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ABSTRACT 9 

At moderate stresses, shear cells are the preferred method of powder flow measurement. However, 10 

several industrial processes operate at low stresses, where the determination of unconfined yield 11 

strength by the shear cell technique may be inconsistent, or found not to correlate with observed 12 

behaviour. Alternatively, ball indentation can be used, which directly measures hardness; related to 13 

unconfined yield strength by the constraint factor. However, it is not known how constraint factor is 14 

influenced by particle properties. Here, ball indentation and shear cell methods are applied for glass 15 

beads of various size distributions, and the influence of particle size distribution on the constraint 16 

factor is explored. The constraint factor is shown to be independent of the pre-consolidation stress, 17 

though reduces as the d10, d50 or d90 are increased. Unconfined yield strength inferred from 18 

indentation measurements suggest that extrapolation of shear cell data to low stresses overestimates 19 

the unconfined yield strength. 20 
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1 Introduction 29 

Numerous industries such as pharmaceuticals, food and fast-moving consumer goods often handle 30 

materials in the form of powders. Reliable and consistent prediction of the flow behaviour of the 31 

powders can be very challenging, especially when the powders are cohesive. Cohesive materials can 32 

lead to the formation of stagnant regions or flow stoppages in process equipment, resulting in 33 

uncontrolled or erratic flow rates from industrial equipment, and potentially causing segregation 34 

problems [1]. Powder flow is not an inherent material property, being dependent on material 35 

physical properties, process conditions and environmental conditions [2]. 36 

Particle size and its distribution is one of the most influential properties on powder flow. For a given 37 

powder, reducing particle size tends to reduce flowability [3-9], because the particle surface area per 38 

unit mass increases as particle size decreases, providing a greater surface area for surface cohesive 39 

forces to interact, and therefore resulting in a more cohesive flow behaviour [10]. However, 40 

powders with similar size can exhibit different flow behaviours due to differences in other properties 41 

such as particle morphology and surface roughness [11,12]. Larger particles pack more efficiently 42 

due to the ease with which they flow past one another to fill voids in the bed, while as the particle 43 

size decreases flowability deteriorates and particles pack more loosely [13]. Cohesion becomes 44 

increasingly important as the particle size decreases, especially for powders that are very fine e.g. < 45 
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50 μm, since the interparticle forces are significant in comparison with the weight of the particles 46 

[14]. Though it should be noted that this threshold depends on other particle properties such as 47 

density, shape and roughness. 48 

The effect of the particle size distribution within a mixture is more complex. Lumay et al. [14] tested 49 

five flour powders, finding that as the size distribution becomes narrower, and at the same time the 50 

d10 becomes larger, flowability improves. Abdullah and Geldart [15] examined the packing of binary 51 

mixtures of coarse and fine particles in aerated and tapped states, with their findings being easily 52 

translatable to powder flow behaviour. In the case of aerated mixtures, the poured density initially 53 

increased with a reduction in fines content, eventually reaching a plateau. On the other hand, for the 54 

tapped system the tapped density initially increased with a reduction in fines content, and then 55 

decreased since insufficient small particles were available to fill the voids in between the larger 56 

particles. The Hausner ratio exhibited a continuous decrease with a reduction in fines content, 57 

indicating an improvement in flowability. Gold et al. [16] showed that when fine particles are added 58 

to lactose granules, the flowrate of the mixture increases with an increase in the amount of fine 59 

particles until a given maximum flowrate is achieved. However, when this maximum is reached, any 60 

increase in the amount of fine particles results in a decrease in the flowability of the mixture. In 61 

addition, their finding shows that the quantity of fine particles required to reach the maximum 62 

flowrate for a given material decreases with a reduction of the size of the fines. Liu et al. [17] 63 

showed that when the finest particles of a needle-shaped ibuprofen powder are separated from the 64 

bulk, the fine powders flow better than the bulk powder. This is attributed to the narrower size 65 

distribution. 66 

The flowability of a powder is generally improved by inclusion of larger particles and worsened by 67 

the inclusion of finer particles. This means that the influence of widening size distribution on the 68 

powder flowability can be difficult to predict [18]. Molerus and Nwylt [19] found that for binary 69 

mixtures of coarse and fine limestone particles, an increase in the fines content results in an increase 70 
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in the unconfined yield strength, eventually becoming equal to the strength of the fines alone once a 71 

fines content of 30 % w/w is reached. At fines contents equal or greater than this it is expected that 72 

the coarse particles are completely embedded by the fines, and so the flow behaviour is governed by 73 

the interparticle forces between the fines. In a binary mixture of coarse and fine particles, contacts 74 

between coarse particles dominate flow behaviour when the fines content is small, while contacts 75 

between fine particles dominate when the fines content is large, with the coarse-fine contacts not 76 

seen to dominate at any fines content [20]. 77 

Reliable prediction of powder flow based solely on particle properties is not yet possible, due to the 78 

complexity of powder systems. However, a large number of techniques have been developed for 79 

evaluating powder flowability, thus enabling the decoupling of the contribution of particle size, 80 

among other parameters, on granular flow. None of these techniques are applicable across a full 81 

range of applied stresses and strain rates though, and therefore consideration needs to be given for 82 

the measurement technique to be used for each circumstance. However, shear cells are the most 83 

well-established flowability measurement method, and are readily used for silo and hopper design 84 

[21,22]. Shear cells determine the onset of powder flow in a quasi-static manner, measuring the 85 

shear stress required to initiate flow under a given normal stress, and subsequently allowing the 86 

unconfined yield strength to be estimated from the measured yield locus. Shear cells typically 87 

operate under moderate to high stresses, and like the majority of powder testers often fail to 88 

reliably assess powder flowability at low consolidation stresses (≤ 1 kPa). At such stresses shear cells 89 

are normally unable to generate steady-state shear, or the reproducibility of the measurement of 90 

unconfined yield strength is greatly reduced, or does not correlate with observed process behaviour 91 

