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ABSTRACT

We report the results of optical follow-up observations of 29 gravitational-wave trig-
gers during the first half of the LIGO-Virgo Collaboration (LVC) O3 run with the
Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope
configuration (GOTO-4). While no viable electromagnetic counterpart candidate was
identified, we estimate our 3D (volumetric) coverage using test light curves of on- and
off-axis gamma-ray bursts and kilonovae. In cases where the source region was observ-
able immediately, GOTO-4 was able to respond to a GW alert in less than a minute.
The average time of first observation was 8.79 hours after receiving an alert (9.90 hours
after trigger). A mean of 732.3 square degrees were tiled per event, representing on
average 45.3 per cent of the LVC probability map, or 70.3 per cent of the observable
probability. This coverage will further improve as the facility scales up alongside the
localisation performance of the evolving gravitational-wave detector network. Even in
its 4-telescope prototype configuration, GOTO is capable of detecting AT2017gfo-like
kilonovae beyond 200 Mpc in favourable observing conditions. We cannot currently
place meaningful electromagnetic limits on the population of distant (D̂L = 1.3 Gpc)
binary black hole mergers because our test models are too faint to recover at this
distance. However, as GOTO is upgraded towards its full 32-telescope, 2 node (La
Palma & Australia) configuration, it is expected to be sufficiently sensitive to cover
the predicted O4 binary neutron star merger volume, and will be able to respond to
both northern and southern triggers.

Key words: gravitational waves – (transients:) black hole mergers – (transients:)
black hole - neutron star mergers – (transients:) gamma-ray bursts – (transients:)
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1 INTRODUCTION

Gravitational-Wave (GW) detections of compact object
mergers are fast becoming common occurrences. During the
first half of the advanced LIGO (aLIGO) - advanced Virgo
(AdV) Collaboration (LVC) observing run 3 (O3a), which
ran from April the 1st to September the 30th 2019, 33 can-
didate compact object merger events were reported, with
21 of these classified as most likely due to Binary Black
Hole (BBH) mergers. The tantalising prospect of finding an
electromagnetic (EM) counterpart to GW events warrants
follow-up, particularly in light of the rich scientific yield at-
tained following the detection of both GW and EM signals
from the Binary Neutron Star (BNS) merger GW170817
(Abbott et al. 2017b). The dominant demographic of GW
events, BBH mergers, are expected to be EM silent (Abbott
et al. 2016), although numerous studies suggest that there
is potential for an EM counterpart (Palenzuela et al. 2010;
Moesta et al. 2012; Loeb 2016; Murase et al. 2016; Perna
et al. 2016; De Mink & King 2017; Janiuk et al. 2017; Chang
& Murray 2018; McKernan et al. 2019), and a possible high-
energy detection was claimed alongside GW150914 (Con-
naughton et al. 2016). Assessing observational constraints
on the BBH merger population has value, because it helps
to inform the follow-up strategy of “wide-fast” survey tele-
scopes chasing GW triggers, and because constraints on the
EM signal will naturally become more stringent as the sam-
ple increases. Furthermore, there is not yet sufficient ob-
servational evidence to rule out the possibility of an EM
counterpart in BBH mergers.

More promisingly, the O3a GW trigger population
also contains candidate BNS and Neutron Star-Black Hole
(NSBH) mergers, which are expected to exhibit an EM sig-
nature, at least in some cases. The prime candidate for such
a counterpart is a kilonova (KN; Li & Paczyński 1998; Ross-
wog 2005; Metzger et al. 2010; Barnes & Kasen 2013; Met-
zger 2017), where heavy unstable elements are formed in the
neutron-rich environment of the merger via rapid capture (r-
process) nucleosynthesis (Lattimer & Schramm 1974; Eich-
ler et al. 1989; Freiburghaus et al. 1999), and subsequently
produce thermal emission as they decay radioactively. We
may also expect to observe a short duration (< 2s; Kouve-
liotou et al. 1993) gamma-ray burst (sGRB; Blinnikov et al.
1984; Paczynski 1986; Eichler et al. 1989; Narayan et al.
1992; Rosswog et al. 2003; Belczynski et al. 2006; Fong &
Berger 2013), wherein the merger launches a relativistic jet
that can be detected at high energies, and subsequently pro-
duces a broadband synchrotron afterglow as the ejecta decel-
erate and form shocks in the ambient environment (Bland-
ford & McKee 1976). The KN signature from an NSBH
merger is expected to be different to those produced by a
BNS (Kawaguchi et al. 2016; Tanaka et al. 2018; Barbieri
et al. 2019) – typically predicted to be brighter in the in-
frared (e.g. Metzger 2017; Kawaguchi et al. 2020), although
see Foucart et al. (2019). There is also some evidence to
suggest that NSBH mergers may be distinguishable in the
observed sGRB population (e.g. Troja et al. 2008; Gompertz
et al. 2020).

KNe and sGRBs are already known to be linked to one
another through coincident detections (Berger et al. 2013;
Tanvir et al. 2013; Yang et al. 2015; Jin et al. 2016; Kasli-
wal et al. 2017; Gompertz et al. 2018; Jin et al. 2018; Troja
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et al. 2018a; Jin et al. 2020; Lamb et al. 2019b; Troja et al.
2019; Jin et al. 2020), with both BNS and NSBH KN models
employed. KNe and sGRBs were also confirmed to be linked
to BNS mergers by the detections of GRB 170817A (Ab-
bott et al. 2017b; Goldstein et al. 2017; Hallinan et al. 2017;
Margutti et al. 2017; Savchenko et al. 2017; Troja et al. 2017;
Margutti et al. 2018; Mooley et al. 2018; Troja et al. 2018b;
D’Avanzo et al. 2018; Lyman et al. 2018) and the associ-
ated kilonova AT2017gfo (Blanchard et al. 2017; Chornock
et al. 2017; Coulter et al. 2017; Covino et al. 2017; Cow-
perthwaite et al. 2017; Drout et al. 2017; Evans et al. 2017;
Hjorth et al. 2017; Levan et al. 2017; Nicholl et al. 2017; Pian
et al. 2017; Smartt et al. 2017; Soares-Santos et al. 2017;
Tanvir et al. 2017; Villar et al. 2017) alongside GW170817
(Abbott et al. 2017a). In this instance, the sGRB afterglow
was likely viewed somewhat away from the jet axis (Abbott
et al. 2017a; Haggard et al. 2017; Kim et al. 2017; Lazzati
et al. 2017; Lamb & Kobayashi 2018; Mandel 2018; Fong
et al. 2019; Lamb et al. 2019a; Wu & MacFadyen 2019).

Locating EM counterparts to GW detections remains an
extremely challenging task due to the very large localisation
uncertainties from the GW detectors. These uncertainties
can span from hundreds to tens of thousands of square de-
grees, and while the localisation performance will improve as
the detector network expands (Abbott et al. 2020a), wide-
field survey telescopes remain essential when searching for
associated transients. The Gravitational-wave Optical Tran-
sient Observer (GOTO; see Steeghs et al., in prep; Dyer
et al. 2018) is one such facility. At design specifications, the
project will include one northern node on La Palma (Spain),
and one southern node (Australia), each of which will be
equipped with 16 telescopes on two robotic mounts, with
a field of view of ∼ 75 square degrees per node. The facil-
ity will provide rapid-response tiling of the large LVC error
boxes backed by an ongoing sky patrol survey. By exploiting
its high cadence and wide field, GOTO can quickly identify
potential GW counterparts and flag them for further pho-
tometric and spectroscopic follow-up. During O3a, GOTO
consisted of four wide-field-of-view telescopes, each cover-
ing 4.8 square degrees, with a combined footprint of ≈ 19

square degrees. GOTO’s first installation is located at the
Observatorio del Roque de los Muchachos on La Palma and
is able to scan the visible Northern hemisphere sky once ev-
ery ∼ 14 days. Hereafter, “GOTO-4” specifically refers to the
4-telescope prototype configuration.

