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Abstract

We study the set S of labelled seeds of a cluster algebra of rank n inside a field F as

a homogeneous space for the group Mn of (globally defined) mutations and relabellings.

Regular equivalence relations on S are associated to subgroups W of AutMn
(S), and

we thus obtain groupoids W\S. We show that for two natural choices of equivalence

relation, the corresponding groups W c and W+ act on F , and the groupoids W c\S and

W+\S act on the model field K = Q(x1, . . . , xn). The groupoid W+\S is equivalent to

Fock–Goncharov’s cluster modular groupoid. Moreover, W c is isomorphic to the group

of cluster automorphisms, and W+ to the subgroup of direct cluster automorphisms, in

the sense of Assem–Schiffler–Shramchenko.

We also prove that, for mutation classes whose seeds have mutation finite quivers, the

stabiliser of a labelled seed underMn determines the quiver of the seed up to ‘similarity’,

meaning up to taking opposites of some of the connected components. Consequently, the

subgroup W c is the entire automorphism group of S in these cases.

Introduction

A cluster algebra, defined by Fomin and Zelevinsky in [10], is a type of commutative

algebra with a particular combinatorial structure coming from a collection of seeds,

related to each other by mutations. However, mutations are defined only locally and

there is no group of mutations acting globally on seeds. In order to obtain such an

action, one considers instead the larger collection of labelled seeds, on which mutations

do act as a group, as do permutations of the labels. By studying labelled seeds, with this

combined action of relabelling and mutation, we are able to apply the theory of groups

and homogeneous spaces to cluster combinatorics. The cluster automorphism group of

[1] and the cluster modular groupoid of [8] both appear naturally from this point of view.

It is also natural (and not uncommon) to consider cluster algebras inside any field F ,

over Q, isomorphic to K = Q(x1, . . . , xn), rather than restricting to subalgebras of K

itself. Each labelled seed then includes a choice of labelled free generating set in F , or

equivalently an isomorphism K → F .

The structure of the paper is as follows. In Section 1, we recall the definitions of

cluster algebras and labelled seeds, and see that the collection of labelled seeds forms a
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homogeneous space for the mutation group Mn, which is the semidirect product of the

free group on n involutions with the symmetric group on n elements. One goal will be

to study the automorphism group of this homogeneous space.

In Section 2, we describe the more general theory of regular equivalence relations on

homogeneous spaces, and explain the ‘Galois correspondence’ between such relations and

subgroups of the automorphism group of the homogeneous space. Such a subgroup gives

rise to an orbit groupoid, defined in Section 3, whose objects are the orbits under the

action of the subgroup.

In Section 4, we return to the setting of labelled seeds, and consider two particular

regular equivalence relations, one relating labelled seeds with the same quiver and the

other relating labelled seeds with ‘similar’ quivers, that is, quivers that are the same

up to taking the opposite of some connected components. By defining a functor on the

resulting orbit groupoids, we obtain an action of each groupoid on the model field K. We

also show that, for the equivalence relation of having the same quiver, the orbit groupoid

is equivalent to Fock and Goncharov’s cluster modular groupoid [8].

In Section 5, we show how the subgroups corresponding to our two special equivalence

relations act on F , with elements acting as cluster automorphisms in the sense of [1]. We

also observe that the isomorphism K → F , corresponding to any labelled seed, intertwines

the action of the orbit groupoid on K with the action of the group on F . We conclude

the section by showing that the group corresponding to the relation of having the same

quiver is isomorphic to the group Aut+ A of direct cluster automorphisms. The group

Autc A of all cluster automorphisms corresponds to the weaker relation of having similar

quivers.

We prove, in Section 6, that when the number of quivers occurring in a mutation

class of labelled seeds is finite, the relation of having similar quivers is the same as the

relation of having the same stabiliser under the mutation action, which is the relation

corresponding to the entire automorphism group of the homogeneous space of labelled

seeds. Thus in such classes, the stabiliser of a seed determines the similarity class of its

quiver.

Finally, in Section 7, we give examples of the sets of equivalence classes of labelled seeds

under our two chosen equivalence relations for various explicit quivers. In particular we

show that the conclusions of Section 6 need not hold in mutation classes with infinitely

many quivers.

1. Cluster algebras and labelled seeds

Cluster algebras were first defined in terms of seeds in [11]. We will consider only

a restricted class of cluster algebras, namely those of geometric type, without frozen

variables and with skew-symmetric exchange matrices. Such algebras can be defined as

follows.

Let F be a purely transcendental field extension of Q of transcendence degree n. A free

generating set of F is a set b ⊂ F (necessarily with n elements) such that each element

of F can be written uniquely as a rational function in the elements of b, with coefficients

in Q, i.e. b is a transcendence basis that generates F (cf. [3, Remark 2.2]).

A seed consists of a free generating set b for F and a quiver Q, with vertex set b, and

without loops or 2-cycles. Given v ∈ b, we can construct a new seed, called the mutation
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of the original seed at v, by replacing v by v′ ∈ F satisfying

vv′ =
∏

w∈b

wavw +
∏

w∈b

wawv ,

where A = (auw)u,w∈b is the adjacency matrix of Q, while replacing Q by its Fomin–

Zelevinsky mutation at v. If we mutate this new seed at v′, we recover the original seed.

Given an initial seed, the elements of all free generating sets belonging to the seeds that

can be obtained by iterated mutation from the initial seed are called cluster variables.

The subalgebra A ⊂ F they generate is a cluster algebra of rank n.

Note that, in our context, a quiver comprises no more data than its adjacency matrix.

In particular, an isomorphism of quivers is for us simply a bijection between the vertex

sets which preserves the arrow multiplicity between each ordered pair of vertices. When

a quiver has no loops or 2-cycles, its adjacency matrix A is uniquely determined by

the skew-symmetric exchange matrix A−AT. More detailed background information on

cluster algebras from quivers can be found in Keller’s survey article [15].

The automorphism group Aut F acts on seeds; an automorphism α replaces each

vertex variable x by α(x) and leaves the arrows fixed. Given a cluster algebra A ⊂ F ,

equipped with its collection of seeds, an element α ∈ Aut F is a cluster automorphism

of A if for every seed (Q,b) of A, the seed (Q,α(b)) is also a seed of A, up to reversing

the orientation of some connected components of Q (see [1, Definition 1, Lemma 2.3,

Proposition 2.4]). We say that α is direct if (Q,α(b)) is actually a seed of A, without

any reversal of orientation. Note that any cluster automorphism α permutes the cluster

variables of A and thus restricts to an algebra automorphism of A. We denote the group

of cluster automorphisms by Autc A and the subgroup of direct cluster automorphisms

by Aut+ A.

As defined above, mutation is only defined locally at each seed. However, it can be

convenient to label seeds with some indexing set I, so that there is a globally defined

mutation operation µi for each i ∈ I. This variation was introduced implicitly in [2,

§1.1] and explicitly in [12, Definition 2.3]; see also [15], [20]. For simplicity, we take

I = {1, . . . , n}, but note that the natural ordering of this set plays no role and any other

n-element set would do equally well.

Definition 1·1. A labelled seed is a pair (Q, β) in which Q is a quiver with vertex set

Q0 = I, and β = (βi : i ∈ I) ∈ F
I freely generates F .

We can define the mutation of (Q, β) at i as (Q, β) ·µi = (Q′, β′), where the quiver Q′

is given by the Fomin–Zelevinsky mutation of Q at the vertex i and

β′
j =

{
βj , j 6= i,
∏

k∈I β
aki
k

+
∏

k∈I β
aik
k

βi
, j = i,

where A = (aij)i,j∈I is the adjacency matrix of Q. If two labelled seeds differ by simulta-

neous relabelling of the quiver vertices and the free generating set, then they determine

the same (unlabelled) seed. This relabelling may be formulated as a free right action

of the symmetric group Sn on the set of labelled seeds: for a permutation σ ∈ Sn we

define (Q, β) ·σ = (Qσ, βσ), where βσ
i = βσ(i) and Q

σ is the quiver with vertex set I and

adjacency matrix aσij = aσ(i)σ(j).

Definition 1·2. The relabelling action of Sn combines with the mutation action of the
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µi to give a right action of the mutation group

Mn := Sn ⋉ 〈µ1, . . . , µn : µ2
i = 1〉

on the set of labelled seeds. It is a semi-direct product because, for any labelled seed

(Q, β), any i ∈ I and any σ ∈ Sn, we have

((Q, β) · σ) · µi = ((Q, β) · µσ(i)) · σ.

