-immersive and immersive 

scenarios. As the EEG readings observed on the scalp are inherently noisy, we undertake a number of 

steps to eliminate artefacts and improve the signal-to-noise ratio. Prior to undertaking the statistical 

analysis of the EEG data, we pre-process the data using BESA 6.0 (MEGIS Software GmbH, Gräfelfing, 

Germany). Specifically, we first apply a 1-20 Hz bandpass filtering (BPF), a linear transformation that 

retains the components of the data within this specific band of frequencies (Christiano & Fitzgerald, 

2003) and removes frequencies outside of this range that may stem from physiological sources such as 

galvanic skin responses or external environmental sources such as electronic equipment (Repovs, 2010). 

Next, we clean the data to remove noise stemming from eyeblinks (movement artefacts were corrected 

using a multiple source analysis method; Berg and Scherg, 1994; Ille et al., 2002). The head movements 

and other remaining artefacts are manually marked in BESA by visually inspecting the EEG data. The 

processed EEG data is imported to MATLAB along with the manually marked artefact events. The 

artefact events are then removed from the EEG data for further processing. Finally, we compute the 

power spectrum of the EEG data using Welch’s method (Welch, 1967) which estimates the power 

spectra based on Fast Fourier Transform (FFT) (Shaker, 2006). Because of our interest in occipital α, 

we perform a region-of-interest analysis and take an average of the activity from electrodes O1, O2, P7, 

P8, T7 and T8 to increase the stability of the signal (Oken and Chiappa, 1986). The α power is computed 

every quarter of a second to align with the frequency of behavioral measures, obtained from the MNL 

model. 

5. Results 

This section discusses the main findings with respect to the research objectives of the paper. All models 

were estimated using the Apollo software (Hess & Palma, 2019) where robust t-ratios have been used 

to account for the repeated choices of the individuals (cf. Daly & Hess, 2011).  
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5.1. Cycling behaviour data 

We used the MNL model to analyse the behavioural data where the dependent variable was the decision 

of a specific action at each quarter second. The estimation results are summarised in Table 2 and Table 

4, where significant (95% significance level) or marginally insignificant results are reported. It may be 

noted that non-immersive pavement scenarios were used as the base, and the effects of the immersive 

presentation and the impact of the road scenario on behaviour were incorporated in the model in the 

form of additive interaction variables.  

We first look at the alternative specific constants (ASCs) in Table 2 and the associated Figure 4, where 

we show the probability of the next action conditional on the current action. To create these plots, we 

use the average values in the data for all other attributes i.e. the distances and the speed. We can observe 

that under the non-immersive condition on the pavement, if a person is currently accelerating, he/she is 

most likely to brake next (estimate=1.0711; rob.t-ratio=5.32), followed by free-wheeling and lastly 

acceleration (estimate=-2.7259). If we look at the interaction parameters for immersive scenarios, which 

are captured as an added shift to the estimates of the non-immersive base value, we observe that the 

value for accelerating is now further from freewheeling (-2.7259-0.0296). Furthermore, the value for 

braking is also reduced (1.0711-0.2376) in immersive scenarios, albeit that this retains the highest value 

even after the shift. In a road setting, the value for the ASC for accelerating (when currently accelerating) 

is further decreased by 0.3802 (-2.7259-0.3802=-3.1061), and acceleration becomes even less likely 

compared to freewheeling.  

In the non-immersive pavement setting, if the person is currently braking, the next most likely action 

taken is freewheeling, then acceleration (estimate = -1.1032) and lastly braking (estimate=-4.1562). The 

inclusion of the shift for road scenarios reduces the ASC for braking (if the person is currently braking) 

by 2.2766 to -6.4328, making consecutive braking actions very unlikely.  