[23,24]. Flow behaviour at low stresses may be estimated from shear testing at higher stresses by 92 

assuming linearity of the yield loci, and extrapolating towards zero normal stress. However, this 93 

leads to an overestimation of unconfined yield strength and cohesion, since yield loci tend to deviate 94 

sharply from the linear regression in the region of low stresses [23]. 95 
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There are many industrial processes during which granular materials are subjected to low stresses, 96 

such as die filling and dosing of powders in capsules. Under such stresses, small contact areas exist 97 

between constituent particles, and very little particle deformation occurs, leading to a low structural 98 

strength [25]. In order to address the need for reliable methods to measure flow resistance of 99 

weakly consolidated powders, ball indentation (BI) was introduced by Hassanpour and Ghadiri [26], 100 

with its operational window being thoroughly established experimentally by Zafar et al. [27] and 101 

computationally by Pasha et al. [28]. In this technique a die, made of low friction material, is filled 102 

with powder and pre-consolidated by uniaxial compression with a piston, which is then unloaded. 103 

Following this, a spherical indenter is driven into the sample, whilst its penetration depth and the 104 

resulting vertical force are measured until a desired depth is reached, and then the indenter is 105 

unloaded (Fig. 1). 106 

 107 

Fig. 1. Indentation step [29]. 108 

 109 

From the force-displacement response of the powder bed, the hardness of the material is directly 110 

measured via Eq. (1), which corresponds to the resistance of the bed to plastic deformation. 111 

 112 

where Fmax is the maximum indentation load and A is the projected area of the impression of the 113 

indenter, calculated from Eq. (2): 114 
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 115 

where is the indenter diameter and hc is the indent depth after unloading. If unloading has 116 

negligible effect on the material’s recovery, the penetration depth at maximum indentation load can 117 

be used in place of hc [26]. 118 

Ball indentation can be applied as long as the powder compact has a relatively flat surface, which is 119 

typically achieved at pre-consolidation stresses as low as 100 Pa. It therefore offers the capability of 120 

obtaining hardness measurements at any stress level above this. However, it is commonly of interest 121 

to measure the unconfined yield strength, as measured by uniaxial compression tests, or determined 122 

in a shear cell. Tabor [30] demonstrated for continuum materials that hardness is directly linked to 123 

the unconfined yield strength, σc, via Eq. (3): 124 

 125 

where C is the constraint factor. The constraint factor represents the additional resistance caused by 126 

an elastically deforming region around the plastically deforming indentation zone. This leads to an 127 

increase in the local yield strength, represented by the hardness [31]. This has also been observed in 128 

particulate systems [26,32]. In the case of continuum solids, the constraint factor has been stated to 129 

have a value of 3 for rigid-perfectly plastic materials [33], while according to Tabor [30] this value is 130 

applicable only for ductile metals. Furthermore, for continuum materials C is known to depend on 131 

material properties [34]. Johnson [35] introduced a relationship between indentation hardness and 132 

yield strength for elastic-perfectly plastic materials, based on Young’s modulus, radius of the 133 

impression, and the indenter radius. For particle systems the constraint factor doesn’t have a fixed 134 

value, with different values determined for a variety of powders [26,32,36]. Currently the constraint 135 

factor of a powder is not known a priori, nor is it known which particle properties influence C, and to 136 

what extent. Shedding light on all of the above is of particular importance because it will render it 137 

possible for Eq. (3) to be utilised to infer unconfined yield strength from ball indentation 138 

measurements at low stresses, which otherwise cannot be easily determined [32]. 139 
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The aim of this study is to measure powder flowability using shear cell testing and ball indentation in 140 

order to determine how powder flowability at low stresses (≤ 1 kPa) differs from that at high 141 

stresses, and to investigate the influence of particle size and size distribution on powder flowability 142 

and the constraint factor. Furthermore, the reliability of both techniques at low stress levels is 143 

evaluated. 144 

2 Materials and methods 145 

In this study, glass beads supplied by Sigmund Lindner GmbH (Germany) are tested as a model 146 

material, due to their high sphericity and availability in a wide range of sizes. For each experimental 147 

series, a set of samples is prepared which vary by one parameter: median particle size, width of size 148 

distribution, d10, or d90. Glass beads were sieved using British Standard sieves to produce five 149 

consecutive single sieve cuts of 45 - 53, 53 - 63, 63 - 75, 75 - 90 and 90 - 106 μm, for the study of the 150 

influence of particle size on the flow behaviour. Furthermore, by mixing the above single sieve cuts, 151 

wider size distributions were created to study the influence of the width of the size distribution on 152 

flowability. A 53 - 90 μm mixture was created by mixing 50 % w/w of the 63 - 75 μm single sieve cut 153 

and 25 % w/w of each of the 53 - 63 and 75 - 90 μm single sieve cuts, while a 45 - 106 μm mixture 154 

was created by mixing 40 % w/w of the 63 - 75 μm sieve cut, 20 % w/w of each of the 53 - 63 and 75 155 

- 90 μm sieve cuts, and 10 % w/w of each of the 45 - 53 and 90 - 106 μm sieve cuts. Moreover, the 156 

median single sieve cut of 63 - 75 μm was mixed with fractions of fine and coarse particles to 157 

investigate the influence of the shift of d10 and d90, respectively, on powder flowability. In this case, 158 

the coarse particles are from a 150 - 180 μm sieve cut and the fine particles are from an as received 159 