The inclusion of Sn in Mn is the key to recovering the usual cluster combinatorics of

unlabelled seeds via the group action. In particular, we can define the mutation class of

a labelled seed (Q, β) simply to be its orbit S under the Mn-action and consider that

such an orbit constitutes a cluster structure on F : the clusters are the sets {β1, . . . , βn}

for each (Q, β) ∈ S, and, as usual, the set of cluster variables is the union of all clusters

and the cluster algebra A(S) is the subalgebra of F generated by all cluster variables.

Note that A(S) can also be described as the cluster algebra generated in the usual way

by the unlabelled seed naturally attached to any labelled seed of S. We also note that

a cluster structure S is a homogeneous space for Mn, an observation that motivates our

approach in this paper.

Another benefit to considering the set of labelled seeds is that the action of 〈µi : i ∈ I〉

can be encoded by the structure of a labelled graph, which we will denote by ∆(F): its

vertices are the labelled seeds of F , two of which are joined by an edge labelled i ∈ I

when they are related by mutation at i. In other words, µi acts by interchanging all pairs

of vertices that are adjacent along an edge labelled i. The graph ∆(F) is n-regular as a

labelled graph, i.e. each vertex is incident with exactly one edge labelled i for each i ∈ I.

The action of Sn, taking a seed (Q, β) to (Qσ, βσ), is equivariant, i.e. edges labelled σ(i)

are taken to edges labelled i. Thus the quotient of ∆(F) by Sn is not a labelled graph.

Given a cluster structure on F , that is, a mutation class S of labelled seeds, we will

denote the full subgraph of ∆(F) on S by ∆(S). This graph is not necessarily connected,

but, by construction, the mutations 〈µi〉 act transitively on each connected component.

Thus each component is a quotient of the Cayley graph of 〈µi〉, that is, the n-regular

labelled tree. The quotient of ∆(S) by the Sn-action is connected and is the cluster

exchange graph, that is, its vertices are unlabelled seeds and its (unlabelled) edges cor-

respond to mutations between them.

Example 1·3. Take F = Q(x, y). The cluster algebra of type A2 with initial (unlabelled)

seed x→ y is the subalgebra Q[x, y, 1+x
y , 1+y

x , 1+x+y
xy ] of F . Let s1 be the labelled seed

s1 =
(
1→ 2, (x, y)

)
.

The orbit S of s1 under Mn consists of the 10 labelled seeds

s1 =
(
1→ 2, (x, y)

)
, s6 =

(
1← 2, (y, x)

)
,

s2 =
(
1← 2,

(
1+y
x , y

))
, s7 =

(
1→ 2,

(
y, 1+y

x

))
,

s3 =
(
1→ 2,

(
1+y
x , 1+x+y

xy

))
, s8 =

(
1← 2,

(
1+x+y

xy , 1+y
x

))
,

s4 =
(
1← 2,

(
1+x
y , 1+x+y

xy

))
, s9 =

(
1→ 2,

(
1+x+y

xy , 1+x
y

))
,

s5 =
(
1→ 2,

(
1+x
y , x

))
, s10 =

(
1← 2,

(
x, 1+x

y

))
,
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indexed by Z10. The seed si is related to si+1 by mutation at 1 (for odd i) or 2 (for even

i). So ∆(S) is the graph

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

1

1

1

1

1 2

2

2

2

2

The group M2 acts on the vertex set with the involution µi exchanging vertices adjacent

along an edge labelled by i and the transposition (1 2) taking si to si+5. Note that

(µ1µ2)
5 ∈ M2 fixes all vertices, so the action is not faithful. Indeed, a complete set of

relations is

µ1µ2µ1µ2µ1 = (1 2) = µ2µ1µ2µ1µ2.

The quotient by the S2-action recovers the cluster exchange graph of type A2, the

familiar pentagon ([15, §3.5]). It is not possible to consistently label the edges of the

pentagon.

Another reason for considering labelled seeds, which will play an important role in

this paper, is that while roughly speaking a free generating set for F determines an

isomorphism with a model field, this is only actually correct if the set is labelled. Thus, if

K = Q(x1, . . . , xn), then a labelled cluster β = (β1, . . . , βn) determines, and is determined

by, an isomorphism K → F , which we also denote by β, with β(xi) = βi.

From this point of view, there is another way of describing the right action of Mn on

the set of labelled seeds. Let αQ
µi
: K → K be the automorphism

αQ
µi
(xj) =

{
xj , j 6= i,
∏

k∈I x
aki
k

+
∏

k∈I x
aik
k

xi
, j = i.

If (Q′, β′) = (Q, β) · µi, then there is an equality β′ = β ◦ αQ
µi

of maps K → F , i.e. the

map αQ
µi

is a ‘change of coordinates’ depending on Q. For σ ∈ Sn, let ασ : K → K be

the coordinate permutation ασ(xi) = xσ(i). Then we also have βσ = β ◦ ασ. It will be

convenient to write αQ
σ := ασ, even though this automorphism does not depend on the

quiver.

More generally, for any g ∈Mn, write g = g1 · · · gk, where each gi is either a mutation

or a permutation, and define

αQ
g = αQ

g1 ◦ α
Q·g1
g2 ◦ · · · ◦ αQ·g1···gk−1

gk
.
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If (Q′, β′) = (Q, β) · g, then β′ = β ◦ αQ
g . Hence αQ

g = β−1 ◦ β′ : K → K and so it is

independent of the chosen expression for g.

There is a natural action of Aut F on labelled seeds, analogous to the action on seeds

described above, by α : (Q, β) 7→ (Q,α ◦ β), for α ∈ Aut F . This action commutes with

the Mn-action and thus induces an action on Mn-orbits, i.e. cluster structures. Let S be

a cluster structure and let A(S) be the associated cluster algebra. If (Q,b) is any seed of

A(S), we can produce a labelled seed (Q, β) by arbitrarily labelling the elements of b as

β1, . . . , βn and replacing the vertex βi of Q by i. The n! possible relabellings are related

by the Sn-action, so all lie in S. It follows that (Q,α(b)) is a seed of A(S) if and only if

(Q,α◦β) ∈ S for any associated labelled seed (Q, β), and so the stabiliser of S under the

Aut F-action is the direct cluster automorphism group Aut+ A(S). Similar arguments

show that Autc A(S) is the stabiliser of the union of all cluster structures whose labelled

seeds have quivers related to those of the labelled seeds of S by reversing the orientation

of some collection of connected components. Later (Theorem 5·1) we will give alternative

descriptions of Autc A(S) and Aut+ A(S), each depending only on the structure of the

single cluster structure S as a homogeneous space equipped with particular equivalence

relations.

The equivalence relations we will consider have the property that their equivalence

classes are orbits of subgroups of the automorphism group AutMn
(S) of the homogeneous

space S. We now give a characterisation of such equivalence relations, and describe some

constructions arising from them.

2. Regular equivalence relations

In this section and the next, we will work in the setting of a general homogeneous space,

rather than the set of labelled seeds discussed in Section 1. Let X be a homogeneous

space for a group G, acting on the right. Then we define the automorphism group of

X, denoted AutG(X), to be the group of bijections ϕ : X → X that commute with the

action of G. We will take composition in AutG(X) to be right-to-left, so that AutG(X)

acts naturally on the left of X by ϕ · x = ϕ(x), and

(ϕ · x) · g = ϕ · (x · g)

for all ϕ ∈ AutG(X), x ∈ X and g ∈ G.

In this section, we define homogeneity and regularity of equivalence relations on X,

and demonstrate a Galois correspondence between regular equivalence relations onX and

subgroups of AutG(X). The results of this section are analogous to results on regular

coverings in topology (see [13, §13b]).

Definition 2·1. An equivalence relation ∼ on X is homogeneous if x · g ∼ y · g for any

g ∈ G whenever x ∼ y.

Definition 2·2. An equivalence relation ∼ on X is regular if it is homogeneous and

StabG(x) = StabG(y) whenever x ∼ y.

Definition 2·3. An equivalence relation ∼ on X is normal if it is regular and ϕ(x) ∼

ϕ(y) for any ϕ ∈ AutG(X) whenever x ∼ y.

