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Abstract

We use the jackknife to bias correct the log-periodogram regression (LPR) estimator of the
fractional parameter in a stationary fractionally integrated model. The weights for the jackknife
estimator are chosen in such a way that bias reduction is achieved without the usual increase in
asymptotic variance, with the estimator viewed as ‘optimal’ in this sense. The theoretical results
are valid under both the non-overlapping and moving-block sub-sampling schemes that can be used
in the jackknife technique, and do not require the assumption of Gaussianity for the data generating
process. A Monte Carlo study explores the finite sample performance of different versions of the
jackknife estimator, under a variety of scenarios. The simulation experiments reveal that when
the weights are constructed using the parameter values of the true data generating process, a
version of the optimal jackknife estimator almost always out-performs alternative semi-parametric
bias-corrected estimators. A feasible version of the jackknife estimator, in which the weights are
constructed using estimates of the unknown parameters, whilst not dominant overall, is still the
least biased estimator in some cases. Even when misspecified short run dynamics are assumed in
the construction of the weights, the feasible jackknife still shows significant reduction in bias under
certain designs. As is not surprising, parametric maximum likelihood estimation out-performs all
semi-parametric methods when the true values of the short memory parameters are known, but is
dominated by the semi-parametric methods (in terms of bias) when the short memory parameters
need to be estimated, and in particular when the model is misspecified.
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OPTIMAL JACKKNIFE BIAS CORRECTION

1 Introduction

Data on many climate, hydrological, economic and financial variables exhibit dynamic patterns char-

acterized by a long lasting response to past shocks. Notable examples include, water levels in rivers

(Hurst, 1951), rainfall (Gil-Alana, 2012), aggregate output (Diebold and Rudebusch, 1989Hassler and

Wolters, 1995), interest rates (Baillie, 1996), exchange rates (Cheung, 2016) and stock market volatility

(Bollerslev and Mikkelsen, 1996; Andersen et al., 2003). Such ‘long memory processes’ are charac-

terized by non-summable autocovariances that decline at a (slow) hyperbolic rate, in contrast to the

usual exponential, and summable, decay associated with a short memory process; the fractionally

integrated autoregressive moving average (ARFIMA) model of Adenstedt (1974), Granger and Joyeux

(1980) and Hosking (1981) being a popular representation. Equivalently, a stationary (potentially)

long memory process, {Yt} , t = 0,±1,±2, . . . , can be represented by the spectral density,

fY Y (λ) = (2 sin (λ/2))−2d f∗
Y Y (λ) , for λ ∈ [−π, π] , (1)

where the fractional differencing parameter d satisfies d ∈ (−0.5, 0.5), and f∗
Y Y (·) is an even func-

tion that is continuous on [−π, π], is bounded above and bounded away from zero, and satisfies
∫ π
−π log f

∗
Y Y (λ) dλ = 0. The process is said to have long memory when d ∈ (0, 0.5), intermediate

memory when d ∈ (−0.5, 0) and short memory when d = 0. The factor f∗
Y Y (·) controls the (re-

maining) short memory behaviour associated with the process. For detailed expositions of processes

described by (1), including applications, see, Beran (1994), Doukhan et al. (2003) and Robinson (2004).

In estimating the parameter d, the semi-parametric log-periodogram regression (LPR) estimator of

Geweke and Porter-Hudak (1983) and Robinson (1995a,b) has been widely used, due to the simplicity

of its construction as an ordinary least squares (OLS) estimator, and its avoidance of potentially

incorrect specification of the short memory component. However, consistency of the LPR estimator

is achieved only at the cost of both a slower rate of convergence than the usual parametric rate

and substantial finite sample bias in the presence of ignored short run dynamics (see, for example,

Agiakloglou et al., 1993 and Nielsen and Frederiksen, 2005).