If a person is currently free-wheeling in a non-immersive pavement scenario, he/she is most likely to 

continue freewheeling, followed by acceleration (estimate=-2.7050; rob.t-ratio=-34.93) and braking 

(estimate=-4.6373; rob.t-ratio=-31.33). Looking at the interaction for immersive scenarios, we observe 

that freewheeling continues to be the most likely action if currently free-wheeling, followed by 

acceleration with an estimated shift of -0.1508 (rob.t-ratio=-1.81) which changes the non-immersive 

scenarios base value from -2.7050 to -2.8558. Following acceleration, the least likely action remains 

braking albeit that the immersive interaction reduces the gap between braking and freewheeling by 

0.3201. In road scenarios, we observe a drop in the value of braking and an increase in the value for 

acceleration which continues to grow for the immersive road scenarios.  



19 

 

Finally, we have also tested the addition of a dummy variable which takes a value of 1 for cyclists and 

0 otherwise but found these effects to be insignificant on both acceleration (estimate =-0.0056; rob. t-

ratio = -0.14) and braking behaviour (estimate = 0.1668; rob.t ratio = 0.67). For this reason, we decided 

to leave out these effects. 

Table 2: A joint MNL model – action switch (robust t-ratios in brackets). 

LL(start): -267,853.8 
LL(final): -155,302.1 

AIC: 310,664.2 

BIC: 310,976.3 

   Current action 

 Next action Acceleration Braking Free-wheeling 

Base (𝛿)  

Acceleration -2.7259 (-27.77) -1.1032 (-6.89) -2.7050 (-34.93) 

Braking 1.0711 (5.32) -4.1562(-17.25) -4.6373 (-31.33) 

Free-wheeling 0 0 0 

Shifts 

in δ 
(Δδ) 

for all 
immersive 

scenarios 

Acceleration -0.0296 (-1.38) - -0.1508 (-1.81) 

Braking -0.2376 (-3.44) - 0.3201 (2.01) 

Free-wheeling 0 0 0 

for all road 

scenarios 

Acceleration -0.3802 (-7.21) - 0.2614 (3.13) 

Braking - -2.2766 (-9.40) -1.5369 (-9.07) 

Free-wheeling 0 0 0 

for 
immersive 

road 

scenarios 

Acceleration - - 0.5227 (6.10) 

Braking - - - 

Free-wheeling 0 0 0 

Taken together, these results show that if a person is currently actively cycling (i.e. accelerating or 

braking) in non-immersive scenario, then he/she is most likely to choose braking or freewheeling, and 

less likely to accelerate. These differences depending on the current action are visually demonstrated in 

the top and middle part of Figure 4. The immersive interaction reduces the probability of active cycling 

being undertaken which shows that the person is more inclined to interchange active cycling with 

freewheeling. On the other hand, current passive cycling (i.e. Free-wheeling) increases the probability 

of braking and reduces that of acceleration while free-wheeling remains the most likely next action. 

Overall, these effects could be a result of the increase in attentional resources required to process richer 

immersive environments resulting in more deliberate and less dynamic cycling behaviour. Furthermore, 

if a person is currently passively cycling, the results show that in a non-immersive environment, the road 

setting increases the probability of choosing acceleration as a next action compared to the pavement and 

this effect is further reinforced in the immersive scenario on the road. These behavioural differences can 

clearly be observed in the bottom panel of Figure 4. 
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Figure 4: Visual representation of probabilities of next actions conditional on the current action. 

 

Altogether, the results in Table 2 highlight differences in cycling behaviour solely driven by the 

difference in the presentation format where the immersive setting engages a person to a larger extent. 

Interestingly, these findings are in accordance with the responses in the post-experiment interviews 

where a majority of respondents stated that they felt more in control of the bicycle in the immersive 

scenarios due to the fact that they had a 360-degree view which enabled them to see and experience their 

surroundings better. 

Table 3: A joint MNL model – lagged speed (robust t-ratios in brackets). 