Outside of GOTO, there has been a widespread, sus-
tained effort by the observational community to identify EM
counterparts to GW triggers throughout the LVC O3 observ-
ing run. Numerous wide-field follow-up missions have tiled
GW error boxes searching for transients, including the All-
Sky Automated Survery for Supernovae (ASASSN; Shappee
et al. 2014), the Asteroid Terrestrial impact Last Alert Sys-
tem (ATLAS; Tonry et al. 2018), the Deca-Degree Optical
Transient Imager (DDOTI; Watson et al. 2016), the Dark
Energy Survey (DES; Dark Energy Survey Collaboration
et al. 2016), the Global Rapid Advanced Network Devoted
to the Multi-messenger Addicts (GRANDMA; Antier et al.
2020b), KMT-Net (Kim et al. 2016), the Mobile Astronom-
ical System of TElescope Robots (MASTER; Lipunov et al.
2010), MeerLICHT (Bloemen et al. 2016), PanSTARRS
(Kaiser et al. 2010), Searches After Gravitational waves Us-
ing ARizona Observatories (SAGUARO; Lundquist et al.

2019), the Télescope à Action Rapide pour les Objets Transi-
toires (TAROT; Boër 2001), the Visible and Infrared Survey
Telescope for Astronomy (VISTA; Sutherland et al. 2015),
the VLT Survey Telescope (VST; Capaccioli & Schipani
2011) and the Zwicky Transient Facility (ZTF; Bellm et al.
2019). No associated transients were identified (Anand et al.
2020; Antier et al. 2020b,a; Coughlin et al. 2020; Sagués Car-
racedo et al. 2020), but constraining limits were placed on a
number of milestone events, including S190814bv, the first
NSBH merger candidate identified in GW (Dobie et al. 2019;
Gomez et al. 2019; LIGO Scientific Collaboration & Virgo
Collaboration 2019; Ackley et al. 2020; Andreoni et al. 2020;
Vieira et al. 2020; Watson et al. 2020), and several candi-
date BNS systems (Goldstein et al. 2019; Hosseinzadeh et al.
2019; Lundquist et al. 2019), including the unusually mas-
sive GW190425 (Coughlin et al. 2019; Hosseinzadeh et al.
2019; Lundquist et al. 2019; Abbott et al. 2020b).

In this paper, we investigate the 29 follow-up cam-
paigns of GW triggers undertaken by GOTO-4 during the
first half of the LVC O3 run (April to October 2019), be-
fore GOTO was upgraded to 8 telescopes. The success of
GOTO-4 in tiling the LVC error boxes is discussed. While
no GW-EM counterpart candidate detections were made,
we assess GOTO-4’s volumetric coverage in 3D by employ-
ing test sources to represent the expected EM signatures
accompanying GW events, using the O3a events as a bench-
mark test sample. The observable horizons are compared to
the distance distribution of O3a BNS events. The findings
are used to inform future strategy, and highlight areas of
focus for future upgrades.

In Section 2 we further discuss the data acquisition
from the LVC archives and the GOTO pipeline. Section 3
introduces our test sources, and their application is de-
tailed in Section 4. We show our results in Section 5,
which are discussed in Section 6. Finally, we present our
key conclusions in Section 7. We assume a cosmology of
H0 = 67.4 km s−1 Mpc−1

ΩM = 0.315 and ΩΛ = 0.685 (Planck
Collaboration et al. 2018) throughout.

2 DATA SAMPLE

2.1 LVC Superevents

GW triggers from individual LVC analysis pipelines are
aggregated into “superevents”, which are announced on
the Gamma-ray Co-ordinates Network (GCN) and pre-
sented on the Gravitational-wave Candidate Event Database
(GraceDB1). Initial position reconstruction of the GW
source is performed by the BAYESTAR algorithm (Singer
et al. 2014; Singer 2015). The algorithm outputs a Hierarchi-
cal Equal Area isoLatitude Pixelization (HEALPix; Górski
et al. 2005) all-sky map of the posterior probability, as well as
the location, scale and normalisation of the conditional dis-
tance distribution for each pixel across a grid of millions. At
a later time, the BAYESTAR reconstruction may be super-
seded by a volume reconstruction using LALInference (Aasi
et al. 2013; Veitch et al. 2015), the Advanced LIGO Bayesian
parameter estimation library. Skymaps are made available

1 https://gracedb.ligo.org/
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for download in the form of a Flexible Image Transport Sys-
tem (FITS; Wells et al. 1981) file.

Using the HEALPix maps, it is possible to calculate the
probability contained in a particular region of sky, or to con-
struct a probability density distribution with distance along
a given line of sight (for comprehensive recipes, see Singer
et al. 2016). Table 1 presents the 29 LVC superevents that
were followed up by GOTO-4 during the first half of the LVC
O3a run (excluding a further 3 triggers that were followed
up but later retracted by the LVC). The mean and standard
deviation of the all-sky posterior probability distance distri-
bution (Singer et al. 2016) is shown, along with the classifica-
tion of each event and the associated false alarm rate (FAR)
from GraceDB. We also include the LVC astrophysical clas-
sification, which can be BBH (both binary components are
constrained to > 5 M⊙), BNS (both binary components are
constrained to < 3 M⊙), NSBH (one object is constrained
to < 3 M⊙, and the other to > 5 M⊙) or MassGap (at least
one of the binary components is constrained to be between
3 M⊙ and 5 M⊙). The terrestrial (noise) classification cate-
gory is neglected. In all cases we perform our analysis with
the most recently released probability map, and the given
distances, classifications and FARs correspond to this map.

2.2 Data Collection with GOTO

Although we here present an offline analysis of the events,
the data collection is driven by a low-latency realtime re-
sponse. The LVC all-sky probability map is automatically in-
gested by the GOTO sentinel (Dyer et al. 2018), which anal-
yses the map and produces a schedule of exposures across
the observable probability region. These exposures are taken
on a fixed grid of tiles on the sky to compare GOTO’s new
exposure to a reference image of that same patch of the
sky. Observations are scheduled as soon as the initial map is
available, and updated whenever a map update is released.

GOTO has the capacity to do multi-band photome-
try, having three colour filters. However, for initial follow-
up GOTO uses its wide L-band filter. This collects photons
between 3750Åand 7000Å, roughly equivalent to a combina-
tion of GOTO’s B,G, and R filters and comparable to the
combined passband of the SDSS g and r filters.

Each tile is comprised of images from all four telescopes
and has a combined field of view of ≈ 19 square degrees. The
default strategy is to visit each tile at least twice per event,
where each visit contains a set of 3x60 second exposures,
which are conducted back-to-back in the wide L-band filter.
The three exposures in each set are reduced and then median
combined to create the science image. A reference image of
the corresponding tile is then subtracted from the science im-
age to identify any new transients. For BNS events, tiles are
repeated in order to provide many passes over the skymap
over the course of several nights.

2.3 Image Processing and Data Mining

Data are processed on a dedicated cluster of machines
located in a Warwick server room. The cluster includes
high CPU core count processing nodes, storage arrays and
database nodes all connected via 10Gbit ethernet. An au-
tomated process flow ensures new image frames enter the

process queue automatically as they are downloaded from
the observatory. For the prototype, a single high-end pro-
cessing node is sufficient to keep up with processing in
realtime (about four 50Mpixel images each minute). The
software stack has been developed by the consortium, and
performs image level processing, astrometry and photom-
etry calibration, image alignment and subtraction, and
source/feature detection. The results are ingested into a
PostgreSQL database in realtime to allow vetting of can-
didates with short latencies (Steeghs et al., in prep).

The initial stages of GOTO’s image reduction pipeline
cover per-image bias subtraction, dark subtraction, flat-field
correction, overscan correction and trimming. Following a
source detection pass, an astrometric solution is found using
astrometry.net (Lang et al. 2010) and photometric zero
points are derived through comparison with either APASS
V filter (Henden et al. 2016) or PS1 g-filter magnitudes for
a large number of field stars. The systematic uncertainty in
the zero points varies between Unit Telescopes (UTs) and
where a source falls on a given image, but is typically bet-
ter than 0.15 mags. A set of exposures (usually 3) are then
median-combined, correcting for any astrometric offsets be-
tween exposures. For each median stack, a reference image
is identified (if available), which then triggers the difference
imaging stage, using the HOTPANTS tool (Becker 2015).