‘0 - 20 μm’ batch. Mixtures consisting of 90 % w/w 63 - 75 μm and 10 % w/w coarse/fine particles 160 

and others having 80 % w/w 63 - 75 μm and 20 % w/w coarse/fines were created. All mixtures were 161 

created by mixing in a TURBULA T2C Shaker-Mixer at 49 rpm for 45 mins. 162 

Particle characterisation of all aforementioned samples was conducted by dynamic image analysis 163 

using the QICPIC (Sympatec, Germany) system with the GRADIS dry dispersion mode, except for the 164 
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mixtures of 90 % w/w 63 - 75 μm with 10 % w/w fines and 80 % w/w 63 - 75 μm with 20 % w/w fines 165 

that were analysed by laser diffraction using the Mastersizer 2000 (Malvern Panalytical, UK), since 166 

the fines were too small to be analysed using the QICPIC. The size distributions of the consecutive 167 

single sieve cuts, the wider size distribution mixtures, the mixtures with coarse particles and the 168 

mixtures with fines are presented in Figs. 2, 3, 4 and 5, respectively. Shape characterisation of the 169 

samples was carried out with the QICPIC and is shown in Table 1, along with the size data for all 170 

samples. 171 

 172 

Fig. 2. Size distributions of glass bead single sieve cuts. 173 

 174 
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 175 

Fig. 3. Size distributions of glass bead wider distribution mixtures. 176 

 177 

 178 

Fig. 4. Size distributions of glass bead mixtures with coarse particles. 179 

 180 



10 

 

 181 

Fig. 5. Size distributions of glass bead mixtures with fines. 182 

 183 

Table 1. Material characterisation overview. 184 

 Material d10 d50 d90 Span  

[(d90-d10)/d50] 

Sphericity AR 

(width/length) 

45 - 53 μm glass beads# 48.9 58.4 72.1 0.40 0.91 0.85 

53 - 63 μm glass beads# 58.8 67 80.5 0.32 0.92 0.88 

63 - 75 μm glass beads# 68.3 79.9 98 0.37 0.92 0.89 

75 - 90 μm glass beads# 84 92.9 112.1 0.30 0.93 0.91 

90 - 106 μm glass beads# 96.7 108 128.3 0.29 0.93 0.92 

53 - 90 μm glass beads# 65.1 81.2 103.5 0.47 0.92 0.89 

45 - 106 μm glass beads# 61.9 81.5 106.8 0.55 0.92 0.88 

63 - 75 μm + 10 % coarse glass beads# 67 80.1 159.3 1.15 0.93 0.9 

63 - 75 μm + 20 % coarse glass beads# 68.7 84.4 183.5 1.36 0.93 0.91 

63 - 75 μm + 10 % fine glass beads## 41 70.1 99.7 0.84 - - 

63 - 75 μm + 20 % fine glass beads## 9.8 67.5 97.5 1.30 - - 

 185 

 186 

All samples of glass beads were then silanised in order to make them cohesive. The commercially 187 

available Sigmacote® silane solution supplied by Merck (Germany) was used for the surface 188 

treatment. Sigmacote® is 1,7-Dichloro-1,1,3,3,5,5,7,7-octamethyltetrasiloxane in Heptane solution. 189 

A 50 - 75 g sample of powder (depending on particle size) was submerged in Sigmacote® for 30 190 

minutes and the excess solution was removed by vacuum filtration for reuse. This step was repeated 191 

three times in total. Then, the solids were washed with de-ionised water in order to remove the 192 

# Size measurement by QICPIC (GRADIS)              
## Size measurement by Mastersizer             
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hydrochloric acid by-product of the reaction. The water was then removed and the coated samples 193 

were left in the oven overnight to dry at 50 oC. 194 

The flowability of all samples was measured both by shear cell testing and ball indentation. First, in 195 

order to determine the unconfined yield strength of the materials, shear testing was carried out 196 

using the cylindrical shear cell attachment of the FT4 Powder Rheometer (Freeman Technology, UK). 197 

The principles of shear testing are covered extensively in literature, and can be found elsewhere 198 

[23]. For each sample, tests at 2, 4, 6 and 8 kPa pre-shear normal stress (σpre) were carried out. In 199 

addition to this, in the case of the 45 - 53 μm sample, additional shear tests were performed at low 200 

pre-shear normal stresses of 0.06, 0.1, 0.25, 0.5 and 1 kPa. A pre-shear normal stress of 0.06 kPa 201 

represents the lowest possible stress in the FT4 that will allow five unique, lower values of target 202 

applied normal stress to be given. In each case, the target normal stresses were chosen by trial and 203 

error, so that they are distributed approximately equidistantly and the point of incipient flow with 204 

the lowest normal stress is located close to, but at a higher stress than the tangency point of the 205 

yield locus to the failure Mohr circle. This approach is followed to minimise extrapolation of the yield 206 

locus in order for the failure Mohr circle to be constructed, which would lead to increased 207 

uncertainty when determining the unconfined yield strength [23]. The desired range of normal 208 

stresses for shear to failure is covered extensively by Schulze [23]. As a result of this approach, the 209 

target normal stresses that were chosen to be applied in the shear tests varied for each of the 210 

materials tested. 211 

At each pre-shear normal stress the shear cell software takes the measured shear stress at each 212 

normal stress to generate the yield locus for this packing state. By default the FT4 software applies a 213 

linear fit to the measured points, followed by application of Mohr circle analysis to allow the major 214 

principal stress, σ1, the unconfined yield strength, σc, and subsequently the flow function coefficient, 215 

ffc, to be determined for each pre-shear normal stress. However, it was found that in many cases the 216 
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measured yield locus was not tangent to the constructed failure Mohr circle, but cut through the 217 

circle, as shown in Fig. 6, therefore the unconfined yield strength was overestimated. 218 

 219 

Fig. 6. Yield locus automatically generated by the FT4 software at σpre = 8 kPa. 220 

 221 

In order to address this issue, the Warren Spring model [37] was employed for the characterisation 222 

of the yield locus using a MATLAB code provided by Dr. Massih Pasha (The Chemours Company, 223 