Given this well-documented bias, bias reduction of the LPR estimator has been a focus of the

literature. Andrews and Guggenberger (2003), for example, include additional frequencies, to degree

2r for r ≥ 0, in the log-periodogram regression that defines the LPR estimator, producing an estimator

(denoted hereafter by d̂AG
r ) whose bias converges to zero at a faster rate than that of the LPR estimator

(recovered by setting r = 0), when r > 1. Alternative analytical procedures appear in Moulines and

Soulier (1999), Hurvich and Brodsky (2001) and Robinson and Henry (2003), whilst a method based on

the pre-filtered sieve bootstrap has been introduced by Poskitt et al. (2016). Critically, all such bias-

correction methods come at a cost: namely, an increase in asymptotic variance. Notably, Guggenberger

and Sun (2006) produce a weighted average of LPR estimators over different bandwidths that achieves

the same degree of bias reduction as d̂AG
r for any given r, but with less variance inflation. This

estimator, along with that of Poskitt et al. (2016), serve as important comparators for the alternative

bias-corrected estimator that we develop herein.
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The approach to bias adjustment adopted in this paper applies the jackknife principle, with the

bias-corrected estimator constructed as a weighted average of LPR estimators computed, in turn, from

the full sample and m sub-samples of a given length. The sub-samples may be created by using either

the non-overlapping or the moving-block method. Motivated by the jackknife technique proposed by

Chen and Yu (2015) in a unit root setting, weights are chosen to remove bias up to a given order

and, at the same time, to minimize the increase in asymptotic variance. The weights are ‘optimal’ in

this sense and the associated jackknife estimator referred to as ‘optimal’ accordingly. In the fractional

setting, with the LPR estimator being the method to be adjusted, these optimal weights involve two

types of covariance terms: (i) covariances between the full-sample and sub-sample log-periodogram

ordinates, and (ii) covariances between distinct sub-sample log-periodogram values. These covariance

terms may, in turn, be represented by cumulants of the discrete Fourier transform (DFT) of the time

series. Building on results in Brillinger (1981, Chapters 2 and 4), we first derive closed-form expressions

for the association between the corresponding DFTs in terms of cumulants. These expressions are

used to derive the form of dependence between the periodograms (at a given ordinate or at different

ordinates) associated with the full sample and the sub-samples, which allows us to obtain closed-form

expressions for the covariances terms, (i) and (ii), and, hence, to evaluate the optimal weights.

We prove the consistency and asymptotic normality of the optimal jackknife estimator. Most

notably, we establish that the convergence rate and asymptotic variance are equal to those of the

unadjusted LPR estimator. This implies that there is no inflation in asymptotic efficiency compared

to the unadjusted LPR estimator of d, despite the bias reduction that is achieved. This compares with

Guggenberger and Sun (2006), in which the goal is to produce an estimator (for a given value of r)

with an asymptotic variance that is smaller than that of the corresponding bias-adjusted estimator of

Andrews and Guggenberger (2003), as based on the same value of r, d̂AG
r . In particular, in the case

where r = 0, and no bias adjustment is achieved (with d̂AG
r equivalent to the raw LPR estimator),

the estimator of Guggenberger and Sun is still biased, but with a (possibly) reduced asymptotic

variance. In addition, in contrast with Guggenberger and Sun, and the other analytical bias adjustment

methods cited above, our theoretical results do not rely on the assumption of Gaussianity. Specifically,

expressions for the dominant bias term and variance of the LPR estimator – needed in the construction

of the jackknife estimator and as originally derived by Hurvich et al. (1998) for fractional Gaussian

processes - are shown to hold under non-Gaussian assumptions. Hence, all theoretical results for the

bias-adjusted estimator hold under similar generality.1

Extensive simulation exercises are conducted in order to compare the finite sample performance

of the jackknife estimator with that of alternative approaches, including the bias-adjusted estimators

of Guggenberger and Sun (2006) and Poskitt et al. (2016). Results show that certain versions of the

1We refer the reader to Hahn and Newey (2013), Chambers (2013), Chen and Yu (2015) and Robinson and Kaufmann
(2015) for other applications of the jackknife in time series settings. To our knowledge the technique has been used only
once in a long memory setting per se, namely in the numerical work of Ekonomi and Butka (2011), where the method of
Chambers (2013) is adopted for the purpose of reducing the bias of the LPR estimator to the first order. However, no
rigorous proofs of the properties of the estimator are provided, and no attempt at yielding an optimal estimator in the
sense given in the current paper, is made.
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optimally bias-corrected jackknife estimator outperform the alternative bias-adjusted estimators of