Features are detected on the subtracted images and
passed to a random forest classifier. This makes use of a
number of source attributes such as flux, full-width half
maximum, local noise level, etc. in an attempt to filter out
artefacts and cosmics. During the prototype phase, GOTO
employs a temporary classifier that is similar in structure
to that of Bloom et al. (2012) and it was trained using an
injected source data-set. However, this is an area of active
development within the collaboration and will be replaced
in the next iteration of the pipeline (Mong et al. in prep;
Killestein et al. in prep). Low scoring sources are marked
bogus leaving human judgement to vet any remaining high-
confidence sources. Features with a reasonable classifier
score are then ingested into the GOTO “Marshall”, which
presents source and contextual information via a browser
for human inspection. This entire process is completed ap-
proximately 10-20 minutes after the images are taken in the
current prototype pipeline. Human candidate vetting takes
place in real-time alongside the follow-up campaign, which
typically lasts for several days following a trigger. Any an-
nouncements are disseminated via a GCN circulars and/or
TNS submissions. For the purpose of this paper, the data are
mined after a campaign has been completed using a script
which pulls all observations linked to each event. The obser-
vations are analysed and their meta-data is taken to assess
follow-up performance.

3 TEST SOURCES

In order to assess our coverage along the radial distance of
the LVC skymap, we must define a test source to recover.
For this analysis, we define three physically motivated light
curves, as well as a reference source with a constant magni-
tude. Our physically motivated sources are:

(i) A gamma-ray burst afterglow, viewed along the jet
axis (see Section 3.1).

MNRAS 000, 000–000 (0000)
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Classification Probability

Event Distance σdist pBBH pNSBH pBNS pMassGap FAR Announcement

Mpc ±Mpc % % % % (year−1) GCN

S190408an 1473 358 >99 0 0 0 8.86 × 10−11 24096

S190412m 812 194 100 0 0 0 5.30 × 10−20 24098
S190421ar 1628 535 97 0 0 0 0.47 24141

S190425z 156 41 0 0 >99 0 1.43 × 10−5 24168

S190426c* 377 100 0 6 24 12 0.61 24237

S190510g 227 92 0 0 42 0 0.28 24442
S190512at 1388 322 99 0 0 0 0.06 24503

S190513bm 1987 501 94 <1 0 5 1.18 × 10−5 24522
S190517h 2950 1038 98 <1 <1 2 0.07 24570

S190519bj 3154 791 96 0 0 0 0.18 24598
S190521g 3931 953 97 0 0 0 0.12 24621
S190521r 1136 279 >99 0 0 0 0.01 24632

S190630ag 1059 307 94 <1 0 5 4.54 × 10−6 24922
S190706ai 5263 1402 99 0 0 0 0.06 24998

S190707q 781 211 >99 0 0 0 1.66 × 10−4 25012
S190718y 227 165 0 0 2 0 1.15 25087

S190720a 869 283 99 0 0 0 0.12 25115

S190727h 2839 655 92 <1 0 3 4.35 × 10−3 25164

S190728q 874 171 34 14 0 52 7.98 × 10−16 25187

S190814bv 267 52 0 >99 0 >1 6.40 × 10−26 25324

S190828j 1803 423 >99 0 0 0 2.67 × 10−14 25497

S190828l 1609 426 99 0 0 0 1.46 × 10−3 25503
S190901ap 242 81 0 0 86 14 0.22 25606
S190910d 632 186 0 98 0 0 0.12 25695

S190915ak 1584 381 >99 0 0 0 0.03 25753
S190923y 438 113 0 68 0 0 1.51 25814

S190924h 548 112 0 0 0 99 2.82 × 10−11 25829

S190930s 709 191 0 0 0 95 0.09 25871
S190930t 108 38 0 74 0 0 0.49 25876

Table 1. The sample of LVC superevents that were followed up by GOTO. The distance and σdist columns represent the posterior mean
and standard deviation of the distance to the source, marginalised over the whole sky (Singer et al. 2016). The classification probabilities
and False Alarm Rates (FAR) are taken from GraceDB. Note that “missing” probability (i.e. cases where the given probabilities do not
sum to 100 per cent) will have been assigned to the “terrestrial” (noise) category. *Under the assumption that this source is astrophysical

in origin, the classification probability becomes NSBH 12 per cent: MassGap 5 per cent: BNS 3 per cent (Ligo Scientific Collaboration
& VIRGO Collaboration 2019f).

(ii) A gamma-ray burst afterglow viewed off-axis.

(iii) A Bazin function (Bazin et al. 2011), representing a
kilonova-like evolution (see Section 3.2).

These three phenomena are associated with compact
object mergers, though none are necessarily expected to
accompany the merger of a BBH. However, we note the
possible Fermi-GBM detection of GW150914 (Connaughton
et al. 2016), and the subsequent theoretical works that at-
tempt to link (weak) GRBs with BBH mergers, as well
as some additional optical phenomena (Perna et al. 2016;
Murase et al. 2016; De Mink & King 2017; Janiuk et al. 2017;
Chang & Murray 2018). A kilonova-like emission profile re-
mains the only electromagnetic accompaniment to have been
detected alongside a GW signal within the wavelength range
and timescales covered by GOTO (GW 170817/AT2017gfo;
Abbott et al. 2017b), albeit from a neutron star origin. A
constant source of mL = 19 is also included in our analysis
as a comparison case. This allows us to measure how well
GOTO-4 would have performed in retrieving a persistent
and reasonably bright new object in a given search field.

Our model light curves are all constructed in the g and r

filters. The mean of these two models provides a close match
to the GOTO’s L-band, which is used during GW follow-up.

Light curves at a representative 100 Mpc distance are shown
in Fig. 1.

3.1 Gamma-Ray Burst Models

Our GRB afterglow model light curves are constructed fol-
lowing Sari et al. (1998). We assume fairly typical phys-
ical parameters for sGRBs (e.g. Fong et al. 2015; Gom-
pertz et al. 2015). The isotropic equivalent energy in γ-rays,
Eγ,iso = 1052 ergs, the fraction of energy contained in the
emitting electrons, ǫe = 0.1, and the fraction of energy con-
tained in the magnetic fields, ǫB = 10−2. The circumburst
environment is assumed to have a constant density with ra-
dial distance, with a particle density of n = 10−3 cm−3. Elec-
trons in the forward shock are assumed to be accelerated
into a power law distribution of Lorentz factors with an in-
dex of p = 2.2. The half-opening angle of the jet is set to
θo = 0.087 rad (5◦). These parameters result in a jet break
at t ≈ 1.82 days (cf. Granot et al. 2018).

In the off-axis case, we use the analytical solution from
Granot et al. (2018) for the jet break time

tjb = 0.7(1 + z)
(

E51

n

)1/3 (
θo

0.1

)2

days (1)
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6 B. P. Gompertz et al.

and peak flux time

tpeak(θobs) =
(

θobs

θo

)2

tjb days, (2)

where E51 = θ
2
oEiso/2 is the beaming-corrected energy in

units of 1051 erg. The flux is assumed to be zero at t < tjb
then rises smoothly until its maximum at t = tpeak. At
t > tpeak the flux evolves following the standard on-axis evo-
lution. All physical parameters are set to be the same as the
on-axis case, including the jet half-opening angle. We assume
that the observer is located at an angle of θobs = 0.174 rad
(10◦) from the jet axis. This choice reflects a more optimistic
case that provides a (comparatively) bright signal in the ab-
sence of a GRB prompt trigger. As the observer moves fur-
ther from the jet axis, the expected signal becomes fainter,
and the light curve peaks later.