USA). A representative example of the Warren Spring fit to the same experimental data as in Fig. 6 is 224 

shown in Fig. 7. The pre-shear point was not considered for the fitting, to avoid the extra curvature 225 

to the yield locus and a reduction of the estimated major principal stress that its inclusion would 226 

cause. For each material, three repeats are made at each pre-shear normal stress, and the average 227 

results are reported with the error bars indicating the standard deviation of the measurement. 228 
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 229 

Fig. 7. Yield locus generated using the Warren Spring model at σpre = 8 kPa. 230 

 231 

Following the determination of σ1 and σc  at each pre-shear normal stress, the hardness values for all 232 

samples were measured by ball indentation at the major principal stresses derived from the FT4 233 

shear cell tests, to allow comparison with shear cell measurements and the constraint factor to be 234 

computed using the approach outlined in the introduction. Additionally, indentation tests are 235 

conducted at low consolidation stresses, namely 0.1, 0.2, 0.4, 0.6, 0.8 and 1 kPa. For the ball 236 

indentation experiments, the criteria for sample, die and indenter dimensions established by Zafar et 237 

al. [27] are adhered to for this work. A 20 mm diameter stainless steel die, which is attached to a 238 

metal plate extending beyond the outer wall of the die, is filled by passing the powder through a 239 

sieve with an aperture approximately five times greater than d50. The sieve is placed directly above a 240 

funnel, above the die. The die height is 20 mm, with a bed height of 15 - 20 mm generated in all 241 

cases, and the powder mass is weighed. The die is placed below a stainless steel piston of 19.8 mm 242 

diameter attached to an Instron 1175 mechanical testing machine (Instron, USA) by a 1 N load cell, 243 

which has a resolution of 0.25 mN. Before each test is started, the metal plate to which the die is 244 

attached is driven towards the piston while the force is recorded (with the die offset to prevent 245 

contact with the die walls) until contact is made, in order to determine the distance between the 246 

base of the die and the piston. After that, the plate is returned to its starting position, and the die is 247 
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centred below the piston. At the start of the actual test, the die is driven upwards, towards the 248 

piston, at a vertical speed of 1 mm/min, therefore testing in the quasi-static regime, until the desired 249 

consolidation stress is reached. The final displacement of consolidation, zf, is recorded and used 250 

along with the distance between the base of the die and the piston at the starting point, zo, to 251 

determine the bed height, and consequently determine the packing fraction, χ, using Eq. (4): 252 

 253 

where ρb and ρt are the bulk and true densities, respectively, M and V are the mass and volume of 254 

the powder, respectively, and Dd is the die diameter. 255 

The sample is then unloaded at the same velocity, and the piston is replaced by a 4 mm diameter, 256 

spherical, stainless steel indenter aligned centrally above the powder bed. The die is then driven 257 

upwards, towards the indenter, at the same speed as the consolidation step, until contact is 258 

detected, which is considered to be when a force of 3 mN is registered. Following that, the 259 

penetration is continued until the desired penetration depth is reached, and the sample is then 260 

unloaded. The ball indentation setup is shown in Fig. 8. 261 
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 262 

Fig. 8. Ball indentation setup (a: consolidation, b: penetration). 263 

 264 

The bed hardness is calculated using Eq. (1), with the projected area of the impression of the 265 

indenter determined using Eq. (2). Hardness is typically overestimated at shallow depths, whilst at 266 

large penetration depths further consolidation may occur, which also leads to an overestimation of 267 

hardness. It is necessary for the measured hardness to be independent of the penetration depth in 268 
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order to represent plastic yield stress [32]. The range of penetration depths that provide a stable 269 

hardness measurement is therefore determined. The dimensionless penetration depth, hd, is 270 

determined using Eq. (5), with values in the range of 0.1 - 0.7 being applied for each powder at 271 

consolidation stresses of 0.1 and 1 kPa. 272 

 273 

As such, a dimensionless penetration depth determined to be in the stable hardness range is then 274 

applied in all experiments for the remaining consolidation stresses for a given powder. The ball 275 

indentation technique is applied at the major principal stresses determined in the shear cell 276 

experiments, where it is assumed that the normal stress in the indentation process is equal to the 277 

major principal stress. The constraint factor is then determined at these major principal stresses. In 278 

addition, the ball indentation method is applied at low consolidation stresses of 0.1, 0.2, 0.4, 0.6, 0.8 279 

and 1 kPa. The unconfined yield strength is then inferred at these stresses using Eq. (3) and the 280 

established constraint factor for the powder. For each material, five repeats are made at each pre-281 

shear normal stress, and the average results are reported with the error bars indicating the standard 282 

deviation of the measurement. For all the experiments carried out here the temperature was 20 - 25 283 

oC and the relative humidity (RH) was 30 - 65 %. 284 

3 Results and discussion 285 

3.1 Effect of particle size on constraint factor and flow behaviour 286 

The measurements of unconfined yield strength at the corresponding major principal stresses 287 

determined for five consecutive single sieve cuts of glass beads silanised by Sigmacote® are shown 288 

in Table 2. For all sizes, the unconfined yield strength is found to increase approximately linearly 289 

with major principal stress, whilst decreasing with increasing particle size, as shown in Fig. 9. For a 290 

given pre-shear normal stress, there is a clear increase in flowability with increasing particle size, as 291 

evidenced from the ffc values in Table 2. In addition to this, the flow function coefficient increases 292 
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with pre-shear normal stress, and ranges from 1.6 - 4.2 for the 45 - 53 μm glass beads to 2.4 - 6.3 for 293 

the 90 - 106 μm glass beads. 294 

Table 2. FT4 shear test data for five consecutive single sieve cuts of silanised glass beads. 295 