In the case of mutation classes of labelled seeds, we will be particularly interested in

the following two regular equivalence relations.
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Example 2·4. Let S be a mutation class of labelled seeds and define an equivalence

relation ≃ on S such that (Q1, β1) ≃ (Q2, β2) if and only if Q1 = Q2; as all of our quivers

have the same vertex set, we say Q1 = Q2 when the quivers have identical adjacency

matrices. Note that this condition is stronger than requiring only that Q1 and Q2 are

isomorphic. This relation is homogeneous, and if (Q, β) · g = (Q, β) for some g ∈ Mn,

then αQ
g = 1K, and so (Q, γ) · g = (Q, γ) for all γ. Thus ≃ is regular.

We can define another equivalence relation ≈ on S such that (Q1, β1) ≈ (Q2, β2) if

and only if Q1 is obtained from Q2 by reversing the orientation of all arrows in a set

of components; we will also write Q1 ≈ Q2 in this case. As (Q · µi)
op = Qop · µi and

(Qop )σ = (Qσ)op for any quiver Q and vertex i, and αQ1
g = αQ2

g when Q1 ≈ Q2, this

equivalence relation is also regular. If (Q1, β1) ≈ (Q2, β2), we say that (Q1, β1) and

(Q2, β2) are similar, and that Q1 and Q2 are similar.
To illustrate these relations, recall the mutation class S from Example 1·3. All 10

seeds in S are similar as the only quivers occurring are 1 → 2 and 1 ← 2, which are

opposites of each other. These two quivers are not equal (despite being isomorphic), so

the equivalence classes under ≃ are {s2, s4, s6, s8, s10} and {s1, s3, s5, s7, s9}.

The largest possible regular homogeneous equivalence relation (i.e. that with the largest

equivalence classes) on any homogeneous space X for a right G-action is the relation

declaring x, y ∈ X to be equivalent if and only if StabG(x) = StabG(y).

Denote the equivalence class of x under ∼ by [x]. If ∼ is homogeneous, then [x] = [y]

implies [x ·g] = [y ·g] for all g ∈ G, so the set X/∼ of equivalence classes admits a natural

G-action by [x] · g = [x · g]. Thus X has the structure of a homogeneous bundle over the

set X/∼ of equivalence classes. Choosing x ∈ X allows us to identify X with the quotient

G/ StabG(x), and X/∼ with the quotient G/NG([x]), where

NG([x]) := {g ∈ G : x · g ∼ x}

is the stabiliser of the equivalence class [x] under the induced action of G on X/∼.

Lemma 2·5. Let ∼ be a homogeneous equivalence relation on X. Then ∼ is regular if

and only if StabG(x) is normal in NG([x]) for each x ∈ X.

Proof. Let ∼ be regular. For any h ∈ NG([x]), we have x ∼ x · h, so

StabG(x) = StabG(x · h) = h−1 StabG(x)h.

Conversely, suppose StabG(x) is normal in NG([x]). If y ∼ x, then y = x · h for some

h ∈ NG([x]). We have

StabG(y) = StabG(x · h) = h−1 StabG(x)h = StabG(x),

and so ∼ is regular.

Thus if ∼ is regular, the fibre [x] of X as a bundle over X/∼ is a torsor for the group

NG([x])/ StabG(x). We will see that these subquotients are all (non-canonically) isomor-

phic to the same subgroup of AutG(X), because there is in fact a Galois correspondence

between regular equivalence relations and subgroups of AutG(X) (cf. [13, §13d]).

Proposition 2·6. Regular equivalence relations on X are in one-to-one correspon-

dence with subgroups of AutG(X), in such a way that the equivalence classes are the

orbits of the corresponding subgroup. A regular equivalence relation ∼ is normal if and

only if the corresponding subgroup is normal in AutG(X).
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Proof. Note first that AutG(X) acts freely on X, because G acts transitively. Also, for

any w ∈ AutG(X), we have StabG(w · x) = StabG(x), because, for any g ∈ G,

w · x = (w · x) · g = w · (x · g) ⇐⇒ x = x · g.

Thus, for anyW ≤ AutG(X), its orbits are the equivalence classes of a regular equivalence

relation and, because the action is free, different subgroups define different equivalence

relations.
To prove the correspondence, we must show that every regular equivalence relation on

X arises in this way. So suppose that ∼ is a regular equivalence relation and let

W = {w ∈ AutG(X) : w · x ∼ x, for all x ∈ X}.

By definition, for any x ∈ X, the orbitW ·x is contained in the equivalence class [x], so it

remains show thatW acts transitively on each equivalence class (cf. [13, Exercise 13.13]).
Fix any x ∈ X and any y ∈ [x]. We claim that the map wx

y : X → X : x · h 7→ y · h is

a well-defined element of W , which clearly maps x to y. Most importantly, the fact that

wx
y is a well-defined bijection (with inverse wy

x) uses the regularity of ∼, noting that

x · h = x · k ⇐⇒ kh−1 ∈ StabG(x) = StabG(y) ⇐⇒ y · h = y · k.

Then wx
y ∈ AutG(X), i.e. wx

y commutes with the action of G, as

wx
y (x · hg) = y · hg = wx

y (x · h) · g

and it remains to show that wx
y ∈ W , i.e. that wx

y (z) ∼ z, for all z ∈ X. This follows

by writing z = x · h, so that wx
y (z) = y · h ∼ x · h, as ∼ is homogeneous. Thus W acts

transitively on any equivalence class [x], as required.
To prove the final part of the proposition, let ∼ be a regular equivalence relation and

W be the corresponding subgroup. The relation ∼ is normal if and only if

x ∼ y ⇐⇒ ϕ(x) ∼ ϕ(y),

for all ϕ ∈ AutG(X). Equivalently, every ϕ ∈ AutG(X) induces bijections between

equivalence classes, so ϕ([x]) = [ϕ(x)] for all x ∈ X. As [x] =W · x, this is equivalent to

requiring ϕW · x = Wϕ · x for all x ∈ X, i.e. that ϕW = Wϕ. Thus ∼ is normal if and

only if W is normal.

As promised, a standard consequence of the Galois correspondence is as follows (cf.

[13, Theorem 13.11] and [4, 10.6.4]).

Proposition 2·7. Given a regular equivalence relation ∼, the corresponding subgroup

W ≤ AutG(X) is isomorphic to NG([x])/ StabG(x) for any x ∈ X.

Proof. Note that by assumption, NG([x]) acts transitively on [x]. By regularity of ∼, all

elements of [x] have stabiliser StabG(x) under the G-action, so NG([x])/ StabG(x) acts

freely and transitively on [x]. As W ≤ AutG(X), it also acts freely on [x], and the action

is transitive by Proposition 2·6. These two actions commute because NG([x]) ≤ G and

W ≤ AutG(X). Thus [x] is a bitorsor for NG([x])/ StabG(x) and W , and choosing any

y ∈ [x] yields an isomorphism between the two groups. Explicitly, having chosen y, we

identify each w ∈W with the unique g ∈ NG([x])/ StabG(x) such that w · y = y · g. This

identification is well-defined and bijective because the actions are free and transitive. It

is a homomorphism, because when w1 · y = y · g1 and w2 · y = y · g2, we have

w1w2 · y = w1 · (y · g2) = (w1 · y) · g2 = y · g1g2
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as required.

Example 2·8. We illustrate Proposition 2·6 by returning to the example of type A2,

from Example 1·3. Let G = M2 and let S be the orbit of s1. Recall that M2 acts on S

with s ·µi given by the unique vertex adjacent to s along an edge labelled i and with the

transposition (1 2) acting in the same way as µ1µ2µ1µ2µ1, so it will suffice to consider

the action of the mutations.

Let ≈ be the equivalence relation on S with (Q1, β1) ≈ (Q2, β2) if and only if Q1 ≈ Q2,

as in Example 2·4, and let W c be the corresponding subgroup of AutM2
(S). As there

is only a single equivalence class under ≈, the group W c acts transitively, and in fact

W c = AutM2
(S). This automorphism group is isomorphic to D5, the dihedral group of

order 10, generated by the rotation si 7→ si+2, and the reflection interchanging s1−k and

s2+k for 0 ≤ k ≤ 4. (Drawing S as in Example 1·3, the reflection is a genuine reflection

in the vertical axis.)