3.2 Kilonova Model

Our Bazin function model is based on the kilonova
AT2017gfo. Following the method of Gompertz et al. (2018),
we fit Bazin or exponential functions to the full dataset2

(Andreoni et al. 2017; Arcavi et al. 2017; Cowperthwaite
et al. 2017; Dı́az et al. 2017; Drout et al. 2017; Evans et al.
2017; Lipunov et al. 2017; Pian et al. 2017; Shappee et al.
2017; Smartt et al. 2017; Tanvir et al. 2017; Valenti et al.
2017; Villar et al. 2017; Pozanenko et al. 2018) to obtain the
phenomenological evolution of the g (including g, F475W
and V filters) and r (including r, F606W, F625W and R fil-
ters) bands. The rise and peak of the g and r bands are
unconstrained for AT2017gfo; in both filters the light curve
is best fit with an exponential profile that has a decay time of
τf ,g = 0.94 days and τf ,r = 1.47 days, and a normalisation of
Ag = 679.5 µJy and Ar = 631.5 µJy. To avoid over-estimating
the flux at early times, we modify both functions from ex-
ponential to Bazin by adding a rise time of τr = 0.1 days,
and t0 = tmax − τr ln (τf /τr − 1) = 0.3 days, where tmax is the
peak emission time. The resulting light curves are consistent
with the data, although the rise and peak parameters are not
strictly constrained. Our L-band magnitudes are derived by
assigning an equal weighting to the g and r-band models.

4 METHOD

We first assess the combined GOTO-4 sky coverage for each
event. There are two sources of overlap in the observations:
firstly, between individual pointings (tiles) on the sky, and
secondly, each tile is the combined footprint of 4 UTs, which
themselves overlap one another (see Fig. 2). While this setup
is advantageous because it eliminates the chip gap problem
seen in other survey missions (and aids intra-telescope cal-
ibration) it makes calculating sky coverage more complex,
because simply summing the on-sky footprint of the each
image (1/telecope) results in a lot of double (or more) count-
ing. Fortunately, a natural solution to double counting cov-
erage is available in the form of the pixel grid in the LVC

2 curated on kilonova.space (Guillochon et al. 2017)
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Figure 1. Light curves of our test sources at an assumed distance
of 100 Mpc.

HEALPix maps. The Healpy3
query polygon routine re-

turns the indices of pixels contained within a user-defined
polygon, meaning that we can generate a pixel coverage list
by entering the coordinates of the corners of each individ-
ual UT snapshot. GOTO-4 sky coverage is then calculated
by summing the area of all unique pixel instances in the
list. Similarly, the total probability covered is calculated by
summing the probability contained within every unique pixel
covered. We calculate coverage with the “inclusive” keyword
set to False when running query polygon, meaning that
only pixels with centres that lie within our observed area
are counted. The typical pixel size of the HEALPix maps is
≈ 10 square arc minutes; much smaller than the total areas
counted.

4.1 Volumetric Coverage

To assess our volumetric coverage, we compare our test
source models (Section 3) at each observing epoch to the
limiting magnitude of the science image in order to assess
from how far away they could be detected. Model magni-
tudes are corrected for Galactic extinction using an all-sky
foreground reddening, (E(B − V)), HEALPix map based on
the results of Schlegel et al. (1998), which is available for
download from the Goddard Space Flight Center website4.
Extinction corrections are applied based on which pixel of
the reddening map each LVC probability map pixel falls into.
The two maps typically have comparable resolution (within
a factor of two), but variability in the dust maps on scales of
less than ≈ 10 arc minutes2 is lost due to being averaged over
the pixel. Schlegel et al. (1998) values of E(B − V) are con-
verted to the more recent findings of Schlafly & Finkbeiner
(2011) using E(B − V)SF11 = 0.86 × E(B − V)SFD98 (Schlafly
et al. 2010; Schlafly & Finkbeiner 2011).

Next, we calculate the horizon out to which our
extinction-corrected test-source magnitude could be de-
tected by GOTO-4 for each observation. The horizon is de-

3 https://healpy.readthedocs.io/en/stable/index.html
4 lambda.gsfc.nasa.gov/product/foreground/fg sfd get.cfm
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Figure 2. Four example GOTO-4 tiles (blue, black, green, red),

each of which is comprised of 4 UT snapshots. There is signifi-
cant overlap in observation both from overlapping tiles and from

overlapping UT fields within a given tile. These effects must be
accounted for to avoid “double-counting” the covered probability.

fined as the distance from which the extinction-corrected
test-source magnitude would be equal to the 5σ upper limit
of a given image, mlim. This limit is based off the science
frame. This determines the optimal depth the transient
search can achieve from image subtraction (assuming the
reference image can see deeper). mlim is stored in the FITS
header of the GOTO-4 observation, and is defined using the
pipeline zero-point derived limiting magnitude. Where there
are multiple visits to the same LVC probability map pixel,
we take the visit with the farthest horizon, and discard the
duplicates. Our definition of the horizon implicitly treats
mlim as a“hard”cutoff, where everything brighter is detected
and everything fainter is missed. In practice, mlim represents
the average magnitude limit for a given image, which means
that in some cases brighter objects would be missed within
the horizon, and fainter objects could be detected beyond
it (e.g. due to background noise fluctuations, proximity to
bright stars, etc). However, the recovery curve, while not
a box function, is found to be very steep (Fig. 3), making
our hard limit assumption a useful working approximation.
In brief, the recovery curve was built by injecting a large
number of mock transients into the images, using a large
sample of images from the O3a observations and covering
a wide range of magnitudes. These fields are then image
subtracted, using two different methods, and an automatic
source extraction test is done using SExtractor. If a source
is found within 2 pixels of its injected location it is counted
as recovered. Full details of the process are available in Cut-
ter et al. (in prep). The output shown here is expected of a
typical GOTO exposure. For our analysis we show both the
HOTPANTS curve that is close to the prototype pipeline

Figure 3. The fraction of artificially injected test sources recov-
ered vs magnitude, down to the average mlim (vertical blue line).
In the optimal case nearly 80 per cent of sources are recovered
at this limit (horizontal line). The steep turnover indicates that
a hard cutoff at mlim is a suitable working approximation for the
observable horizon.

performance, as well as the ZOGY in Parallel implementa-
tion that is under development.

This again supports our working assumption in terms of
using our O3 campaigns as guidance towards future strategy,
and performance will be further improved. We also note that
variations in mlim across the images are significantly larger
than this particular effect, and is the dominant contribution
in terms of the overall coverage achieved.

Finally, LVC probability map pixels are sorted into
groups of equal observable horizon, where their probability
density functions are summed (cf. Singer et al. 2016), and
the combined probability density function of each group is
integrated out to their shared horizon. Our full volumetric
probability coverage is then the sum of all of the groups.

4.2 Coverage of an AT2017gfo-like Event

While it is important to assess our coverage of all existing
GW events, the main targets of EM follow-up facilities like
GOTO are BNS mergers that are (relatively) nearby, since
these events are the most likely to produce a detectable sig-
nature in the form of a KN. AT2017gfo remains the only
KN detected alongside a BNS merger that was confirmed by
GW detections, and hence is the gold standard. We therefore
also assess our coverage and follow-up strategy by calculat-
ing the maximum observable horizon of an AT2017gfo-like
event in each LVC probability map, and how much of the
2D probability coverage GOTO obtained can be recovered
when increasing the assumed distance to the test source.
Note that this test is done in addition to the test described
in Section 4.1, which was performed on all four test models
including our KN analogue.

The method is largely the same as in Section 4.1, except
that the test source is always the composite g- and r-band
Bazin function fit to AT2017gfo. Instead of constructing
and integrating the probability density functions from the
LVC skymap, we calculate the expected extinction-corrected
magnitude of AT2017gfo in each HEALPix pixel for distance
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8 B. P. Gompertz et al.

increments out to 500 Mpc. These magnitudes are compared
to mlim, and the column in each line of sight is considered
to be covered for the given distance where the magnitude is
brighter.