 45 - 53 μm 53 - 63 μm 63 - 75 μm 75 - 90 μm 90 - 106 μm 

σpre σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc 

2 3.2 2.0 1.6 3.2 1.8 1.8 3.1 1.5 2.1 3.1 1.5 2.1 3.0 1.3 2.4 

4 5.7 2.2 2.6 5.8 2.0 2.9 5.7 1.8 3.1 5.7 1.6 3.7 5.7 1.5 3.8 

6 8.2 2.3 3.5 8.3 2.1 3.9 8.3 1.9 4.3 8.4 1.8 4.6 8.3 1.7 5.0 

8 10.8 2.6 4.2 10.9 2.4 4.6 10.9 2.1 5.2 10.9 1.9 5.9 10.8 1.7 6.3 

 296 

 297 

Fig. 9. Unconfined yield strength as a function of major principal stress for five consecutive single 298 

sieve cuts of silanised glass beads. 299 

 300 

Hardness measurements at dimensionless penetration depths of 0.1, 0.3, 0.5 and 0.7 were 301 

performed on separate powder beds of 63 - 75 μm glass beads consolidated to 0.1 and 1 kPa, as 302 

shown in Fig. 10. The dimensionless penetration depths are calculated using Eq. (5). It can be seen 303 

that for both tested consolidation stresses hardness is overestimated at a dimensionless penetration 304 

depth of 0.1. This phenomenon is observed for all materials at shallow indentation depths. However, 305 
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beyond this point hardness reaches a plateau, becoming constant for dimensionless penetration 306 

depths greater than 0.3. 307 

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

H
a

rd
n

e
ss

 (
k

P
a

)

Dimensionless Penetration Depth

0.1 kPa

1 kPa

0.1 kPa - continuous

1 kPa - continuous

308 
 309 

Fig. 10. Hardness as a function of dimensionless penetration depth for the 63 - 75 μm single sieve 310 

cut of silanised glass beads. 311 

 312 

These findings are in agreement with the DEM simulations of Pasha et al. [28] and the experiments 313 

of Zafar et al. [27]. Here the hardness was determined by considering the penetration depth at 314 

maximum indentation load rather than the elastically-recovered depth. Fig. 11 shows the force-315 

displacement profile for indentation up to a dimensionless penetration depth of 0.5 for a bed of 63 - 316 

75 μm glass beads consolidated to 10.9 kPa. The hardness calculated at the highest major principal 317 

stress of 10.9 kPa for the 63 - 75 μm sample, by considering the projected area of the impression of 318 

the indenter after unloading, was found to be almost identical (< 0.2 % difference) to the value 319 

computed by using the penetration depth at maximum indentation load to determine hardness, i.e. 320 

by ignoring unloading. This is expected given the almost vertical slope of the unloading curve. If the 321 
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unloading effect is ignored, then hardness can be estimated at any penetration depth up to the 322 

depth tested. In Fig. 10 this is referred to as ‘continuous hardness’, and is calculated from 323 

indentation tests at a dimensionless penetration depth of 0.7. This estimate is shown to be almost 324 

identical to the direct measurement made at lower depths for both stresses, since the unloading is 325 

negligible for this material. The effect of unloading on hardness was also investigated at the highest 326 

major principal stresses for all other samples of glass beads tested in this work, and was found to be 327 

negligible. As a result, the use of the penetration depth at maximum indentation load in hardness 328 

calculations is justified for this material, it was therefore considered for all the hardness calculations. 329 

Furthermore, the behaviour of hardness as a function of penetration depth is independent of the 330 

applied stress, therefore the obtained trends at higher stresses are expected to be qualitatively the 331 

same, with the same depth range providing valid measurements. This behaviour is consistent for all 332 

other sizes of glass beads investigated in this work. With the reliable range of hardness 333 

measurements now established, a dimensionless penetration depth of 0.5 is applied for all following 334 

ball indentation measurements on silanised glass beads. 335 

 336 
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Fig. 11. Force as a function of dimensionless penetration depth during indentation of a 63 - 75 μm 339 

glass beads bed at 10.9 kPa. 340 

 341 

Although a 3 mN force is taken to indicate contact between the indenter and the powder bed, the 342 

indenter penetrates the specimen slightly before this target force is reached. This can be seen from 343 

the slope of the force-displacement curve during the contact detection step in Fig. 12. The 344 

penetration depth is controlled from the point that the 3 mN force is detected, however the actual 345 

penetration depth is determined based on the point contact is made. Consequently, even though 346 

the target dimensionless penetration depth for all hardness measurements was 0.5, the true 347 

dimensionless penetration depth was larger and varied between tests. However, this does not affect 348 

the validity of most of the hardness measurements (particularly at moderate to high stresses), since 349 

the true dimensionless penetration depth of 0.7 was not exceeded, and the measurements have 350 

already been shown to be independent of penetration depth for dimensionless penetration depths 351 

of 0.3 - 0.7. In some repeats at very low stresses though, the dimensionless penetration depth of 0.7 352 
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was exceeded, and hardness was overestimated, however in most cases this overestimation was 353 

within test error. 354 

355 
 356 

Fig. 12. Force against displacement during indentation of a 63 - 75 μm glass beads bed. 357 

 358 

The ball indentation method is applied for all five consecutive single sieve cuts of silanised glass 359 

beads using the average major principal stress determined from the three shear cell tests for each 360 

sample at each pre-shear normal stress, with the results presented in Fig. 13. At high stresses (> 1 361 

kPa) the hardness values of the five sieve cuts are distinctively different, following the same trend as 362 

the shear cell results; increasing approximately linearly with major principal stress, and decreasing 363 

with an increase in particle size. At low stresses (≤ 1 kPa) the increase of hardness with stress is 364 

observed to be much steeper than at high stresses, a phenomenon also observed by Zafar [32]. 365 

Furthermore, in the case of weakly consolidated powder beds, hardness values are not distinctively 366 

different among the different particle sizes. In this range the error bars are somewhat larger, due to 367 

the difficulty of reproducing a uniformly flat powder bed surface, as well as creating a consistent 368 
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packing structure. As the applied consolidation stress increases, the influence of bed surface 369 

asperities becomes less important. At all stress levels the standard deviation of five measurements 370 