Every s ∈ S has the same stabiliser under the M2-action, namely the subgroup H

generated by (1 2)µ1µ2µ1µ2µ1 and (µ1µ2)
5. Therefore the mutations µ1 and µ2 generate

a free right action of M2/H ∼= D5. Although AutM2
(S) ∼= M2/H, there is no natural

isomorphism between the two groups; indeed, the set S is a bitorsor for AutM2
(S) act-

ing on the left and M2/H acting on the right, so each choice of s ∈ S determines an

isomorphism (cf. Proposition 2·7).

Now let ≃ be the equivalence relation on S with (Q1, β1) ≃ (Q2, β2) if and only if

Q1 = Q2. There are two equivalence classes, one consisting of si for odd i, and the other

of si for even i. In this case we can see directly that these are the orbits of the action by

the order 5 cyclic subgroup W+ ≤ AutM2
(S) generated by the rotation.

However, we can instead follow Proposition 2·6. Pick a point of S, say s1, and consider

the set NM2
([s1]) of g ∈ M2 with s1 · g ≃ s1. We find that g = µ1µ2 is such a group

element, as s1 · µ1µ2 = s3 ≃ s1. Then g defines an element ws1
g ∈ AutM2

(S), with

ws1
g · si = si · gigg

−1
i

where gi is any element of M2 such that si · gi = s1. For example, if we want to compute

the action of ws1
g on s6, we can take g6 = µ2µ1µ2µ1µ2, and then

ws1
g · s6 = s6 · (µ2µ1µ2µ1µ2)(µ1µ2)(µ2µ1µ2µ1µ2) = s6 · µ2µ1 = s8.

We could also take g6 = µ1µ2µ1µ2µ1, and compute

ws1
g · s6 = s6 · (µ1µ2µ1µ2µ1)(µ1µ2)(µ1µ2µ1µ2µ1) = s6 · µ2µ1 = s8,

so the two choices give the same end result, as predicted. It can be checked that in this

case ws1
g is a rotation generating W+.

Recall that if ∼ is homogeneous, the set X/∼ of equivalence classes admits a natural

G-action by [x] · g = [x · g]. Moreover, if ϕ ∈ NAutG(X)(W ), then [x] = [y] implies

[ϕ(x)] = [ϕ(y)], so we have an induced map ϕ̃ ∈ AutG(X/∼) given by ϕ̃([x]) = [ϕ(x)].

Proposition 2·9. If ∼ is a regular equivalence relation X and W is the corresponding

subgroup of A = AutG(X), then the map NA(W ) → AutG(X/∼) given by ϕ 7→ ϕ̃ is a

homomorphism with kernel W . Thus there is an injection NA(W )/W →֒ AutG(X/∼).

In particular, if ∼ is normal, then there is an injection A/W →֒ AutG(X/∼).



10 Alastair King and Matthew Pressland

Proof. First note that for ϕ1, ϕ2 ∈ NA(W ), we have

ϕ̃2 ◦ ϕ1([x]) = [ϕ2(ϕ1(x))] = ϕ̃2 ◦ ϕ̃1([x])

for any x ∈ X, so ϕ 7→ ϕ̃ is a group homomorphism. If w ∈ W , then [w(x)] = [x] for

all x, so w̃ is the identity. If [ϕ(x)] = [x] for some x, then there exists w ∈ W such that

w(x) = ϕ(x). Then

w(x · g) = w(x) · g = ϕ(x) · g = ϕ(x · g)

for all g ∈ G. As G acts transitively on X, it follows that ϕ = w. Hence the kernel

of the map ϕ 7→ ϕ̃ is exactly W , and so this map induces an injection NA(W )/W →֒

AutG(X/∼). The statement when ∼ is normal then follows immediately from Proposi-

tion 2·6, as W is normal in this case.

Remark 2·10. The map from Proposition 2·9 is not an isomorphism in general. Indeed,

let X be the set of vertices of the square

a b

cd

and let G = D4 act on the right. Then

StabG(a) = StabG(c) 6= StabG(b) = StabG(d),

so A = AutG(X) has order 2 and is generated by a rotation by π. In the quotient A\X,

we have

StabG({a, c}) = StabG({b, d})

so there is an automorphism of A\X that does not lift to an automorphism of X.

3. The orbit groupoid

We will mostly continue to work in the generality of Section 2, so we have a homoge-

neous space X for a group G, acting on the right, and a subgroup W of AutG(X) acting

on the left. However, we will not need the G-action at first, so we let X be any set with

a left W -action. We will form an orbit groupoid W\X.

The objects of the groupoid W\X are the W -orbits; we write [x] for the orbit of x

under W . The morphisms HomW\X([x], [y]) =: IsoW ([x], [y]) are bijections between W -

orbits that commute with the W -action. In other words, a morphism ϕ ∈ IsoW ([x], [y])

makes the diagram

[x] [y]

[x] [y]

ϕ

w· w·

ϕ

commute for any w ∈ W . For example, in the case that X carries a right action by G,

and W is a subgroup of AutG(X), any g with x · g ∈ [y] induces such a bijection.

Composition of morphisms (read left-to-right) is given by ϕ ∗ ψ = ψ ◦ ϕ, which is in

particular associative. Note that the identity on orbits commutes with the W -action,
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and the composition of two bijections commuting with theW -action also commutes with

this action. Finally, if ϕ : [x] → [y] is a bijection commuting with the W -action, then

ϕ−1 : [y] → [x] also commutes with the W -action. So every morphism is invertible, and

the category W\X is indeed a groupoid.

The reason for the choice of composition law is that the morphisms of W\X commute

with the left action of W , so should act on the right. This is similar to our earlier

convention that the automorphisms AutG(X) commuting with a right G-action should

act on the left. For consistency, composition denoted by ◦ is always read right-to-left,

and composition denoted by ∗ is read left-to-right.

Remark 3·1. Let T (X) be the trivial groupoid on X, with exactly one morphism

fx,y : x → y for each x, y ∈ X. Then W also acts on T (X), with the action on mor-

phisms given by w · fx,y = fw·x,w·y. If W acts freely on X, then the orbit groupoid W\X

defined above is isomorphic to the orbit groupoid T (X)//W defined in [4, 11.2.1]. The

groupoid T (X)//W is in fact defined for any W -action on X, but when the W -action is

free, it has the additional property of admitting a covering morphism (see [4, 10.2]) from

the simply connected groupoid T (X). If the action is not free, then W\X need not agree

with T (X)//W .

When theW -action is free, the orbit groupoidW\X is also isomorphic to the groupoid

defined in [17, Definition 2.4] from the data of a group acting freely on a set. The

morphisms in this groupoid are formally given by orbits of the induced action of W on

X ×X, and as the action is free these orbits are the graphs of the morphisms in W\X.

Two orbits [x] and [y] in W\X are in the same connected component if and only if

StabW (x) and StabW (y) are conjugate. In particular, if the W -action is free then W\X

is connected.

Given any groupoid G (with composition read left-to-right), we say that a collection of

subgroups H = {Hx}x∈G of each point group G(x) := HomG(x, x) is a normal subgroup

of G if for every morphism α : x → y, we have αHy = Hxα. Given such a collection, it

follows that we may define a quotient groupoid G/H with the same objects as G, and

morphisms (G/H)(x, y) = Hx\G(x, y) = G(x, y)/Hy. If Φ: G1 → G2 is a functor, let

(Ker Φ)x = {f ∈ G1(x) : Φ(f) = 1Φ(x)}.

Then Ker Φ = {(Ker Φ)x} is a normal subgroup of G1. Proofs of these statements can be

found in [4, §8.3], as can the following lemma.

Lemma 3·2 ([4, 8.3.2]). If a functor Φ: G1 → G2 is injective on objects, then it induces

an isomorphism of groupoids G1/Ker Φ→ Im Φ.

From now on, we assume that X is a homogeneous space for a right G-action, and

W ≤ AutG(X), so that W acts freely. Thus by Remark 3·1 we can think of the trivial

groupoid T (X) as a universal cover for the groupoid W\X ∼= T (X)//W . In this more

specific situation, we can identify the morphisms ofW\X with certain classes of elements

of G, as we now explain.