Impact on utility for 1
st
 order lagged speed  2

nd
 order lagged speed 3

rd
 order lagged speed 

Accelerating 1.0356 (43.27) -0.0657 (-200.53) 0.0011 (23.44) 

Braking 0.5869 (14.71) -0.0222 (-15.42) - 

 

In Table 3 we show the effect of speed of the cyclist at the previous time point, i.e. lagged by 0.25 sec, 

on the utility of acceleration and braking where we observe a significant positive estimate for the first 

and third order (for acceleration) terms and a negative estimate for the second order terms, hence there 

is a non-linear relationship between the dependent variable and speed. We interpret these impacts 

graphically in Figure 5, using the immersive scenario on the pavement as our case study and using the 

average values for the other attributes in the model. We can observe similar patterns in the top and 

bottom panels (when the person is currently accelerating and freewheeling, respectively) where the 
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probability of acceleration increases as speed goes up from 0 to approximately 10 km/h after which it 

starts to fall. Conversely, the probability of freewheeling falls considerably as the cyclist starts to move 

faster until reaching the speed threshold of about 12 km/h. These results are plausible behaviourally as 

the cyclist needs to gain speed quickly to start moving and after reaching a satisfactory speed, they either 

try to sustain it or increase further but at much slower rate. Finally, the probability of braking increases 

with speed, reaching its peak at about 18 km/h. It might suggest that this is the most comfortable cycling 

speed where at the same time the likelihood of freewheeling sharply increases, and the cyclist is less 

likely to accelerate, thus transitioning to more passive cycling behaviour. This is in line with findings of 

naturalistic cycling studies which show that average cycling speed in the real-world is approximately 

16.7 km/h with standard deviation of 8.4 km/h (Huertas-Leyva et al., 2018). Finally, the middle graph 

shows that if person is currently braking, she is most likely to continue braking at different speed levels, 

highlighting that braking is often a continuous action. Moreover, we can observe that a person is least 

likely to freewheel where its likelihood falls drastically at low speed which is reasonable from a 

behavioural perspective as in the real world this would lead to person falling of the bicycle. 
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Figure 5: Impact of speed on the probability of accelerating, braking and freewheeling at different current actions. 



23 

 

Table 4 shows the effects of the distance to the nearest passing vehicle or pedestrian on behaviour. Here, 

it is crucial to note that a negative sign of the estimate means that the further away a vehicle or pedestrian 

is, the more the utility for that action is reduced and hence the less likely it is that the relevant action is 

taken. Importantly, the results are very rich and are thus also summarised in graphs which better explain 

the combined effects. 

Table 4: A joint MNL model – distance variables (robust t-ratios in brackets). 

  

Distance to nearest 

vehicle/pedestrian in front 

(metres) 

Distance to nearest 

vehicle/pedestrian 

behind (metres) 

Impact on utility 

for accelerating 

Base (β) -0.0047 (-4.60) -0.0029 (-3.28) 

Shift for immersive (Δβ) 0.0068 (4.64) - 

Shift for road (Δβ) 0.0060 (5.37) 0.0024 (2.68) 

Shift for road in immersive (Δβ)  -0.0088 (-6.03) - 

Impact on utility 
for braking 

Base (β) -0.0245 (-6.93) - 

Shift for immersive (Δβ) 0.0213 (4.53) - 

Shift for road (Δβ) 0.0234 (5.76) - 

Shift for road in immersive (Δβ) -0.0187 (-3.66) - 

We observe that in non-immersive scenarios on the pavement (base), as the distance to the vehicle (or 

pedestrian) in front of the bicycle reduces, the utility for accelerating and braking increases, relative to 

freewheeling. This is in-line with real world behaviour where cyclists also tend to switch to a more 

active cycling mode (e.g. accelerate or brake) when they are close to other agents. The non-immersive 

setting thus successfully captures realistic decisions. In immersive pavement, non-immersive and 

immersive road settings, the impact of distance on acceleration becomes negligible. The impact of 

distance on the utility for braking in immersive scenarios is also much smaller than in non-immersive 

scenarios, where closer distance still leads to an increase in the utility for braking, however much less 

so than in non-immersive scenarios. In the case of braking, the utility increases in non-immersive road 

settings and falls in immersive road setting the closer the vehicle in front becomes but this effect in both 

cases is much smaller than in the non-immersive pavement setting. In fact, we see that for braking, a 

sizeable impact remains only in the non-immersive pavement scenarios. 