(indicated by the error bars) is low; with the coefficient of variation being less than 10 % in most 371 

cases. 372 

 373 

Fig. 13. Hardness as a function of major principal stress for five consecutive single sieve cuts of 374 

silanised glass beads. 375 

 376 

In order to investigate the cause of the discrepancy of the hardness increase against stress between 377 

high and low stresses, the packing fraction for all five sieve cuts is calculated using Eq. (4), and is 378 

shown against major principal stress in Fig. 14. 379 



23 

 

 380 

Fig. 14. Packing fraction against major principal stress for five consecutive single sieve cuts of 381 

silanised glass beads. 382 

 383 

As can be seen from Fig. 14, all glass bead samples exhibit a dramatic increase of packing fraction 384 

with the increase of consolidation stress in the low stress region. A small increase of the applied 385 

stress leads to a much more compacted powder bed, which in turn provides a great increase of 386 

resistance to plastic deformation. On the other hand, in the high stress region, the packing state of 387 

the powder beds does not change considerably with the applied stress. The aforementioned 388 

behaviour leads to an approximately linear increase of hardness with packing fraction in the range 389 

0.45 - 0.55, as shown in Fig. 15. Generally hardness is greater for smaller particles at a given packing 390 

fraction, although this behaviour is clear only at high stresses. At low stresses the error bars of 391 

packing fraction are significant, and the difference in hardness among the different particle sizes is 392 

not clear. 393 
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 394 

Fig. 15. Hardness as a function of packing fraction for five consecutive single sieve cuts of silanised 395 

glass beads. 396 

 397 

The constraint factor is determined at each stress level for all sieve cuts of silanised glass beads using 398 

Eq. (3) and the measurements of unconfined yield strength and hardness, and presented against 399 

major principal stress in Fig. 16. The constraint factor is shown to be approximately constant for a 400 

given sieve cut across all tested major principal stresses. Moreover, C is found to generally decrease 401 

with an increase in particle size. These findings agree with the work of Zafar [32]. 402 
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Fig. 16. Constraint factor as a function of major principal stress for five consecutive single sieve cuts 405 

of silanised glass beads. 406 

 407 

Since the constraint factor was found to be virtually independent of the major principal stress 408 

applied, it is assumed to remain constant at low stresses. This assumption is validated by DEM 409 

simulations of Stavrou et al. [29], which show C to remain constant down to the lowest investigated 410 

stress of 0.1 kPa. For all samples, the average constraint factor across all major principal stresses is 411 

used along with the ball indentation measurements at low consolidation stresses to determine the 412 

unconfined yield strength at such stresses via Eq. (3). Fig. 17 shows the inferred unconfined yield 413 

strength values from the ball indentation measurements at major principal stresses of 0.1, 0.2, 0.4, 414 

0.6, 0.8 and 1.0 kPa, along with the unconfined yield strength measurements carried out in the shear 415 

cell at pre-shear normal stresses of 2, 4, 6 and 8 kPa shown in Fig. 9. The indentation technique 416 

suggests a significant reduction in unconfined yield strength at lower consolidation levels in 417 

comparison to values that would be linearly extrapolated from the shear tests. 418 
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 419 

Fig. 17. Unconfined yield strength shear cell measurements and inferred values from ball indentation 420 

for five consecutive single sieve cuts of silanised glass beads. 421 

 422 

Measurement of unconfined yield strength at low stresses is often not reliable, or even possible, 423 

using a shear cell, however the shear cell is more likely to achieve steady-state failure, and therefore 424 

generate a result, for more cohesive powders. Since the 45 - 53 μm are the most cohesive glass 425 

beads used here, shear cell measurements are made at pre-shear normal stresses of 0.06, 0.1, 0.25, 426 

0.5 and 1 kPa for this sample, and are shown compared to the indentation measurements in Fig. 18. 427 

The trends of unconfined yield strength against major principal stress are remarkably similar in this 428 

low stress range for both techniques. 429 
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 430 

Fig. 18. Unconfined yield strength at low stresses determined from the shear cell and ball 431 

indentation for the 45 - 53 μm single sieve cut of silanised glass beads. 432 

 433 

In order to further investigate the shear cell measurements, the measured shear stresses and 434 

applied normal stresses of three repeats of the FT4 shear cell measurements at the pre-shear normal 435 

stresses of 0.06, 0.25, 1, 4, and 8 kPa, are shown in Fig. 19. At pre-shear normal stresses of 0.06 and 436 

0.25 kPa the data show great variation among repeats, with the generated yield loci not consistently 437 

showing a monotonic increase in shear stress with normal stress. In addition to this, in both cases 438 

there is notable discrepancy between the target normal stresses and the actual applied stresses. The 439 

nature of the FT4 shear cell protocol, which leads to shearing from the highest to the lowest chosen 440 

target stress, can lead to data points for which the shear stress exceeds the pre-shear stress when 441 

the applied stress is greater than the target stress, which invalidates the measurement. This 442 

phenomenon is observed in the case of tests at 0.06 kPa, where stresses beyond 0.06 kPa have been 443 

applied during the shear test, and leads to an overestimation of the unconfined yield strength, 444 

however this is not observed at higher stresses. At a pre-shear normal stress of 1 kPa the generated 445 
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test data are highly reproducible, although the applied stresses are still not equidistant, and deviate 446 

notably from the target normal stresses, but less so than at lower pre-shear normal stresses. At a 447 

pre-shear normal stress of 4 kPa, the shear tests are highly reproducible and the achieved stresses 448 

are equidistant, though deviate slightly from the target normal stresses. At 8 kPa, not only are the 449 

tests highly reproducible, but the target stresses have been virtually achieved. Therefore, a general 450 

trend of increasing reliability and reproducibility of shear testing is observed as the pre-shear normal 451 

stress is increased. This highlights the need for detailed analysis of shear cell data to assess the 452 

validity of the measured yield locus, particularly at low pre-shear normal stresses. 453 
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454 