5 RESULTS

Results of the 29 GOTO-4 follow-up campaigns from the
first half of the LVC O3 run are shown in Table 2. On aver-
age, GOTO-4 began observations 8.79 hours after receiving
an LVC preliminary alert (9.90 hours after trigger), and tiled
732.3 square degrees of the sky per LVC superevent, encom-
passing 45.3 per cent of the localisation probability. When
observations were unconstrained at the time of the alert (i.e.
night time, with the field above the altitude limit), GOTO-
4 began observations less than a minute after receiving the
LVC preliminary notice. As an example, Fig. 4 illustrates
our follow-up of S190923y, which represents the ‘mean’ cam-
paign given that we covered 723.7 square degrees and 39.4

per cent of the probability in this case (see Table 2). We also
calculate the total probability available to GOTO-4 from its
site on La Palma for each event, i.e. the probability that
lies within the region of the sky above the telescope’s min-
imum altitude constraint (30 degrees) and away from the
Sun. These are shown as pAvis in Table 2. On average, 64.4

per cent of the total probability was observable for a given
event over a 2 to 3 night period, meaning that GOTO-4
tiled ≈ 70.3 per cent of the available probability per event
on average.

Notably, GOTO-4 tiled more than 500 square degrees
on more than half of its campaigns (15), and more than
1000 square degrees on 6 different occasions. This achieve-
ment clearly highlights the value of rapid-response, wide-
field instruments when searching for poorly-localised tran-
sient events. GOTO-4’s volumetric coverage is also presented
in Table 2, expressed as the percentage of the three dimen-
sional probability map probed for each test source. The re-
covery performance is predictably diminished; EM follow-up
facilities are not designed to search for predominantly BBH
mergers at a mean distance of 1.3 Gpc. However, GOTO-4
was able to cover almost 10 per cent of the total probabil-
ity volume on average for an on-axis GRB model. We can
rule out our test case on-axis GRB in the observed area in
three events (S190510g, S190814bv and S190930t) to better
than p < 0.05. In order to place an approximate limit on
emission from a BBH merger, we take the mean of the least
constraining observation within one day after trigger across
every BBH follow-up campaign. This is a 5σ upper limit of
mL & 19 on emission from a BBH merger inside the GOTO-
4 field of view and during the GOTO observing epochs at
times of less than 1 day after GW trigger.

Such wide searches do uncover a significant number
of candidate detections. Following the automated classi-
fier mentioned previously, and an automatic check against
known MPC objects (which otherwise would dominate), we
are typically presented with on average one high confidence
transient candidate per 15 deg2 during the O3a searches.
Contextual information from external catalogs is used to sort
these and flag interesting candidates in the context of the
GW search. False positives include un-catalogued variable
stars and flare stars, which were ruled out as counterparts

via comparison with PS1 images. Many other candidates
were disregarded as potential counterparts using the on-sky
proximity and redshift of any nearby galaxies through the
GLADE catalogue (Dálya et al. 2018), or via a pre-trigger
reported detection either in our own detections tables, or al-
ready reported by others as a known transient in the Tran-
sient Name Server (TNS).

Some of the GOTO photometry of unassociated and un-
catalogued transients were reported to the TNS where they
were high confidence. However, since O3a was very much a
test run for the project and its transient classification stack,
we relied on several layers of human confirmation and also
required multiple detections. Furthermore, automated TNS
submission was not in place and generally we did not report
photometry if other projects had already done so, unless
it turned out to be a true object of interest. We intend to
speed-up this process and improve our classifier robustness
going forward so that we can increase our chances of being
the first to report.

The expected number of events of each type in our sam-
ple are presented in Table 3. We present the results for the
localisation map as a whole, for the area tiled by GOTO-
4, and for those events closer than 250 Mpc, which are our
main targets of interest with GOTO. For off-axis GRBs,
KNe and our constant 19th magnitude test sources, the ex-
pected rates are essentially unchanged when limiting our
results to those events within 250 Mpc. This fact indicates
that distant (> 250 Mpc) events do not contribute to the
probability of detecting sources of this type. In contrast, the
chances of detecting an on-axis GRB is greatly diminished
when limiting the search volume; their much greater lumi-
nosities mean that they can be detected from much further
away.

The GW population is dominated by distant BBH
mergers, but for nearby (< 250 Mpc) triggers where the ma-
jority of the probability map can be observed and tiled in
a two night campaign, GOTO-4 can expect to detect a KN
similar to AT2017gfo in fewer than 5 campaigns if one is
present in each skymap. This is due to the still relatively
poor localisation performance of the current GW detector
network, coupled with the relatively limited coverage of the
GOTO-4 prototype. This will improve substantially in the
future (Abbott et al. 2020a), as further discussed below.

Table 2 includes the horizons out to which we retain
90, 50 and 0 per cent of our 2D coverage for an AT2017gfo
analogue, following the method in Section 4.2. For example,
if GOTO covered 100 per cent of the probability in the LVC
skymap in 2D, D90 represents the distance (in Mpc) out to
which we probe deep enough to still cover 90 per cent of
the probability – where the lost 10 per cent lies along sight
lines that were not probed with sufficient depth to recover
the transient. D50 indicates that 50 per cent of the observed
probability is retained, and D0 represents the distance at
which no GOTO-4 observation was sufficiently deep to re-
cover an AT2017gfo-like KN. This ‘completeness’ versus dis-
tance for each event is also shown in Fig. 5, along with the
mean of all events. These results show that with reasonable
observing conditions, GOTO-4 can detect an AT2017gfo-
like event out beyond 100 Mpc, and is capable of achieving
200 Mpc in a favourable line of sight. Of further encour-
agement is the duplication factor; on average, GOTO-4 ob-
served a given LVC skymap pixel 4.8 times during a cam-
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Response Time 2D Coverage 3D Coverage KN Range

Event δttrig δtalert Area pA pAvis pVbazin pVGRB pVoff−axis pVc19 D90 D50 D0

(hours) (hours) (deg2) (%) (%) (%) (%) (%) (%) (Mpc) (Mpc) (Mpc)

S190408an† 11.4 10.8 156.1 20.2 23.8 1.20 × 10−5 1.47 × 10−2 2.82 × 10−7 3.22 × 10−5 31 70 135

S190412m† 15.0 14.0 295.2 94.4 94.7 8.68 × 10−3 3.48 0 1.07 × 10−2 107 117 151

S190421ar 48.3 29.1 114.3 8.88 36.6 4.92 × 10−5 3.97 × 10−3 3.89 × 10−7 3.49 × 10−4 57 61 66

S190425z 12.4 9.50 2667.1 22.0 38.1 5.90 20.6 2.57 × 10−3 8.10 46 134 227

S190426c 5.30 5.00 772.7 54.1 70.2 1.10 × 10−2 8.98 0 1.42 × 10−2 4 44 136

S190510g 1.42 0.40 116.1 0.21 0.55 2.06 × 10−3 0.21 0 3.60 × 10−2 48 55 57

S190512at 2.78 2.50 315.1 87.1 92.4 8.52 × 10−5 0.37 0 1.26 × 10−4 22 60 154

S190513bm† 0.55 0.05 116.2 28.5 76.3 1.35 × 10−5 0.59 0 2.51 × 10−5 56 83 120

S190517h† 15.9 15.2 112.7 14.8 51.6 1.40 × 10−6 1.25 × 10−4 0 1.62 × 10−6 49 67 84

S190519bj† 5.35 4.35 664.8 84.7 85.3 2.41 × 10−6 9.55 × 10−4 0 3.64 × 10−6 43 69 161

S190521g 0.13 0.05 393.2 43.7 86.7 8.30 × 10−6 7.57 × 10−2 0 1.11 × 10−5 94 107 126

S190521r† 15.2 15.1 720.7 91.9 92.9 3.85 × 10−6 1.17 × 10−3 0 7.32 × 10−6 9 51 93