In terms of the impact of vehicles and pedestrians behind the bike, i.e. those already passed by the cyclist 

or those approaching behind on the road, significant impacts are only observed for accelerating. In the 

non-immersive setting, a smaller distance increases the utility for accelerating as opposed to 

freewheeling. Behaviourally, this makes sense, with respondents accelerating more after just having 

passed a pedestrian. In a non-immersive road setting, the impact on acceleration of vehicles behind the 
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cyclist decreases compared to the pavement scenarios. The effect makes sense as respondents are 

unlikely to overtake a car (compared to a pedestrian), and less likely to notice a car behind them.  

Overall, these results show that both immersive and road settings reduce the utility for active cycling 

which may be the result of a lower perceived risk in these scenarios as compared to the pavement 

scenarios where erratic pedestrians on the pavement were considered more hazardous than passing 

vehicles and the immersive scenarios increased the impression of control over the bicycle and the 

environment in comparison to non-immersive simulation.  

The results in Table 4 show the parameters used in the utilities for accelerating and braking. A clearer 

picture emerges by looking at the resulting probabilities, where of course the probabilities for all three 

actions are influenced by the utilities for all three actions. This is illustrated in six separate panels in 

Figure 6, where we look only at the pavement scenarios2. Here, we look separately at the distance of the 

closest pedestrian behind (negative distance) and in front (positive distance), where each figure assumes 

that only one of the two applies while the remaining attributes are fixed at their average levels (e.g. the 

figure for distance behind assumes the average value in the data for the distance to the pedestrian in 

front of the bicycle). The figures shows the differences in the effect of distance on the probability of the 

next actions, differentiating between the non-immersive and immersive setting on the pavement. 

Overall, all of these graphs show cycling trends that are relatable to real-world cycling behaviour. For 

instance, the top panel demonstrates that if a person is currently accelerating, she is most likely to 

accelerate next. The distance to the nearest pedestrian behind has a minimal impact on probabilities, 

with acceleration becoming slightly less likely the closer this pedestrian is. For pedestrians in front, in 

the non-immersive scenarios braking and acceleration become substantially less likely as the distance 

increases. Conversely, the middle part of Figure 6 demonstrates that current braking is most likely 

followed by further braking and we observe a strong impact in the non-immersive scenarios for the 

pedestrians in front where their closer distance to the bicycle increases the probability of braking and 

decreases that of accelerating. On the other hand, these graphs also clearly show that although these 

relationships hold, the impact of the distance to the other agents in the scenarios is rather weak in some 

cases. This is a direct result of the large alternative specific constants showing that behaviour is driven 

more by the current action than by the surroundings.  

                                                   

2Similar figures for the road scenarios are available in the supplementary file at: 

www.stephanehess.me.uk/papers/Bogacz_et_al_2020_online_appendix.pdf 
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Figure 6: Example of the impact of distance to pedestrians on the choice of the next action. 
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Moreover, we compared the frequency of action switches between each time unit which took place in 

the immersive and non-immersive setting. We found that in the immersive scenarios, participants switch 

between actions more often as opposed to non-immersive ones (an increase from 36.9% in non-

immersive to 54% in immersive scenarios). These findings are in accordance to what was found before, 

i.e. that the immersive scenarios increase the propensity to switch between subsequent actions and it 

might suggest higher risk perception in the immersive scenarios although participants felt more in 

control. This result is consistent with our hypothesis 1B proposed above.  

Overall, these results on the behavioural data conform to our hypotheses. We show that behaviour 

elicited under the non-immersive and immersive scenarios differs significantly, where the immersive 

presentation leads to more action changes, as a higher level of attention is maintained throughout the 

cycling scenarios. Differently, in non-immersive scenarios, there is an observed tendency to perform 

more abrupt action changes in response to the major events in the environment, which suggest a lower 

degree of attentional involvement. 

5.2. Risk perception and willingness to cycle data 

Stated risk and WTC were modelled using two separate ordered logit models where the explanatory 

variables were the scenario attributes in the form of the number of pedestrians and vehicles and the 

presentation method. We did not include any socio-demographic characteristics other than gender due 

to the small sample size. Table 5 shows the results of the estimated model where the dependent variable 

is the question “How risky was the scenario?”, asked at the end of each of the 24 scenarios.  