455 

 456 

Fig. 19. Measured shear and applied normal stresses for 45 - 53 μm silanised glass beads at pre-457 

shear normal stresses of a) 0.06 kPa, b) 0.25 kPa, c) 1.00 kPa, d) 4.00 kPa and e) 8.00 kPa. 458 

 459 
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3.2 Flowability of silanised glass bead mixtures of varying particle size 460 

distribution 461 

3.2.1 Effect of width of particle size distribution on constraint factor and flow behaviour 462 

The FT4 shear cell measurements of unconfined yield strength at the corresponding major principal 463 

stresses are shown in Table 3 for the medium 63 - 75 μm single sieve cut, along with two mixtures of 464 

53 - 90 μm and 45 - 106 μm of silanised glass beads. The two mixtures have essentially the same d50 465 

as the single sieve cut, but wider size distributions, as reported in Table 1. As the size distribution is 466 

widened, the d10 and d90 reduce and increase, respectively, by about 3 - 4 μm with each additional 467 

sieve cut. The unconfined yield strength against major principal stress is shown in Fig. 20. 468 

Unconfined yield strength increases approximately linearly with major principal stress, as with the 469 

single sieve cuts in section 3.1. It can be seen from both Table 3 and Fig. 20 that at a given pre-shear 470 

normal stress there is a slight increase in unconfined yield strength as the size distribution is 471 

widened. Moreover, ffc is found to increase with the pre-shear normal stress applied and decrease 472 

as the size distribution is widened. 473 

Table 3. FT4 shear test data for three samples of silanised glass beads with varying width of size 474 

distribution. 475 

 63 - 75 μm 53 - 90 μm 45 - 106 μm 

σpre σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc 

2 3.1 1.5 2.1 3.2 1.6 1.9 3.2 1.8 1.8 

4 5.7 1.8 3.1 5.8 1.9 3.1 5.8 2.0 2.9 

6 8.3 1.9 4.3 8.4 2.1 4.1 8.4 2.2 3.8 

8 10.9 2.1 5.2 10.9 2.2 5.0 11.0 2.4 4.6 

 476 
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 477 

Fig. 20. Unconfined yield strength as a function of major principal stress for three samples of 478 

silanised glass beads with varying width of size distribution. 479 

 480 

Fig. 21 shows the hardness measurements made at all major principal stresses for all three size 481 

distributions of silanised glass beads. As with the unconfined yield strength from the shear tests 482 

above, hardness is observed to marginally increase when widening the size distribution at higher 483 

stresses, whereas no notable difference can be seen at low stresses. As with Fig. 13, indentation 484 

tests indicate a more rapid increase of hardness with major principal stress for weakly consolidated 485 

powder beds, which is explained by the packing fraction trend presented in Fig. 22. 486 
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 487 

Fig. 21. Hardness as a function of major principal stress for three samples of silanised glass beads 488 

with varying width of size distribution. 489 

 490 

 491 
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 492 

Fig. 22. Packing fraction as a function of major principal stress for three samples of silanised glass 493 

beads with varying width of size distribution. 494 

 495 

The constraint factor determined from the ball indentation and shear cell measurements for all size 496 

distributions is shown in Fig. 23. Once again, constraint factor is found to remain constant 497 

throughout the range of consolidation stresses applied. In addition to this, a slight reduction in 498 

constraint factor is observed with an increase in the span of the sample, however this effect may not 499 

be statistically significant. 500 
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 501 

Fig. 23. Constraint factor as a function of major principal stress for three samples of silanised glass 502 

beads with varying width of size distribution. 503 

 504 

Fig. 24 shows the unconfined yield strength values inferred from the ball indentation method at low 505 

stresses, along with the measurements made in the shear cell at higher stresses. As in the case of 506 

the consecutive single sieve cuts, the increase of the unconfined yield strength is estimated to be 507 

sharper with increasing major principal stress at lower stresses. At lower stresses the inferred values 508 

of unconfined yield strength are not distinctively different among the samples. 509 
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 510 

Fig. 24. Unconfined yield strength shear cell measurements and inferred values from ball indentation 511 

for three samples of silanised glass beads with varying width of size distribution. 512 

 513 

3.2.2 Effect of d10 and d90 on constraint factor and flow behaviour 514 

The FT4 shear testing data of 63 - 75 μm silanised glass beads mixed with 10 % and 20 % w/w coarse 515 

and fine particles are reported in Table 4, along with the data for the 63 - 75 μm single sieve cut for 516 

comparative purposes. The unconfined yield strength against major principal stress is shown in Fig. 517 

25. The addition of coarse particles is found to have negligible effect on the unconfined yield 518 

strength regardless of the quantity added, whilst the addition of fines substantially increases the 519 

unconfined yield strength, with a further increase observed as the quantity added increases. This is 520 

in agreement with the finding of Molerus and Nwylt [19] that unconfined yield strength increases 521 

with fines content up to 30 % w/w, beyond which it becomes equal to the strength of the fines 522 

alone. The addition of 20 and 10 % w/w coarse particles can be viewed as 80 and 90 % w/w 63 - 75 523 

μm added, respectively, to the 150 - 180 μm sample, and so the yield strength of the mixtures is 524 

essentially equal to the yield strength of the 63 - 75 μm sample in this case. Adding 10 % w/w coarse 525 
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particles leads in most cases to a slight reduction in ffc, with an increase in coarse content to 20 % 526 

w/w coarse particles causing the flow function coefficient to slightly increase again. The flow 527 

function coefficient decreases with the addition of fines, as shown in Table 4. 528 