Guggenberger and Sun and Poskitt et al., in terms of bias-reduction and root mean squared error

(RMSE), with the RMSE being somewhat close to, or even smaller than, that of the LPR in some

cases. In the empirically realistic case where the true values of the parameters - required in order to

evaluate the optimal weights in the jackknife estimator - are unknown, we implement the jackknife

technique using an iterative procedure. This feasible version of the estimator does not consistently

outperform either the bootstrap-based estimator of Poskitt et al. or (a feasible version of) the method

of Guggenberger and Sun, but is not substantially inferior, in terms of either bias or RMSE, and is

sometimes still the least biased estimator of all.

We assess the finite sample performance of all bias-adjusted estimators under scenarios of both

correct model specification and misspecification and, for completeness, parametric methods based on

maximum likelihood estimation (MLE) and pre-whitening are included in the assessment.2 As would

be anticipated, given the asymptotic efficiency of MLE under correct specification, no semi-parametric

method out-performs the optimal parametric approach in terms of RMSE in this case. However, when

the short memory dynamics need to be estimated, a semi-parametric method is typically less biased

than both parametric methods. When the model is misspecified, the semi-parametric methods are

dominant in terms of both bias and RMSE, with the feasible jackknife estimator producing the least

bias in some cases, most notably when the true process has a moving average component that is

omitted in the model specification.

In summary, the paper makes two important contributions to the literature on semi-parametric

estimation in fractional models. First, a new estimator is derived that bias-corrects the popular LPR

estimator to a given order, with no associated variance inflation asymptotically. Second, that estimator

is shown to perform well in finite samples, under ideal conditions, and to hold its own in empirically

relevant scenarios, relative to existing comparators.

The remainder of the paper is organized as follows. In Section 2, we introduce two log-periodogram

regression estimators; namely, the LPR estimator originally proposed by Geweke and Porter-Hudak

(1983) and the particular bias-reduced estimator of Guggenberger and Sun (2006). In Section 3, we

develop the new jackknife estimator that accommodates both bias correction and variance minimiza-

tion via the appropriate choice of weights. All theoretical results pertaining to the construction of the

afore-mentioned covariance terms, and the resultant asymptotic properties of the optimal estimator,

are given in Section 4. Section 5 documents the finite sample performance of the estimator by means

of a Monte Carlo study.

The proofs of all results are contained in Appendix A, while Appendix B provides various technical

results, including the evaluation of the covariances required for the construction of the weights for the

optimal jackknife estimator. Appendix C contains Tables 2 to 15, which document the results of

the Monte Carlo study, with these results summarized briefly in Table 16 in the same appendix.

The following notation is used throughout: “→P ” denotes convergence in probability, “→D” denotes

2We thank a referee for these suggestions.
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convergence in distribution, and “→” is used to indicate the limit as n → ∞, (unless otherwise stated).

The kth-order spectral density function of the time series {Xt} is denoted by fX...X (λ1, λ2, . . . , , λk−1),

where λ1, λ2, . . . , , λk−1 are fundamental frequencies. For instance, the density function given in (1) is

the second-order spectral density of {Yt} .

2 Log-periodogram regression estimation methods

In this section we briefly review two log-periodogram regression estimators; namely, the raw (un-

adjusted) LPR estimator and the bias-reduced weighted-average estimator of Guggenberger and Sun

(2006) (GS). These estimators are used as benchmarks for later comparisons, and the raw LPR estima-

tor, of course, underpins the jackknife method developed in Section 3. We summarize the asymptotic

properties of these estimators and the assumptions underlying those properties. In contrast to earlier

proofs related to the LPR estimator (e.g. Hurvich et al., 1998) we do not assume that the data gener-

ating process (DGP) is Gaussian. This extension to non-Gaussian processes means that the properties

subsequently derived for the optimal jackknife estimator are also applicable for this general case.