Let NW
G be the groupoid with objects given by the W -orbits [x] in X, and morphisms

NW
G ([x], [y]) = {g ∈ G : x · g ∈ [y]},

with composition g∗h = gh. Note that the point groups are the groups NG([x]) discussed

in Section 2. Now for each g ∈ G, let ϕg : X → X be the function ϕg(x) = x · g, and let
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ϕx
g = ϕg|[x] : [x]→ [x · g]. Each ϕx

g is a bijection of orbits commuting with the W -action,

and we have ϕx
g ∗ϕ

x·g
h = ϕx

gh, so we may define Φ: NW
G →W\X to be the functor given

by the identity on objects, and by Φ(g) = ϕx
g on morphisms.

Proposition 3·3. Let X be a homogeneous space for a right G-action, and let W ≤

AutG(X). Then every bijection ϕ : [x] → [y] of W -orbits commuting with the action of

W has the form ϕx
g for some g ∈ G with x · g ∈ [y]. Thus Φ is a surjective functor.

Proof. Let ϕ : [x] → [y] commute with the W -action. As G acts transitively, there

exists g ∈ G with x · g = ϕ(x). Note that all elements of [x] have the form w · x for some

w ∈W . Then

ϕ(w · x) = w · ϕ(x) = w · x · g = ϕx
g(w · x),

so ϕ = ϕx
g .

For each object [x] of NW
G , write (StabG)[x] = StabG(x) ≤ NW

G ([x], [x]). Denote the

collection {(StabG)[x]} of these subgroups by StabG.

Corollary 3·4. Let X be a homogeneous space for a right G-action, and let W ≤

AutG(X). Then StabG is a normal subgroup of NG
W , and the orbit groupoid W\X is

isomorphic to the quotient groupoid NG
W / StabG.

Proof. The functor Φ is a bijection on objects, so it follows from Proposition 3·3 and

Lemma 3·2 that W\X ∼= NG
W /Ker Φ. The function ϕx

g is the identity if and only if

g ∈ StabG(x), and so Ker Φ = StabG.

4. The cluster modular groupoid

Recall from Section 1 that we have maps αQ
g ∈ Aut(K) for each quiver Q and g ∈Mn.

Definition 4·1. For S a mutation class of labelled seeds, the cluster modular groupoid

CMG(S) is the groupoid with objects given by the quivers occurring in seeds of S,

and morphisms Hom(Q1, Q2) given by formal symbols 〈Q1, g〉 for g ∈ Mn such that

Q1 · g = Q2, satisfying the relations

〈Q1, g〉 = 〈Q1, h〉 ⇐⇒ αQ1

g = αQ1

h .

The (left-to-right) composition is 〈Q, g〉∗〈Q·g, h〉 = 〈Q, gh〉, which is well-defined because

αQ
g ◦ α

Q·g
h = αQ

gh.

Our groupoid CMG(S) is a full subgroupoid of the cluster modular groupoid defined

by Fock–Goncharov [8]; the only difference is that we have a fixed vertex set for the

quivers, rather than allowing all possible n element sets. As Fock–Goncharov’s groupoid

is connected, ours is equivalent to it. Note that CMG(S) does not depend on the field

F , but only on the mutation class of quivers underlying the mutation class S of seeds.

We now consider two particular instances of the orbit groupoid construction outlined

in Section 3. Let S be a cluster structure; for each x ∈ S we write x = (Qx, βx). By

Proposition 2·6, there exist subgroups W c and W+ of AutMn
(S) corresponding to the

two equivalence relations from Example 2·4, so that W c-orbits are precisely similarity

classes, i.e. equivalence classes under ≈, and W+-orbits are equivalence classes under

≃. The symbols W c and W+ will denote these specific groups for the remainder of the

paper.
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We may think of the group Aut K as a groupoid with the single object K. There is

a functor NW+

G → Aut K mapping every W+-orbit to K, and each morphism g : [x] →

[y] to αQx
g . This functor is well-defined, as Qx = Qw·x for all w ∈ W+, and because

αQx
g ◦ α

Qy

h = αQx

gh for any g : [x]→ [y] and h : [y]→ [z].

Note that if Q1 ≈ Q2, i.e. Q1 and Q2 differ by reversing the orientation of some

components, then αQ1
g = αQ2

g for any g ∈ Mn. Therefore the functor NW c

G → Aut K

mapping everyW c-orbit to K and every g : [x]→ [y] to αQx
g is well-defined, as Qx ≈ Qw·x

for all w ∈W c.

Because αQx
g = 1K for g ∈ StabG(x), these functors define left actions of the groupoids

NW c

G / StabG and NW+

G / StabG on the field K. Each morphism g : [x] → [x · g] acts as

the change of coordinates of F from βx to βx·g. In other words, the diagram

K F

K

βx

αQx
g

βx·g

commutes for all x ∈ S and g ∈Mn.

Theorem 4·2. The cluster modular groupoid CMG(S) and the orbit groupoid W+\S

are isomorphic.

Proof. We will deduce the result by constructing a surjective functor Ψ: NW+

G →

CMG(S), bijective on objects, and observing that Ker Ψ = Ker Φ for Φ: NW+

G →W+\S

the functor from Section 3, thus obtaining isomorphisms

CMG(S) ∼= NW+

G /Ker Ψ = NW+

G /Ker Φ ∼=W+\S,

with the last isomorphism coming from Corollary 3·4. We define Ψ on objects by taking

each W+-orbit [x] to its common quiver Qx, and on morphisms by Ψ(g) = 〈Qx, g〉, for

g ∈ NW+

G ([x], [y]). This is well-defined as for g : [x]→ [y] and h : [y]→ [z], we have

Ψ(g ∗ h) = Ψ(gh) = 〈Qx, gh〉 = 〈Qx, g〉 ∗ 〈Qy, h〉 = Ψ(g) ∗Ψ(h).

By the definition of CMG(S), this functor is bijective on objects. It is surjective on

morphisms as if 〈Q1, g〉 : Q1 → Q2 is a morphism in CMG(S), then there exists x ∈ S

with Qx = Q1, and Qx·g = Q2. Thus g ∈ N
W+

G ([x], [x · g]) and 〈Q1, g〉 = Ψ(g).

It remains to show that (Ker Ψ)[x] = (Ker Φ)[x] = StabG(x). Let g ∈ N
W+

G ([x]), and

note that Ψ(g) = 〈Qx, g〉 = 〈Qx, 1〉 = 1Qx
if and only if αQx

g = αQx

1 = 1K. Now if

g ∈ StabG(x), then αQx
g = β−1

x ◦ βx = 1K, so Ψ(g) = 1Qx
. Conversely, if Ψ(g) = 1Qx

then βx·g = βx, and Qx·g = Qx because g ∈ NW+

G ([x]), so g ∈ StabG(x).

We conclude that Ker Ψ = Ker Φ, and thus obtain the required isomorphism.

5. The cluster automorphism group

Let S be a cluster structure on F . We define a left action of W c ≤ AutMn
(S) on F

via the map α : W c → Aut(F) given by

α : w 7→ αw = βw·x ◦ β
−1
x
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for x ∈ S any labelled seed. If y is another labelled seed, then there exists g ∈ Mn with

x · g = y, so βy = βx·g = βx ◦ α
Qx
g . It follows that

βw·y ◦ β
−1
y = βw·x·g ◦ (α

Qx
g )−1 ◦ β−1

x

= βw·x ◦ α
Qw·x
g ◦ (αQx

g )−1 ◦ β−1
x

= βw·x ◦ β
−1
x ,

as Qw·x ≈ Qx, so α
Qx
g = αQw·x

g . Thus the definition of αw is independent of the choice of

seed x. As W+ is a subgroup of W c, this action restricts to an action of W+ on F . We

write α+ := α|W+ .

To see that we have defined a left action, let v, w ∈ W c, and let x ∈ S. We can write

αw = βw·x ◦ β
−1
x , and αv = βv·(w·x) ◦ β

−1
w·x. So

αv ◦ αw = βv·(w·x) ◦ β
−1
w·x ◦ βw·x ◦ β

−1
x = βvw·x ◦ β

−1
x = αvw.

As the action of Mn is transitive, for any x ∈ S and w ∈W c there exists g ∈Mn such

that x · g = w · x. Then the diagram

K F

K F

βx

αQx
g

βw·x

βx

αw

commutes. The map αQx
g on the left is the action of g StabG(x) ∈ AutNWc

G
/ StabG

([x])

on K, and the map αw on the right is the action of w on F . Thus each isomorphism βx
intertwines the action of the groupoid NW c

G / StabG on K with the action of the group

W c on F , and similarly for NW+

G / StabG and W+. We can use the isomorphisms of

Corollary 3·4 and Theorem 4·2 to make equivalent statements for the groupoids W c\S,

W+\S and CMG(S).