Table 4. FT4 shear test data for 63 - 75 μm silanised glass beads mixed with varying amounts of 529 

coarse and fine particles, along with the 63 - 75 μm single sieve cut. 530 

 63 - 75 μm 

+ 20 % coarse 

63 - 75 μm 

+ 10 % coarse 

63 - 75 μm 

 

63 - 75 μm 

+ 10 % fines 

63 - 75 μm 

+ 20 % fines 

σpre σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc σ 1 σ c ffc 

2 3.2 1.6 2.0 1.7 1.8 1.9 3.1 1.5 2.1 3.3 2.0 1.7 3.5 2.5 1.4 

4 5.8 1.6 3.8 5.9 1.9 3.1 5.7 1.8 3.1 6.2 2.4 2.6 6.5 3.5 1.8 

6 8.4 2.0 4.2 8.5 2.1 4.0 8.3 1.9 4.3 8.9 2.4 3.8 9.4 4.4 2.2 

8 10.9 2.1 5.1 11.0 2.2 5.0 10.9 2.1 5.2 11.6 2.9 4.0 12.2 4.7 2.6 

 531 

 532 

Fig. 25. Unconfined yield strength as a function of major principal stress for 63 - 75 μm silanised 533 

glass beads mixed with varying amounts of coarse and fine particles, along with the 63 - 75 μm single 534 

sieve cut. 535 

 536 

Fig. 26 shows the hardness against major principal stress for the same mixtures of glass beads. A 537 

reduction of d10 (addition of fines) leads to an increase in hardness, as in the case of unconfined yield 538 
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strength. In contrast to the shear tests though, an increase in the d90 (addition of coarse particles) 539 

leads to a reduction in hardness. Though the addition of coarse particles has a less significant 540 

influence on the hardness of the mixture than the addition of fine particles. The packing fraction 541 

data, shown in Fig. 27, partially explain the increased resistance to plastic deformation with the 542 

addition of fines. However, when the quantity of fines added increases the packing fraction is not 543 

greatly increased, whereas hardness is significantly affected. The mixture that has 20 % w/w fines 544 

has more contacts between fine particles, hence being more resistant to flow. In the case of the 545 

mixtures with coarse particles, the large error bars mean that firm conclusions cannot be drawn. 546 

 547 

Fig. 26. Hardness as a function of major principal stress for 63 - 75 μm silanised glass beads mixed 548 

with varying amounts of coarse and fine particles, along with the 63 - 75 μm single sieve cut. 549 

 550 
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 551 

Fig. 27. Packing fraction as a function of major principal stress for 63 - 75 μm silanised glass beads 552 

mixed with varying amounts of coarse and fine particles, along with the 63 - 75 μm single sieve cut. 553 

 554 

The constraint factor values for the same samples with added coarse particles or fines are plotted in 555 

Fig. 28, and are shown to be relatively constant regardless of stress. Moreover, as a result of the 556 

trends observed in Figs. 25 and 26, C is found to decrease as the quantity of coarse particles in the 557 

mixture is increased, while it increases as the quantity of fines in the mixture increases. Regarding 558 

the glass bead mixtures studied in section 3.2.1, as size distribution is widened the d10 is reduced and 559 

d90 is increased by similar amounts, so the two competing effects seen in Fig. 28 cancel each other 560 

out, hence leading to only slight differences in the constraint factor between the narrow and wide 561 

size distributions (see Fig. 23). 562 
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 563 

Fig. 28. Constraint factor as a function of major principal stress for 63 - 75 μm silanised glass beads 564 

mixed with varying amounts of coarse and fine particles, along with the 63 - 75 μm single sieve cut. 565 

 566 

In order to clearly illustrate the effect of the addition of coarse and fine particles on the constraint 567 

factor, the average constraint factor values are shown for samples with added fines against d10 in Fig. 568 

29, and with added coarse particles against d90 in Fig. 30. It can be seen that C decreases as either d10 569 

or d90 are increased. 570 
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 572 

Fig. 29. Average constraint factor as a function of d10. 573 
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Fig. 30. Average constraint factor as a function of d90. 576 

 577 
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4 Conclusions 578 

The ball indentation technique was employed along with shear testing on a wide variety of glass 579 

bead samples in order to investigate the difference between powder flow behaviour at low and high 580 

stresses, and the influence of a number of size parameters (median particle size, width of size 581 

distribution, d10 and d90) on the constraint factor and flowability.  582 

Both unconfined yield strength and hardness were found to increase with an increase in the major 583 

principal stress applied, due to an increased packing fraction and interparticle contact area. At low 584 

stresses the increase in packing fraction with stress was more pronounced than at higher stresses, so 585 

were the hardness and unconfined yield strength measurements. Hardness was shown to be 586 

independent of penetration depth for dimensionless penetration depths between 0.3 - 0.7. The 587 

constraint factor determined from indentation and shear cell tests was virtually independent of the 588 

stress applied for all samples. As a result, the inferred unconfined yield strength from ball 589 

indentation at low stresses followed a similarly steep trend as hardness. This sharp change in 590 

behaviour at low stresses suggests that an extrapolation of shear cell results from higher stresses 591 

would overestimate the yield strength. 592 

An increase of median particle size led to an increase in powder flowability and decrease of the 593 

constraint factor. In addition to this, widening the size distribution, while maintaining the same 594 

median size, resulted in a slight decrease of both flowability and constraint factor. The addition of 595 

fines caused a great decrease of powder flowability and an increase of constraint factor, while the 596 

addition of coarse particles appeared to only decrease the material’s resistance to plastic 597 

deformation, with the unconfined yield strength being unchanged. As a result, the increase of coarse 598 

particle content led to a decrease of constraint factor. 599 

Overall, ball indentation shows good reproducibility down to consolidation stresses of 0.1 kPa. 600 

Whereas shear cell measurements in this low stress region produce inconsistent results for this 601 

material. 602 
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