The answer was measured on a 7-point Likert scale, which resulted in six risk thresholds in the model. 

The classical and robust t-ratios are reported, where, given that we now only have one observation per 

respondent per scenario, the sample size is so small that lower levels of confidence should not be 

discarded. We first observe that the high traffic scenarios have a significant impact on risk perception, 

where the higher number of pedestrians and cars in the scenarios increases perceived risk (estimate= 

0.4770; class.t-ratio=2.27; rob.t-ratio=3.12). Interestingly, we observe a lower perceived risk for all road 

scenarios (estimate=-0.3896; class.t-ratio=-1.81; rob.t-ratio=-1.39). Finally, we see a positive shift from 

the base value for male respondents, i.e. men perceive the risk to be higher. However, no differences are 

observed between the non-immersive and immersive scenarios, nor is the difference between low and 

high risk different between the pavement and road scenarios. Again, we tested the addition of an effect 

for cyclists but the coefficient was insignificant (estimate = 0.2218, rob.t-ratio=0.76). Because of this 

we decided to not include it in the final model.  
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Altogether these results indicate that the impact of scenario design is a crucial factor in risk perception 

but not considerably different under non-immersive and immersive presentations. This further confirms 

that the risk perceived in these two conditions is effectively similar when captured with a simple question 

at the end. These results contrast with our hypothesis 2A which states that immersive presentation will 

lead to higher perceived risk. Our results can be a consequence of the static nature of this question which 

performs poorly in describing behaviour in a dynamic environment and henceforth emphasises the need 

for a dynamic approach to risk analysis.  

Table 5: An ordered logit model for stated risk with interactions (classical and robust t-ratios in brackets) 

LL(0): -2,886.306 
LL(final): -1,908.386 

AIC:  3,844.77 

BIC:  3,914.49 

Dependent variable: Stated risk 

  Estimate (classical; rob. t-ratios) 

Shifts  

(Δ) 

For male 0.5108 (4.61; 1.59) 

For all immersive scenarios 0.1216 (0.59; 0.77) 

For all road -0.3896 (-1.81; -1.39) 

For high traffic scenarios 0.4770 (2.27; 3.12) 

For high traffic road scenarios 0.1102 (0.36; 0.48) 

For all immersive road  -0.1572 (-0.52; -0.67) 

For immersive high traffic -0.0495 (-0.17; -0.28) 

For immersive road high traffic 0.2189 (-0.17; -0.28) 

Risk 

thresholds 

1 -1.2265 (-7.41; -5.36) 

2 -0.0138 (-0.09; -0.06) 

3 0.8974 (5.54; 3.05) 

4 1.6295 (9.72; 4.98) 

5 2.5924 (14.15; 7.38) 

6 4.1254 (16.26; 8.35) 

Table 6 shows the results of a second ordered logit model where the dependent variable is willingness 

to cycle which was also captured on the 7-point Likert scale with the question “How likely are you to 

cycle in this scenario?”. As in the risk model, we find that the high traffic scenarios significantly 

influence willingness to cycle (estimate = -0.4553; class.t-ratio=-1.44; rob.t-ratio=-4.24). Hence, as the 

number of people and cars in the scenario increases, participants are less willing to cycle, which is 

behaviourally plausible. Again, similarly to our risk model, there is a significant effect (in this case a 

positive shift) in willingness to cycle for all road scenarios (estimate=0.6929; class.t-ratio=2.07; rob.t-

ratio=1.36). We do not find any effects for the remaining variables (including male, all immersive 

scenarios and high traffic road scenarios) which contrasts with our hypothesis 2B stated above. 

Nevertheless, the findings summarised in Table 6 are consistent with the results for stated risk where 
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the same variables have opposite effects on risk and willingness to cycle, as expected. This suggests that 

these stated variables are complementary and consistent with one another. At the same time, they appear 

to be equally ineffective in describing cycling behaviour under risk, at least if that risk is dynamic and 

the question is only asked at the end.   