These actions of W c and W+ on F restrict to Q-algebra automorphisms of the cluster

algebra A, as they are automorphisms of F that permute the set of cluster variables. For

any w ∈W c and any seed x, the action of w on F sends the labelled cluster corresponding

to x to that corresponding to w · x, and commutes with the action of each µi as x and

w · x have similar quivers. Thus this action is a cluster automorphism in the sense of [1,

Definition 1]. If w ∈ W+ ≤ W c, then the corresponding cluster automorphism will be

direct, as it sends clusters to clusters with the same quiver. This observation provides

maps α : W c → Autc A and α+ : W+ → Aut+ A, recalling that Autc A is the group of

cluster automorphisms, and Aut+ A is the subgroup of direct cluster automorphisms.

Theorem 5·1. The maps α : W c → Autc A and α+ : W+ → Aut+ A are group iso-

morphisms.

Proof. The groups W c and W+ both act faithfully on F , else there are two labelled

seeds with the same labelled cluster, contradicting [14, Theorem 4]. Thus the maps α

and α+ are injective.

Let (Q, β) ∈ S, and let α be a cluster automorphism, so there exists (Q′, γ) ∈ S

such that α(βσ(i)) = γi for some permutation σ : I → I. By a small modification to [1,
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Lemma 2.3], to allow for disconnected quivers, the quiver Qσ lies in the similarity class

of Q′. We have σ ∈ Sn ≤Mn, so the seed (Qσ, βσ) is mutation equivalent to (Q, β).

As Qσ ≈ Q′, there exists w ∈ W c such that w · (Qσ, βσ) = (Q′, γ), and so αw =

γ ◦ (βσ)−1. For any i we have

αw(βσ(i)) = αw(β
σ
i ) = γi,

so the action of w agrees with that of α on each βi, and the βi form a free generating set

of F , so α = αw.

If f is taken to be a direct cluster automorphism, then Qσ = Q′, and so we can take

w ∈W+.

The conclusion of Theorem 5·1 would not hold ifMn was replaced by the free group on

n involutions. As noted above, the maps αw take clusters to clusters and commute with

mutations, so they are cluster automorphisms, but they also satisfy the stronger property

of taking labelled clusters to labelled clusters. This means that if (β1, . . . , βn) is some

labelled cluster of A, then (f(β1), . . . , f(βn)) is a labelled cluster of A. A priori, cluster

automorphisms need only take labelled clusters to permutations of labelled clusters, but

the presence of permutations in Mn means that any permutation of a labelled cluster

from a mutation class is also a labelled cluster from that mutation class, so in fact the

stronger property also holds.

The isomorphism classes of the groups Autc A and Aut+ A for all Dynkin and affine

types are shown in [1, Table 1], and so this table provides isomorphism classes for the

groups W c and W+ for these types.

Corollary 5·2. The group Aut+ A of direct cluster automorphisms of a cluster alge-

bra A is isomorphic to each point group AutCMG(S)(Q) in the cluster modular groupoid

CMG(S), for S the set of labelled seeds of A.

Proof. By Theorem 4·2, CMG(S) is isomorphic to W+\S, so if x is any labelled seed

of A with quiver Q, then

AutCMG(S)(Q) ∼= AutW+\S([x]) ∼= NMn
([x])/ StabMn

(x) ∼=W+ ∼= Aut+ A,

with the final three isomorphisms provided by Corollary 3·4, Proposition 2·7 and Theo-

rem 5·1 respectively.

Another way to obtain an isomorphism Aut+ A ∼= AutCMG(S)(Q) is as follows. Let

BQ = {βx : x ∈ S, Qx = Q}.

Then AutCMG(S)(Q) acts freely and transitively on the right of BQ by

βx · 〈Q, g〉 = βx ◦ α
Q
g = βx·g

and Aut+ A acts freely and transitively on the left of BQ by α·βx = α◦βx. Therefore each

choice of seed x with quiver Q provides an isomorphism Aut+ A ∼= AutCMG(S)(Q) in the

same manner as in the proof of Proposition 2·7. Furthermore, this isomorphism agrees

with that of Corollary 5·2 provided the same seed x is chosen to obtain the isomorphism

NMn
([x])/ StabMn

(x) ∼=W+ of Proposition 2·7.
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6. Quivers determined by stabilisers

Definition 6·1. A mutation class S is small if only finitely many quivers occur among

its labelled seeds.

Thus a mutation class is small if and only if one of its seeds has a quiver of finite mutation

type, or equivalently if all of them do. We prefer the term ‘small’ to ‘finite mutation type’

when referring to the class of seeds rather than to one of its quivers.

As we have a classification of quivers of finite mutation type, we also have a classifica-

tion of small mutation classes. Precisely, they are classes in which either the quivers have

two vertices, or no quiver has an arrow of multiplicity more than 2; see [7, Corollary 8].

All finite mutation classes are small, as are all mutation classes arising from tagged tri-

angulations of marked bordered surfaces, as described in [9]. Mutation classes in which

the total multiplicity of arrows in the quiver is constant across all seeds, classified in [18],

are necessarily also small.

Theorem 6·2. Let S be a small mutation class and let (Q1, β1), (Q2, β2) ∈ S be la-

belled seeds. Then StabMn
(Q1, β1) = StabMn

(Q2, β2) if and only if Q1 and Q2 are

similar.

Proof. As explained in Example 2·4, the equivalence relation ≈ is regular, so labelled

seeds with similar quivers have the same stabiliser under the Mn-action. It remains to

prove the converse.
First assume that Q1 and Q2 have two vertices. In this case, there is nothing to prove;

no mutation of Q1 can alter the multiplicity of the arrow between its two vertices, so Q2

has an arrow of the same multiplicity, and Q1 and Q2 are similar.
From now on, we assume that Q1 and Q2 have more than two vertices, and that

StabMn
(Q1, β1) = StabMn

(Q2, β2). We make the following claims, the proofs of which

are deferred to Lemmas 6·7 and 6·9:

(a) if (Q, β) is a labelled seed in a small mutation class, and Q has at least 3 vertices,

then the underlying weighted graph of Q is determined by StabMn
(Q, β),

(b) if (Q, β) is a labelled seed in a small mutation class, and Q has at least 3 vertices,

then the relative orientation of any pair of adjacent arrows in Q, i.e. whether or

not they form a directed path, is determined by StabMn
(Q, β).

Now by (a), any two vertices i and j have an arrow of the same multiplicity between

them in both Q1 and Q2. Thus we can treat Q1 and Q2 as being two orientations of the

same weighted graph Γ.
Let e be an edge of Γ. If f is any edge adjacent to e, then by (b) its orientation relative

to e is determined by the stabiliser, and so this relative orientation is the same in Q1

and Q2. It follows that f has the same orientation in Q1 and Q2 if and only if e does.

The same now applies to any edge adjacent to f , and so on, and we deduce that the

components of e in Q1 and Q2 are either the same or opposite.
Thus Q1 and Q2 can only differ by taking the opposite of some collection of connected

components, and so Q1 and Q2 are similar, as required.

We will see later in Example 7·4 that the result of Theorem 6·2 may fail for mutation

classes that are not small.

Corollary 6·3. If S is a small mutation class, then W c = AutMn
(S), and so the

AutMn
(S)-orbits in S are precisely the sets of labelled seeds with similar quivers.
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Proof. By Theorem 6·2, two quivers have the same stabiliser if and only if their quiv-

ers are similar. Thus the equivalence relation ≈, corresponding to the subgroup W c of

AutMn
(S), is the same as the relation of having the same stabiliser, which corresponds

to the entire automorphism group. Thus W c = AutMn
(S). So AutMn

(S)-orbits are

W c-orbits, which are the sets of labelled seeds with similar quivers.

Combining Corollary 6·3 with Theorem 5·1, we immediately obtain the following result.

Corollary 6·4. If S is a small mutation class, then AutMn
(S) ∼= Autc A, an explicit

isomorphism being given by the action of AutMn
(S) on F as described in Section 5.