2.1 The log-periodogram regression estimator

Let y⊤ = (y1, y2, ..., yn) be a sample of n observations from a process with a spectral density as given

in (1). The LPR estimator, d̂n, is motivated by the following simple linear regression model that is

formed directly from the spectral density given in (1),

log I
(n)
Y (λj) = (log f∗

Y Y (0)− C)− 2d log(2 sin(λj/2)) + ξj , (2)

where

I
(n)
Y (λ) = |D(n)

Y (λ) |2, D
(n)
Y (λ) =

1√
2πn

n∑

t=1

yt exp (−ıλt) , (3)

and D
(n)
Y (λj) is the DFT of the vector of realizations, y, measured at Fourier frequencies, λj = 2πj/n,

(j = 1, 2..., Nn), Nn = ⌊nα⌋ for 0 < α < 1, and ı =
√
−1 is the imaginary unit. Here, the error terms

ξj = log
(
I
(n)
Y (λj) /fY Y (λj)

)
+ C + Vj , j = 1, 2, ..., Nn, where

Vj = log (f∗
Y Y (λj)/f

∗
Y Y (0)) , (4)

are assumed to be asymptotically independently and identically distributed (i.i.d.) and C is the Euler

constant. The LPR estimator of d is simply the OLS estimator of the slope parameter in (2) and is

given by

d̂n =
−0.5

∑Nn

j=1 (xj − x) zj
∑Nn

j=1(xj − x)2
, (5)

where zj = log I
(n)
Y (λj), xj = log(2 sin(λj/2)), and x = 1

Nn

∑Nn

j=1 xj . The subscript n is introduced

here in order to distinguish this full-sample version of the estimator from that computed subsequently

from sub-samples, in the process of applying the jackknife.
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Certain statistical properties of the LPR estimator such as its bias, variance, mean-squared-error

(MSE) and asymptotic distribution have been derived by Hurvich et al. (1998) under given regularity

conditions, and with certain approximations invoked. Alternative expressions for the bias and variance

of the LPR estimator are provided in Theorem 1 of Andrews and Guggenberger (2003), plus in Theorem

3.1 of Guggenberger and Sun (2006), by setting r = 0. Lieberman (2001) also provides a formula for the

expectation of the LPR estimator under the same conditions as Hurvich et al.; however, his expression

is an infinite sum of a quantity that depends on the true values of d and the short memory parameters,

which renders a feasible version of the jackknife technique using his expression more cumbersome.

With all results cited above derived under the assumption of Gaussianity, we now extend the

results stated in Theorems 1 and 2 of Hurvich et al. (1998) to the general (potentially non-Gaussian)

case. In particular, the resultant expression for the expectation of the LPR estimator is used in the

specification of the optimal jackknife estimator, and in the proof of its properties.

We begin with the following assumptions on the DGP:

(A.1) There exists G > 0, such that

fY Y (λ) = Gλ−2d +O(λ2−2d) as λ → 0+,

where ‘→ 0+’ denotes an approach from above.

(A.2) In a neighbourhood (0, ε) of the origin, fY Y (λ) is differentiable on [−π, π] \ {0} and

∣∣∣∣
d

dλ
log fY Y (λ)

∣∣∣∣ = O(λ−1), as λ → 0 + .

In addition, for some 0 < B̃2, B̃3 < ∞, f∗′
Y Y (0) = 0, |f∗′′

Y Y (λ)| < B̃2 and |f∗′′′
Y Y (λ)| < B̃3, where

f∗′
Y Y (λ) , f∗′′

Y Y (λ) and f∗′′′
Y Y (λ) denote, respectively, the first-, second- and third-order derivatives

of f∗
Y Y with respect to λ in a neighborhood of zero.

(A.3) {Yt} , t ∈ Z := {0,±1,±2, · · · }, satisfies

Yt − µY =

∞∑

j=0

bjεt−j ,

∞∑

j=0

b2j < ∞,

∣∣∣∣
d

dλ
b(λ)

∣∣∣∣ = O(λ−1) as λ → 0+,

where b(λ) =
∑∞

j=0 bj exp (ıjλ) and {εt} is a strictly stationary process with E (εt) = 0 and E
(
ε2t
)
=

1.

(A.4) The innovation process {εt} satisfies the conditions in (A.3). In addition, E (εt)
3 < ∞ and

E (εt)
4 < ∞.