S190630ag 2.40 2.40 1170.3 60.9 79.5 1.33 × 10−3 19.0 1.66 × 10−7 3.09 × 10−3 71 112 150

S190706ai 0.33 0.03 543.9 36.7 48.5 8.03 × 10−6 1.07 1.67 × 10−8 2.86 × 10−5 55 94 168

S190707q 12.4 11.7 722.9 34.4 59.3 2.06 × 10−5 2.77 × 10−2 0 2.54 × 10−5 18 53 122

S190718y† 6.58 6.10 242.5 61.2 72.9 1.12 28.9 1.54 × 10−2 2.45 10 27 90

S190720a 0.08 0.04 1358.3 62.1 73.3 1.89 × 10−4 9.51 7.67 × 10−7 5.45 × 10−4 42 54 163

S190727h 15.0 14.9 714.7 42.3 93.5 5.72 × 10−7 6.03 × 10−5 0 1.43 × 10−6 52 66 140

S190728q 14.8 14.5 146.9 89.5 94.0 5.55 × 10−4 1.03 0 8.62 × 10−4 114 124 139

S190814bv 1.83 1.50 717.9 94.1 99.1 1.23 × 10−2 89.6 2.33 × 10−6 2.12 × 10−2 55 61 81

S190828j 16.1 15.8 442.2 9.11 81.6 1.01 × 10−5 2.30 × 10−3 6.45 × 10−8 1.27 × 10−5 34 105 149

S190828l 16.9 16.5 453.6 1.94 50.5 5.60 × 10−5 9.20 × 10−3 4.66 × 10−7 7.34 × 10−5 127 138 154

S190901ap 0.12 0.04 2523.5 38.3 45.3 0.34 30.2 8.40 × 10−4 1.16 62 88 144

S190910d 0.13 0.03 1675.0 41.2 85.1 5.43 × 10−3 17.6 0 1.87 × 10−2 28 69 148

S190915ak 29.9 29.8 18.2 0.08 0.08 3.63 × 10−11 2.39 × 10−9 0 8.42 × 10−11 10 10 15

S190923y† 13.8 13.7 723.7 39.4 59.7 1.91 × 10−2 8.95 0 2.29 × 10−2 46 95 120

S190924h 2.97 2.90 281.3 70.2 73.1 4.52 × 10−5 26.4 5.05 × 10−8 3.59 × 10−4 61 75 101

S190930s 6.28 6.20 2139.9 92.2 92.2 2.20 × 10−3 14.2 1.06 × 10−6 4.48 × 10−3 13 89 142

S190930t† 12.8 12.7 918.2 6.84 9.91 1.24 6.55 1.06 × 10−3 2.01 48 109 130

Mean 9.90 8.79 732.3 45.3 64.4 0.30 9.91 6.87 × 10−4 0.48 48 79 126

Median 6.58 6.20 543.9 41.2 73.1 8.52 × 10−5 1.03 0 3.59 × 10−4 48 70 136

Table 2. GOTO-4 coverage of the LVC probability maps. δttrig is the time between the GW trigger and the first GOTO-4 observation.

δtalert is the time between receiving the LVC preliminary notification and the first GOTO-4 observation. pA is the percentage of the total
probability that was tiled by GOTO-4. pAvis represents the percentage of the total probability that was visible to GOTO-4 from its site
in La Palma, accounting for Sun constraints and altitude limits. The 3D Coverage columns indicate the volumetric coverage for each
of the test sources defined in Section 3. The KN Range columns indicate the horizon out to which 90, 50 and zero per cent of the 2D
probability coverage is retained in a search for an AT2017gfo-like event.† denotes that a BAYESTAR map was used; no LALInference
map was available.

paign (due to a combination of repeat visits and tile/UT
overlap), meaning that there is a great deal of scope to
improve the observable horizon through image stacking. In
some cases, however, the observable horizon is held back by
poor observing conditions. These conditions include clouds,
high airmass, a bright moon, or even an unfavourable Galac-
tic pointing resulting in high extinction along the line of
sight.

6 DISCUSSION

6.1 General Constraints

We find that limits on EM emission from the O3a population
of BBH mergers using GOTO-4 are currently unconstrain-
ing. Under the assumption that every event does contain one
of our test sources (an assumption that is extremely unlikely
to be true in practice), we would require more than 105 BBH
events to place any meaningful limits with our O3a configu-
ration. However, with information on the inclination of the
system, we may be able to constrain BBH mergers as GRB

progenitors after fewer than 50 events. GOTO-4 covered al-
most 10 per cent of the LVC probability volume on average
for an on-axis GRB model during O3a, and hence we would
expect to find an on-axis GRB in ≈ one in ten events if one
is present in each case. These constraints will tighten as cov-
erage is significantly improved going forward, thanks to the
scaling up of GOTO and the improved localisation precision
from the LVC. More generally, GOTO-4 places a mean 5σ

limit of mL & 19 in the observed area within one observer
frame day from trigger for all BBH events (where observa-
tions were taken inside this window). This figure comes from
taking the mean value of the least constraining tile from
each campaign. However, it does not include foreground ex-
tinction, and the observations do not cover the full 24 hour
period.

Our analysis suggests that the current GOTO-4 follow-
up strategy for GW triggers is not suited for placing con-
straints on associated off-axis GRBs. This limitation arises
for two reasons: the first is that they are faint compared to
the other expected transients (see Fig. 1) and the second is
that the GOTO follow-up strategy focuses on the first two
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Figure 4. GOTO-4 follow-up of S190923y (25814). Each blue box represents one GOTO-4 tile, with the observing strategy prioritising

the highest probability tiles first (darker shaded regions are higher probability). The Area Covered and pA values in Table 2 comprise
the sum of the physical area and probability contained within these tiles respectively, after accounting for overlap. The shaded area
indicates unobservable regions, either from altitude limits or Sun constraints. pAvis (Table 2) indicates the total fraction of probability
that is observable (i.e. that lies within the non-grey region). Axes are in RA/Dec.

Events GRB Off-axis GRB KN 19th mag

Whole map 29 2.87 10−4 0.09 0.14

Obs 29 7.04 3 × 10−4 0.49 0.90

Nearby 5 0.86 10−4 0.09 0.14

Nearby, obs 5 4.15 3 × 10−4 0.49 0.90

BBH 17 0.34 10−8 10−4 2 × 10−4

BNS 5 0.89 10−4 0.07 0.12

All non-BBH 12 2.53 10−4 0.09 0.14

Table 3. The number of detections of each type of signal we

would expect to have seen in our sample and highlighted sub-
samples if all LVC superevents contained our test sources. “Whole
map” assumes that the test source could be anywhere in the
map, whether the region was observed or not. “Obs” assumes that
the test source occurred within the region covered by GOTO-4.
“Nearby” refers to events that occured within 250 Mpc. “BBH”,
“BNS” and “All non-BBH” are given for the “Whole map” sce-
nario, but are limited to events where the given classification was
assigned the highest probability by the LVC, excluding terrestrial.

or three nights after the trigger (as is appropriate for KNe),
whereas off-axis GRBs will peak several days later than this.
The time of observation is the more impactful of the two fac-
tors, and we still expect to find untriggered off-axis GRBs in
the survey data, because their intrinsic brightness lies well
within GOTO’s capability. In the future, GOTO will be able
to go deeper faster as more telescopes are deployed, and the
LVC localisations will improve, leaving smaller error regions
to search. Our findings here suggest that the GOTO GW
follow-up strategy may benefit from returning to a candi-

0 25 50 75 100 125 150 175 200
Distance (Mpc)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 2

D 
co

ve
ra

ge
 re

ta
in

ed
 in

 3
D 

(p
V/

pA
)

Figure 5. The fraction of the 2D probability coverage that is
retained with increasing distance. Each dotted line represents an
LVC follow-up campaign with GOTO-4. The thick black line is

the mean of the 29 events, and the grey area is the 1σ standard
deviation.

date field after ∼ 5 – 10 days post-trigger, in order to better
constrain the possibility of an off-axis GRB. Such discover-
ies were indeed made during O3 (Kool et al. 2019; Perley
et al. 2019), highlighting the scientific potential for revising
the strategy.