For Dynkin and affine types, which are all small, the isomorphism classes of Autc A,

and hence of AutMn
(S), can be read off from [1, Table 1].

An interesting question, to which we do not know the answer, is the following.

Problem 6·5. Is the converse to Corollary 6·3 is also true? In other words, does the

property W c = AutMn
(S) characterise small mutation classes?

Corollary 6·6. If S is a small mutation class of labelled seeds with connected quivers,

then the equivalence relations ≃ and ≈ are normal.

Proof. Recall from Proposition 2·6 that ≃ and ≈ are normal if and only if the cor-

responding groups W c and W+ are normal in AutMn
(S). If S is small, then W c =

AutMn
(S), so is normal. As the quivers of labelled seeds of S are connected, we may use

[1, Theorem 2.11] in conjunction with Theorem 5·1 to see that W+ has index 1 or 2 in

W c = AutMn
(S), so is also normal.

It remains to prove the claims (a) and (b) made in the proof of Theorem 6·2. To

achieve this, we will consider cluster algebras from ice quivers, in order to employ a

similar ‘principal coefficient trick’ to that used in the proof of [6, Corollary 5.3]. An

ice quiver is a quiver Q with a partition of its vertices into mutable vertices and frozen

vertices. To remain consistent with earlier notation, our ice quivers will have vertex set

I = {1, . . . , n}, partitioned into a set J of mutable vertices, and a set F of frozen vertices.

We may define labelled seeds (Q, β) with Q an ice quiver, and β = (β1, . . . , βn) ∈ F
n as

before. We will only allow mutations at mutable vertices, and permutations of the labels

of the mutable vertices. Thus the mutation class of a labelled seed (Q, β), where Q is an

ice quiver, is the orbit (Q, β) ·MJ , where MJ ≤Mn is the subgroup generated by µj for

j ∈ J , and σ ∈ Sn such that σ fixes F pointwise. Consequently, if (Q′, β′) is any labelled

seed in this mutation class, we have β′
k = βk for k ∈ F , and

β′
i ∈ Q(βj : j ∈ J)[βk : k ∈ F ] ⊆ F .

Let Q be an ice quiver. Given a labelled seed (Q, β), we define (Q◦, β◦) to be the

corresponding labelled seed with trivial coefficients, so Q◦ is the full subquiver on the

mutable vertices of Q and β◦ = (βj)j∈J . If g ∈ MJ satisfies (Q, β) · g = (Q′, β′), then

(Q◦, β◦) · g = (Q′
◦, β

′
◦), as Q

′
◦ is the full subquiver on the mutable vertices of Q′, and

(β′
◦)j is the image of β′

j under the projection Q(βj : j ∈ J)[βk : k ∈ F ] → Q(βj : j ∈ J)

defined by

βi 7→

{
βi, i ∈ J

1, i ∈ F
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We will use the contrapositive of this result; if (Q◦, β◦) · g 6= (Q◦, β◦), then (Q, β) · g 6=

(Q, β).

Similarly, given (Q, β), we define (Q•, β•) to be the corresponding labelled seed with

principal coefficients. The quiver Q• has vertex set J ⊔ J ′, where J ′ = {j′ : j ∈ J} is a

clone of the set J . The full subquiver of Q• on J agrees with that of Q on J , i.e. Q◦, and

there are additional arrows j′ → j for all j ∈ J . Take β• = (βj , βj′)j∈J , where the βj′

are formal symbols. Then [12, Theorem 3.7] explains how, for any g ∈ MJ , the labelled

cluster of (Q, β) · g is determined by that of (Q•, β•) · g. As labelled clusters determine

labelled seeds by [14, Theorem 4], it follows that the entire seed (Q, β) · g is determined

by (Q•, β•) · g. In particular, if (Q•, β•) · g = (Q•, β•), then (Q, β) · g = (Q, β).

Lemma 6·7. Let i and j be two distinct vertices in a quiver Q from a labelled seed

(Q, β) ∈ S. Then:

(i) if there are no arrows between i and j, then (µiµj)
2 ∈ StabMn

(Q, β),

(ii) if there is an arrow of multiplicity 1 between i and j, then (µiµj)
5 ∈ StabMn

(Q, β)

and (µiµj)
2 /∈ StabMn

(Q, β), and

(iii) if there is an arrow of multiplicity 2 or more between i and j, then (µiµj)
N /∈

StabMn
(Q, β) for any N .

Thus, in the case that S is small and Q has at least three vertices, so there are no arrows

of multiplicity more than 2, we can determine the multiplicity of the arrow between i and

j from the stabiliser of the labelled seed (Q, β), proving claim (a).

Proof. As all sequences of mutations under consideration only involve mutating at the

vertices i and j, we may assume that Q is an ice quiver, with J = {i, j} and F = I \ J .

We may also assume, by taking opposites if necessary, that any arrow between i and j is

oriented towards j.

We first consider (Q◦, β◦). If Q◦ is the quiver

i j

of type A2, then our calculation from Example 1·3 shows that (Q◦, β◦) is not fixed by

(µiµj)
2, and hence neither is (Q, β). Similarly, if Q◦ is

i j
k

for k ≥ 2, then the seed (Q◦, β◦) has infinite mutation class, by [11, Theorem 1.4]. If it

were fixed by (µiµj)
N , the mutation class would have size at most 2N . Thus (µiµj)

N

does not fix (Q◦, β◦) or (Q, β).

It remains to show that (µiµj)
2 and (µiµj)

5 do fix the appropriate labelled seeds. If

there are no arrows between i and j in Q, then Q• is

i′ j′

i j

where the boxed vertices are frozen. It can be verified that any labelled seed with this

quiver is fixed by (µiµj)
2, and thus so is (Q, β). This is equivalent to showing that any
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such labelled seed has the same image under µiµj and µjµi, which we may check directly;

we have



i′ j′

i j

, (βi, βj , βi′ , βj′)


 · µiµj =




i′ j′

i j

,

(
βi′

βi
, βj , βi′ , βj′

)

 · µj

=




i′ j′

i j

,

(
βi′

βi
,
βj′

βj
, βi′ , βj′

)



and



i′ j′

i j

, (βi, βj , βi′ , βj′)


 · µjµi =




i′ j′

i j

,

(
βi,

βj′

βj
, βi′ , βj′

)

 · µi

=




i′ j′

i j

,

(
βi′

βi
,
βj′

βj
, βi′ , βj′

)



By a similar direct calculation, we may show that if Q• is

i′ j′

i j

or

i′ j′

i j

then (Q•, β•) is fixed by (µiµj)
5, and hence so is (Q, β).

Remark 6·8. Let (Q, β) be a seed in a small mutation class, such that Q has arrows

between vertices i and j and between vertices j and k. We wish to determine the relative

orientation of these two arrows. Let Q′ be the full subquiver of Q on the vertices i, j, k.

As (Q, β) lies in a small mutation class, the maximal multiplicity of any arrow of Q′ is

2. If Q′ has a multiplicity 2 arrow, then by the classification of 3-vertex quivers with finite

mutation class in [7, Theorem 7], Q′ is a directed 3-cycle in which either all three arrows

have multiplicity 2, or one arrow has multiplicity 2 and the others have multiplicity 1. In

either case, Q′ must contain a directed path through j. Thus, to prove that the stabiliser

of (Q, β) determines the relative orientation of the two arrows under consideration, it

suffices to consider the case that Q′ only has arrows of multiplicity 1.

Lemma 6·9. Let i, j and k be three distinct vertices in a quiver Q from a labelled seed

(Q, β), such that there is an arrow between i and j and an arrow between j and k. Let

Q′ be the full subquiver on i, j and k, and assume all arrows of Q′ have multiplicity 1.

Then:

(i) if there is no arrow between i and k, then (µiµjµk)
6 ∈ StabMn

(Q, β) if and only
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if Q′ is a directed path through j, so the stabiliser can distinguish

i j k or i j k

from

i j k or i j k

(ii) if there is an arrow between i and k, then Q′ contains a directed path through j if

and only if (µiµkµiµkµiµj)
2 /∈ StabMn

(Q, β), so the stabiliser can distinguish

i j k, i j k, i j k, or i j k

from

i j k, i j k, i j k, or i j k

Together with Remark 6·8, this proves claim (b).

Proof. We use the same style of argument as for Lemma 6·7, by checking that certain

seeds with principal or trivial coefficients are or are not fixed by the appropriate sequences

of mutations. This is a routine check, so we merely state the necessary calculations.