Table 6: An ordered logit model for stated willingness to cycle with interactions (classical and robust t-ratios in brackets) 

LL(0): -1897.973 
LL(final): -811.6235 

AIC:  1651.25 

BIC:  1708.65 

Dependent variable: Willingness to cycle 

  Estimate (classical; rob. t-ratios) 

Shifts (Δ) 

For male 0.0324 (0.19; 0.07) 

For all immersive scenarios 0.1692 (0.53; 0.8) 

For all road 0.6929 (2.07; 1.36) 

For high traffic scenarios -0.4553 (-1.44; -4.24) 

For high traffic road scenarios 0.0483 (0.1; 0.24) 

For all immersive road 0.0422 (0.09; 0.13) 

For immersive high traffic 0.0167 (0.04; 0.07) 

For immersive road high traffic -0.3712 (-0.55; -0.83) 

WTC 

thresholds 

1 -2.5874 (-8.78; -4.61) 

2 -1.4482 (-5.72; -3.71) 

3 -0.7412 (-3.04; -1.99 ) 

4 -0.2509 (-1.04; -0.67 ) 

5 0.423 (1.74; 1.12) 

6 1.0961 (4.41; 2.94) 

 

5.3. EEG data 

As a final step, we conducted an exploratory analysis to examine whether the two experimental 

conditions (immersive vs non-immersive) elicited differences in the occipital α wave. Figure 7 shows 

the mean of the maximum α power in the immersive and non-immersive scenarios in arbitrary units 

(a.u). We found an increase in  wave power in the non-immersive presentation method where this 

increase is significant at the 95% level of confidence (t = 2.045, p-value = 0.05).  
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Figure 7: Differences in α as a function of condition. Error bars represent standard errors of the mean (SEM). 

 

The results presented here are in line with previous literature showing a robust relationship between 

increases in α power and relaxed states (Lagopoulos et al., 2009; Eoh et al., 2005) and decreases in α 

power and increased cognitive workload (Osaka, 1984; Glass & Kwiatkowski, 1970). Finding lower α 

power in the immersive condition suggests that this condition potentially requires more cognitive 

engagement than the non-immersive one. The reason for the observed results can be sought in the 

complexity of the environment presented to the participant where the non-immersive scenarios which 

provided a lower level of difficulty resulted in higher occipital  wave, whereas the more complex, 

immersive scenarios required more attentional resources leading to relatively lower  power. Therefore, 

we speculate that these findings may be more likely to reflect the cognitive processes involved in 

performing real-world cycling behaviour. 
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6. Discussion 

The objective of the present paper was to investigate the differences in cycling behaviour and risk 

perception using behavioural, stated and neural data elicited by a laboratory experiment conducted in 

virtual reality.  

The results of the MNL model on the behavioural data are in line with our hypotheses, showing that 

there are significant differences in cycling behaviour between the non-immersive and immersive 

scenarios (Hypothesis 1A). We observe that the immersive scenarios engage participants to a larger 

extent where less extreme actions are undertaken. At the same time, we observe a higher frequency of 

action switching compared to the non-immersive ones (Hypothesis 1B). This could suggest that in non-

immersive scenarios, lower attentional resources are employed leading to more drastic behaviour in the 

form of sudden acceleration and braking as well as overall more passive behavioural patterns. One could 

thus argue that an immersive VR presentation can potentially be a better tool for simulating a cycling 

environment and safety analyses in the context of cycling behaviour experiments. Of course, the actual 

proof of this would be the comparison with real world cycling in a comparable setting, and this is an 

important topic for future work. Either way, our results indicate the importance of the experimental 

design in research investigating road users’ behaviour. Importantly, the remit of the study is only 

cycling, therefore, based on our results, we are not able to draw conclusions about other modes of 

transport. 

The investigation of the perceived risk and willingness to cycle variables showed that the factors in the 

estimated ordered logit models that had the most impact were scenario attributes, but we did not find 

any significant differences in risk perception or WTC between the non-immersive and immersive 

presentation methods. These results do not conform to our expectations laid out in the hypotheses (2A 

and 2B) and suggest that only the most salient elements influencing stated risk and WTC were captured. 