Our KN model is based on AT2017gfo, a confirmed BNS
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merger (Abbott et al. 2017a). NSBH mergers are also ex-
pected to produce KNe, and their emission profiles may be
quite different. If the NS plunges directly into the BH with-
out material being disrupted (the fate of the NS depends
primarily on the binary mass ratio and the BH spin; Shi-
bata & Taniguchi 2011; Kawaguchi et al. 2015; Kyutoku
et al. 2015; Foucart et al. 2018), then no EM transient is
expected at all. The LVC analysis suggested that this was
the case for all of the NSBH merger candidates during O3a
(S190814bv, S190910d, S190923y and S190930t; Ligo Scien-
tific Collaboration & VIRGO Collaboration 2019u,x,y,z). If
tidal stripping occurs during inspiral, then material may re-
main outside of the BH event horizon, and a KN can be
produced. In the optical frequencies at which GOTO-4 ob-
serves, this KN may in fact be fainter than an AT2017gfo
analogue, unless a significant (≥ 0.02M⊙) amount of mat-
ter is ejected (e.g. Kawaguchi et al. 2020; Zhu et al. 2020).
However, for a larger ejecta mass, this signal may in fact be
brighter instead. A KN from an NSBH merger may therefore
be brighter than AT2017gfo, fainter, or absent entirely. Like
with BNS mergers, we emphasise that a significant diversity
of light curves are likely to be produced in nature, and that
our use of AT2017gfo (as the best-studied and most concrete
example) is as a known representative.

6.2 The Binary Neutron Star Population

When focusing on nearby (< 250 Mpc) events, or those clas-
sified as a BNS merger (where BNS is the most probable
classification, excluding terrestrial), the prospects of a de-
tection are naturally greatly improved. Table 2 shows that
the average GOTO-4 follow-up campaign probes sufficiently
deeply to detect AT2017gfo (DL = 41±3.1 Mpc; Hjorth et al.
2017) because the mean D90 = 48 Mpc. This means that 90
per cent of observed sight lines, by probability contained, are
probed deeply enough to detect AT2017gfo at a distance of
48 Mpc. Similarly, per Table 2, the average response time of
9.90 hours is fast enough to catch the peak of the emission,
and typically 64.4 per cent of the available probability is
covered. In favourable conditions the telescope can detect a
similar event out to ∼ 200 Mpc. Notably, Table 3 shows that
the chances of detecting a KN is a strong function of the
2D coverage, given the large jump in probability when we
calculate our expectations for the surveyed area. This fact
will be further exploited by the expansion of the GOTO net-
work, both in terms of an increased number of telescopes as
well as a 2nd node in the southern hemisphere. When fully
deployed, this amounts to 2x16 scopes, a factor of 8 more
than the GOTO-4 prototype presented here. This will allow
faster tiling and more comprehensive and deeper coverage.

Table 3 indicates that in its current configuration, with
no stacking, GOTO-4 can expect to find one AT2017gfo-like
KN per few tens of events observed within 250 Mpc. This rel-
atively low estimated discovery rate is primarily due to the
O3a BNS sample being more distant on average than pre-
O3 expectations, where the ‘most likely’ estimate of Abadie
et al. (2010) suggested ∼ 4 BNS mergers per year within
100 Mpc (with expectations ranging from 0.04 to 42 events).
More recent rate estimations following the LVC O1 and O2
runs predicted 0.5 – 16 BNS mergers per year (Abbott et al.
2019), and the most recent estimate from the LVC, which in-
cludes GW190425 (The LIGO Scientific Collaboration et al.

2020, here S190425z), constrained the rate of BNS mergers
within 100 Mpc to be between 1 and 12 events per year.

A näıve estimate, based on the 5 candidate BNS merg-
ers during the first half of O3 (∼ 6 months) and using
the most distant detection (377 Mpc; S190426c) to de-
fine the radius of the observed volume, implies a rate of
∼ 4.5×10−8 Mpc−3yr−1. This indicates that based on the ob-
served population of candidate BNS mergers during the first
half of O3, only 0.1 BNS merger events within 100 Mpc are
expected; towards the lower end of the Abadie et al. (2010);
Abbott et al. (2019) and The LIGO Scientific Collabora-
tion et al. (2020) rate estimates. However, our estimate as-
sumes that the GW detector network was always on during
O3a, and does not account for the variation in the measured
candidate masses. It also implicitly assumes that all of the
candidate BNS events are indeed astrophysical. Such an as-
sumption has further implications for their classifications –
for example, under the assumption that S190426c is of as-
trophysical origin, it is found to more likely be an NSBH
merger (Ligo Scientific Collaboration & VIRGO Collabora-
tion 2019f). Our näıve estimate therefore provides a rough
guide as to the volumetric BNS merger rate, but should be
treated with caution.

Fig. 6 shows the distance distribution of events classified
as BNS by the LVC alongside the distribution of observable
horizons (assuming a Bazin model) achieved by GOTO-4
during LVC follow-up. We make 100,000 draws from the
GOTO-4 horizon probability density function (PDF), and
compare it to 100,000 draws from both the weighted event
distance PDF (the weighting for each BNS is 1/σ2

dist
, see

Table 1), and the unweighted event distance PDF includ-
ing GW170817. Assuming each draw is a unique event with
unique follow-up, we find that GOTO-4 reaches the depth
required for a detection in 18.3 (22.5) per cent of cases for
the weighted (unweighted + GW170817) distributions.

6.3 Factors that Influence Performance

We further investigate events with unusually high or low ob-
servable horizons. The average maximum horizon achieved
was 126± 40 Mpc (mean±1σ standard deviation in the sam-
ple). The LVC superevents with the worst observable hori-
zons are S190915ak, S190510g and S190421ar. At 15 Mpc,
S190915ak is the worst by far, and the explanation is an
unfortunate combination of high airmass (2) and a bright
moon (91.5 per cent illumination). These poor conditions
were coupled with a single observing epoch taken almost a
full day after peak, when our test model had decayed almost
a full magnitude from maximum brightness. For S190510g,
we attained a maximum horizon of 57 Mpc. The airmass
was 1.78 though the illumination was low at just 30 per
cent. In this case, the largest detrimental factor was actu-
ally observing too early; all epochs were within 0.1 days
of the trigger, preceding the rapid rise to peak of the test
model (Fig. 1). The contemporaneous model was two mag-
nitudes below peak. S190421ar had a maximum observable
horizon of 66 Mpc, an airmass of 1.88 a fairly high moon
illumination of 77 per cent, and also endured high winds,
which were on average 21 km/h during exposure. This event
also suffered from higher extinction along the line of sight
compared to the other campaigns, with a median value of
AV ≈ 0.2 mags; more than double the typical median. Fur-

MNRAS 000, 000–000 (0000)



12 B. P. Gompertz et al.

thermore, this event was only observed two days after trig-
ger; two magnitudes below the model peak.

At the high end of the observable horizon distribution,
only S190425z is more than 1σ above the mean. The maxi-
mum observable horizon achieved in this case was 227 Mpc.
The moon illumination was 51 per cent, and the airmass was
low, at 1.27. While these conditions are clearly better than
the three aforementioned cases, perhaps the biggest contrib-
utor to the distant horizon is the fact that the bulk of the
observations were taken right at the peak of our model flux.
The next highest horizon in the sample was 168 Mpc for
S190706ai, which had an airmass of 1.79 and a moon illu-
mination of 34 per cent. These conditions are very similar
to S190510g, with the key difference being that S190706ai
was observed much closer to the model peak (though not as
close as 190425z).