For (i), it is sufficient to check that labelled seeds with quiver

i j k or i j k

are not fixed by (µiµjµk)
6, and that labelled seeds with quiver

i′ j′ k′ i′ j′ k′

or

i j k i j k

are fixed by this mutation. As the first two quivers have trivial coefficients, no labelled

seed with full subquiver i → j ← k or i ← j → k will be fixed by (µiµjµk)
6, and as

the second two quivers have principal coefficients, any labelled seed with full subquiver

i→ j → k or i← j ← k will be fixed by (µiµjµk)
6.

For (ii), we must check that labelled seeds with quiver

i j k, i j k, i j k, or i j k

are not fixed by (µiµkµiµkµiµj)
2, but labelled seeds with quiver

i′ j′ k′ i′ j′ k′ i′ j′ k′ i′ j′ k′

i j k, i j k, i j k, or i j k

are fixed by this mutation.
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To carry out the calculations necessary for the proof of Lemma 6·9, we recommend

using the Java applet [16] of Keller, or the cluster algebra package in Sage [19]. In our

experience, it is easiest to use the graphical interface of [16] to check that the quiver

is fixed, but to use Sage to verify that the cluster variables are fixed, as this is more

computationally intensive. In fact, by [14, Theorem 4], it suffices to check that the

cluster variables are fixed.

Lemmas 6·7 and 6·9 prove claims (a) and (b) respectively, completing the proof of

Theorem 6·2.

7. Examples

Recall that, given a mutation class S of labelled seeds, we can draw a labelled graph

∆ = ∆(S) with vertex set S and an edge labelled i between s and s ·µi for all s ∈ S. Thus

∆ encodes the data of the 〈µ1, . . . , µn〉-action on S, but not the entire Mn-action. Given

ϕ ∈ AutMn
(S), we have ϕ(s ·µi) = ϕ(s) ·µi for all s ∈ S and for all i, so ϕ determines an

automorphism of the labelled graph ∆. Therefore, given any subgroup W ≤ AutMn
(S),

we get a quotient labelled graph W\∆. This graph can also be constructed directly; its

vertices are the W -orbits, and there is an edge labelled i between [s] and [s] ·µi = [s ·µi]

for each W -orbit [s].

Example 7·1. There are two labelled quivers in the mutation class of type A2, namely

1→ 2 and 1← 2. Each is related to the other by mutation at either vertex, so

W+\∆ =

•

•

21

As each quiver is the opposite of the other, the two vertices are identified in W c\∆, and

we have

W c\∆ = •

1

2

Recall from Example 1·3 that in this case the graph ∆ is a decagon;

∆ =

•

•

•

•

•

•

•

•

•

•

1

1

1

1

1 2

2

2

2

2
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Thus we see that the group W+ is the cyclic group C5 generated by the rotation taking

each vertex to the next but one clockwise, and W c is the entire automorphism group,

which is in this case isomorphic to the dihedral group D5 of symmetries of the pentagon;

cf. [1, Table 1].

Example 7·2. We now consider the example of a quiver of type A3; while there are

several choices of orientation, all of them are mutation equivalent because the underlying

graph is a tree. There are 84 labelled seeds in a cluster algebra of this type, so ∆ is an

84 vertex labelled graph. We find that

W+\∆ =

•

• • •

• • • • • •

• • •

•

1
2

3

2 3 1 3 1 2

1 2 3

3 2 3 1 2 1

1
2

3

where the highest and lowest vertices are the two 3-cycles in the mutation class, and

W c\∆ =

•

• • •

• • •

1
2

3

2 3 1 3 1 2

1 2 3

We can see directly in this example (and the previous one) that W c\∆ has no non-

trivial automorphisms as a labelled graph. Hence the group AutMn
(W c\S), consisting

of automorphisms of W c\∆ commuting with the permutation action on vertices, is also

trivial. This is consistent with our earlier observations; it follows from Proposition 2·9

that W c is normal in AutMn
(S), and in fact we have W c = AutMn

(S) by Corollary 6·3.

Example 7·3. We now consider an example of infinite type, namely a non-cyclic orien-

tation of Ã2.

Q =

1

3 2
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This quiver defines a cluster-infinite cluster algebra, so the graph ∆ is infinite. However,

it has finite mutation type, so the quotients W+\∆ and W c\∆ are both finite. We have

W+\∆ =

•

•

•

•

• •

• •

• •

• •

1

2

3

1 3

2

1 3

2

3 1

1

2

3

2

3 1

2

where the uppermost vertex is Q, and

W c\∆ =

•

•

• •

• •

13

2

1 3

23 11

2

3

2

As in the previous two examples, W c\∆ has no non-trivial automorphisms as a labelled

graph, so AutMn
(W c\S) = {1}.

Example 7·4. Next, we consider an infinite type example with infinite mutation class,

namely the quiver

Q =

1

3 2

3

3

3

The triples of edge multiplicities occurring in the quivers in this class are all solutions to

the Markov-type equation x2 + y2 + z2 = xyz, and mutations correspond to passing to

a neighbour (see [5, §II.3]); if (a, b, c) is a solution, then so are (a, b, ab− c), (a, ac− b, c)

and (bc− a, b, c).
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It follows that any sequence of mutations starting from Q (such that successive mu-

tations are at distinct vertices) increases the maximal multiplicity of an arrow in the

quiver, and thus no quiver occurs twice in the same component of ∆, even up to simi-

larity. The graph ∆ has six components, one for each permutation of the labels of the

initial seed, each of which is a 3-regular tree. Each cluster automorphism is determined

by a permutation of the initial cluster, and thus W c ∼= Autc A ∼= S3. The direct cluster

automorphisms must preserve the cyclic ordering of the initial labelled cluster, and so

W+ ∼= Aut+ A ∼= C3 is cyclic of order 3.

The graph W c\∆ is the infinite 3-regular labelled tree

W c\∆ =

. . . . .
.

• •

•

•

...

3

2

1

3

1

2

3

2 1

which still has automorphisms as a labelled graph. However, only the trivial auto-

morphism commutes with the permutation action; the only similarity class of seeds

stabilised by all permutations is the class [s] of those with quiver Q or Qop , so any

ϕ ∈ AutMn
(W c\S) satisfies ϕ([s]) = [s], and so AutMn

(W c\S) = {1}.

However, we will now show that there are automorphisms of S, commuting with the

Mn-action, that do not lie in W c. Let s ∈ S and consider g ∈ StabMn
(s). We may write

g = µi1 · · ·µikσ, where i1, . . . , ik ∈ I and σ ∈ Sn. If σ is not the identity, then s · g lies

in a different component of ∆ to s, contradicting g ∈ StabMn
(s). No seed is fixed by

a non-trivial sequence of mutations, so in fact we must have g = 1. Thus every seed of

S has trivial stabiliser, so Mn acts freely and transitively on S, and AutMn
(S) ∼= Mn

is infinite. In this case, W c is finite, so W c 6= AutMn
(S). This example shows that the

conclusion of Theorem 6·2 may not hold for mutation classes that are not small.

In this example,W c is not normal in A. Indeed, by Proposition 2·9, there is an injection

NA(W
c)/W c →֒ AutMn

(W c\S) = {1},

so NA(W
c) = W c 6= A. It is also straightforward to construct explicit examples of

automorphisms that do not normaliseW c. As StabMn
(s1) = StabMn

(s2) for any s1, s2 ∈

S, the map ϕ : s1 · g 7→ s2 · g is always a well-defined automorphism of S. Let s be a seed

with quiver Q, and let w(s·g) = s·σg, where σ is the permutation (1 2). As Q·σ ≈ Q, the

seeds s·g and s·σg have similar quivers for all g, and so w ∈W c. Now let ϕ(s·g) = s·µ1g.

Then

ϕwϕ−1(s) = s · µ1(1 2)µ1 = s · µ1µ2(1 2)

is not similar to s, so ϕwϕ−1 /∈W c.



Labelled seeds and the mutation group 25

In each of these examples, we may observe thatW c/W+ ∼= C2 is cyclic of order 2. This

is not a general phenomenon, but by [1, Theorem 2.11] is equivalent to the fact that each

quiver Q is mutation equivalent to some Q′ isomorphic to Qop as an unlabelled quiver.
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