Therefore, they do not perform well in detecting more subtle differences in risk perception between the 

non-immersive and immersive scenarios as the majority of the remaining variables used in the models, 

including the immersive scenarios dummy variable, were insignificant. Finally, it is important to stress 

that these variables are coherent with one another as the factors which positively influence risk 

perception decrease the willingness to cycle.  

Lastly, we used the neural data to provide additional insights into processing of risky cycling behaviour. 

We examined  power in the non-immersive and immersive scenarios and found an increase in this 

signal in non-immersive scenarios (as proposed in Hypothesis 3). We note that differences were 

significant at the 95% level, where this is acceptable given the small sample size. Nevertheless, 

interpretations of these results should be treated with some degree of caution.  
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It is worth noting that the results are in alignment with a large body of work showing α power to be a 

well-established correlate of attentional processing with an increase in power found as participants 

fatigue and attention drifts away from the task (Craig et al., 2012; Hawkins et al., 2015). As described 

in the introduction, recently, lower α power has been hypothesised to reflect neural mechanisms 

involved in the gating of task-irrelevant information (Jensen & Mazaheri, 2010; Klimesch et al., 2007) 

and our results extend this work, through providing empirical evidence which shows that immersive 

environments elicit lower α power relative to traditional experimental display formats due to higher 

complexity of the presented environment.  

In summary, these results lead us to the conclusion that the immersive presentation improved the design 

of this experiment that explored dynamic risky cycling behaviour. Additionally, the neural perspective 

allowed for a further confirmation of the behavioural responses and the verification of the previously 

identified characteristics of the EEG signal in a more complex context by providing evidence of the 

application of the neuroimaging technique in a virtual reality study. This experiment serves as a case-

study which employs a three-angled approach to explore existing and novel research methods and can 

be seen as a starting point to more and improved studies of this kind, including with larger sample sizes 

and in other (non-cycling) settings. 

In terms of the practical implications of this study, this work contributes to a better understanding of the 

factors that influence the behaviour of cyclists and emphasizes the importance of the experimental setup 

in a VR study. By comparing the behaviour of cyclists in the two different VR environments, the paper 

provides guidance to researchers investigating cycling behaviour in dynamic settings, which can feed 

into safety research and/or capacity analyses. The findings also shed light on the level of behavioural 

congruence of existing VR studies, with clear implications for the interpretation and the level of 

confidence in their results. This is important not only for researchers, who are directly concerned with 

improvements to experimental designs to obtain more reliable data, but indirectly for society and 

policymakers where improved data collection methods will ultimately provide better foundation for 

more informed decision-making. Cycling is particularly relevant because of  the multidimensional 

advantages of this mode of transport, which, at the same time, is characterised by underdeveloped 

infrastructure and therefore perceived as too dangerous by many travellers. Previous research shows that 

cycling is one of the least safe modes of transport with 5.5 times more deaths per kilometre travelled 

when compared to car (De Hartog et al., 2010). Further research needs to be done to generalize these 

findings for which we recommend testing more scenarios in transport and beyond and potentially 

comparing the behaviour with real-world decisions.  
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Moreover, our study provides insights into potential cycling solutions: based on the results of the ordered 

logit models, it can be concluded that cycling on the road is perceived to be less risky compared to 

cycling on the pavement amongst pedestrians. Similarly, the MNL model shows that participants indeed 

brake more often while cycling on the pavement. The findings are expected to be useful for planners 

who are interested in deploying VR to more realistically test the impact of different urban designs on 

propensity to cycle, indicating, for example, the road and pavement features which contribute to the 

higher perception of safety among cyclists. The research findings can hence help transport and urban 

planners in making more informed choices regarding urban infrastructure. In closing, the findings thus 

demonstrate the value-added by immersive technologies in the detailed modelling of cycling behaviour 

and our work paves the way for further research on factors that can lead to wider adoption and utilization 

of this sustainable transport mode. 
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