The depth of mlim is clearly affected by the weather,
wind shake, airmass, moon brightness, and the telescope
optics, among other things. However, the indication from
our analysis of the O3a campaign is that while observ-
ing conditions do play a role in determining from how
far away we can expect to detect a KN (and can render
a campaign entirely unconstraining to our models, as in
S190915ak), the timing of the observation with respect to
peak flux is in fact the dominant variable. This is reflected
in the mean mlim values; while S190915ak clearly experi-
enced very poor observing conditions, with mlim = 15.0, the
other four events discussed have mean mlim ranging between
19.3 (S190421ar) and 20.0 (S190425z). Despite this, their
observing horizons vary greatly due to the differing prox-
imity of the observations to the model peak. For our Bazin
model based on AT2017gfo, observing as close to 0.5 days
after trigger as possible is therefore highly desirable. One
major caveat to this is that KN evolution at early times
(∼ a few hours) is largely unknown due to a lack of ob-
servations. Our model at these times is therefore not well
constrained (see Section 3.2), and hence the poor recov-
ery performance of events with only very early observa-
tions may be pessimistic. Additionally, AT2017gfo is only
one (well studied) event. The indication from cosmological
GRBs is that KNe show considerable diversity in their emis-
sion (Fong et al. 2017; Gompertz et al. 2018; Ascenzi et al.
2019; Rossi et al. 2020), meaning that the model employed
here may be too optimistic/pessimistic in its peak magni-
tude, or evolve faster/slower than any given future event.
AT2017gfo is fainter than all but one sGRB KN candidate,
but in several cases non-detections that probe deeper than
the AT2017gfo models imply that there is room for a fainter,
undetected population (Gompertz et al. 2018; Pandey et al.
2019).

6.4 Future Prospects

In addition to the factors discussed in Section 6.3, improve-
ments in the limiting magnitudes can be made with a simple
increase in exposure time. There are two obvious ways that
the horizons presented in this paper can be improved: stack-
ing the existing exposures, and/or increasing the exposure
time for future follow-up campaigns. The former method
could potentially yield depth increases of ∼ 0.85 magni-
tudes, since our stacking gains scale as ≈ 2.5 log

√
N where

N is the number of stacks and our mean duplication fac-

tor is 4.8. The second method to increase depth will hap-
pen naturally as GOTO approaches design specifications;
adding more telescopes means that the footprint of an in-
dividual tile/pointing becomes larger, and hence the GW
probability regions can be tiled faster. The result is more
time for repeat visits and/or longer exposure times, as well
as more recent reference tiles from a higher survey cadence.
Additionally, as the GW detector network expands to design
sensitivity, the localisation precision of GW triggers (in par-
ticular nearby BNS mergers) is expected to improve (Abbott
et al. 2020a), meaning that it may no longer be necessary
to tile many thousands of square degrees. The most recent
estimates (Abbott et al. 2020a) for the fourth LIGO/Virgo
run (O4), which begins in January 2022 and will include the
Kamioka Gravitational-wave Detector (KAGRA) suggests
that the BNS (BBH) localisation precision will improve from
a median 270+34

−30
(280+30

−23
) square degree 90 per cent credible

interval in O3 to a median 33+5
−5

(41+7
−6
) square degree 90 per

cent credible interval during O4. These factors will improve
the depth of the observations on average. In particular, the
flexible design of GOTO enables it to point both mounts
at a single tile to improve depth once the localisations have
improved to the point where breadth is no longer an issue.

With regards to the sensitivity required, the expected
BNS range during O4 (Abbott et al. 2020a) is 160 – 190 Mpc
(aLIGO), 90 – 120 Mpc (AdV) and 25 – 130 Mpc (KAGRA).
For comparison, Fig. 7 shows GOTO’s expected probabil-
ity recovery fraction with distance in increments of mlim.
This incorporates the real observing conditions and follow-
up schedule for each of the 29 events in O3a; it differs from
Fig. 5 only in that mlim is held constant for every tile. We
find that attaining mlim of magnitude 22 (Fig. 7, green line)
will provide the range necessary for the predicted O4 BNS
distribution for all but the most distant events. This is at-
tainable for GOTO with an increase in exposure time or
further image stacking (see e.g. Steeghs et al., in prep).

The mean response time of 8.79 hours from the time
that the LVC preliminary notice is received is impeded by
notices that are received during the La Palma day. The forth-
coming upgrade to add a southern node in Australia will
further improve GOTO’s response time by increasing the
window in which one of the facilities can respond (for over-
lapping latitudes), as well as greatly increasing the range of
observable declinations.

7 CONCLUSIONS

We find that even in its 4-telescope prototype configuration,
GOTO covered 70.3 per cent of the available probability re-
gion on average when following up LVC superevents. The
mean area covered was 732 square degrees, but up to 2667

square degrees were covered in a single campaign. Over 500
square degrees were observed during 15 of the campaigns,
including more than 1000 square degrees in 6 of them. In
cases of well-timed events that fell in unconstrained tiles,
GOTO-4 began observations less than a minute after receiv-
ing the LVC alert. On average, GOTO began observations
8.79 hours after receiving an alert (9.90 hours after the GW
trigger). Despite no detections of GW-EM counterpart can-
didates in O3a, the telescope therefore comfortably fulfilled
its role as a wide-field GW follow-up facility.
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Figure 6. The probability density function (PDF) of the hori-
zons achieved for a Bazin model during the 29 GOTO-4 LVC
follow-up campaigns (red). These are compared to the weighted

PDF (weights = 1/σ2
dist

) of the 5 BNS merger events during this
time (green, solid), their unweighted PDF (dashed), and the un-

weighted PDF when the distance to GW170817 (41 Mpc; Hjorth
et al. 2017) is included (dotted). The weighted PDF including
GW170817 is not shown because the distance errors for this event
are far smaller than the other 5 due to its EM detection.
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Figure 7. The mean fraction of 2D probability coverage that is
retained with distance for our sample using an assumed mlim for
all tiles. ”CALLIM5” is the GOTO fits header keyword for mlim.
In addition to greater depth overall, we expect more visits to pro-
duce a more ”box-like” plot, with flatter sections out to greater
distances, followed by faster drop offs. This is because more re-
peats along a given line of sight will provide deeper alternatives
to poor observing epochs with shallow horizons, which create the
sloping curvature seen here.

During the first half of O3, a typical GOTO observ-
ing campaign covered 45.3 per cent of the LVC probability
map, and could have unearthed an AT2017gfo-like KN up
to 126 Mpc away. GOTO-4 achieves a maximum depth suf-
ficient to recover our KN test source in one-in-five follow-
up attempts for a distance drawn from the BNS distance

distribution in O3a. However, we find that due to their dis-
tance, it is not possible to place model-constraining limits
on EM emission from the distant (> 250 Mpc) population
of BBH mergers detected by the LVC unless they house on-
axis gamma-ray bursts; GOTO-4 was able to cover almost
10 per cent of the total probability volume on average for an
on-axis GRB model, and rule one out on three occasions. We
also note that future GOTO GW follow-up strategy would
benefit from returning to a candidate field at ∼ 5 – 10 days
post-trigger in order to better constrain the possibility of an
off-axis GRB.

Based on our findings, the primary focus for GOTO
should now be improving depth. The average duplication
factor of 4.8 visits per LVC probability pixel and the re-
cent upgrade to 8 telescopes will help to achieve this goal.
We find that reaching a 5σ limit of 22 magnitudes will pro-
vide KN coverage of almost the entire BNS volume probed
by GW interferometers during O4 (though this ‘volume’ will
be anisotropic, and many mergers will be detected at or near
the horizon, where most of the volume is). This is expected
to be comfortably within reach once GOTO attains its full
2 node, 32 telescope configuration. Efforts to improve depth
will be aided by improved localisations from the expanding
network of GW detectors, which will allow longer GOTO
exposures and/or more repeated visits, and the option to
point both mounts at a single target. The second GOTO
node in Australia will also allow very rapid response in a
greater fraction of cases, as well as enable follow-up of trig-
gers whose fields lie predominantly at southern latitudes.
The versatile design of GOTO means that it can evolve as
the GW detectors do.
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DATA AVAILABILITY

Data products will be available as part of planned GOTO
public data releases.
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