Assumptions (A.1) − (A.3) are standard in the long memory literature (see, Fox and Taqqu, 1986,

Hurvich et al., 1998 Lieberman et al., 2012, among others) and are satisfied by the class of ARFIMA

models. The boundedness of the first three derivatives of f∗
Y Y in Assumption (A.2) is required to

control the fourth-order moment of the sine and cosine components of the standardized DFTs that
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are used to derive the bias term of the LPR. Assumption (A.4) specifies the third and fourth moments

of {εt} to be finite, as we do not invoke Gaussianity. The boundedness imposed on the higher-order

moments of {εt} ensures the asymptotic normality of the DFTs associated with the process {Yt}. The
asymptotic normality of the DFTs is, in turn, used in proving Theorems 1 – 5.

We now state Theorem 1, which gives the mean, variance and asymptotic distribution of the LPR

estimator. We subsequently exploit these results to construct the optimal jackknife estimator, and to

prove its properties, in Section 3.

Theorem 1 Let Assumptions (A.1)− (A.3) hold. Given Nn → ∞, n → ∞, with Nn logNn

n → 0,

E
(
d̂n
)

= d0 −
2π2

9

f∗′′
Y Y (0)

f∗
Y Y (0)

N2
n

n2
+ o
(N2

n

n2

)
+O

( log3Nn

Nn

)
, (6)

V ar
(
d̂n
)

=
π2

24Nn
+ o
( 1

Nn

)
(7)

and d̂n →P d0. Given that (A.4) also holds and if Nn = o
(
n4/5

)
and log2 n = o (Nn) , then,

√
Nn(d̂n − d0) →D N

(
0, π

2

24

)
as n → ∞. (8)

2.2 The weighted-average log-periodogram regression estimator

The motivation for the estimator of Guggenberger and Sun (2006) stems from the work of Andrews and

Guggenberger (2003). With (4) being the term that causes the dominant bias in the LPR estimator,

Andrews and Guggenberger use a Taylor series expansion around j = 0 to approximate (4) as an

even polynomial in the frequencies of order r.3 Including the first 2r terms (with r ≥ 1) in the

log-periodogram regression in (2) as additional regressors leads to

ln I
(n)
Y (λj) = (log f∗

Y Y (0)− C)− 2d log(2 sin(λj/2)) +
r∑

k=1

b2k
(2k)!

λ2k
j + ζj , (9)

where ζj = ξj −
∑r

k=1
b2k
(2k)!λ

2k
j . Application of OLS to (9) then yields an estimator of d, d̂AG

r , with

reduced bias relative to the raw LPR estimator, d̂n. The bias-adjusted estimator is shown to be
√
Nn-

consistent, with an asymptotic variance equal to π2

24 cr, with cr > 1 for r ≥ 1 and cr = 1 for r = 0.

Guggenberger and Sun (2006) proceed to show that an appropriate weighted average of raw LPR

estimators, as based on different bandwidths, Nn,i = ⌊qiNn⌋ ; i = 1, . . . ,K, for fixed numbers qi chosen

suitably, has the same asymptotic bias as d̂AG
r (constructed using Nn), but with a reduced asymptotic

variance. That is, bias reduction is achieved at a smaller cost than is the original method of Andrews

and Guggenberger (2003). Further, for the case of r = 0, the bias of the raw LPR estimator is

retained but with reduced asymptotic variance. The authors also demonstrate that the weighted-

average estimator, denoted by d̂GS
r hereafter, can be implemented via a simple two-step procedure.

In the first step, a series of K LPR estimates are obtained using the regression model in (2) and for

3The odd-order terms of the Taylor’s expansion around zero are exactly zero. This leads to the expansion with only
even-order terms.
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bandwidths, Nn,i, i = 1, . . . ,K. Then, in the second step, the following pseudo-regression is estimated,

using the K estimates produced in the first step as observations of the dependent variable in the

regression,

d̂Nn,i
= d+

r∑

j=1

β2jq
2j
i + β2+2r

(
q2+2r
i − δ

K∑

p=1

q2+2r
p

)
+ ui, i = 1, . . . ,K, (10)

where ui is the error term, and u⊤ = (u1, u2, ..., uK) has a zero (vector) mean and asymptotic variance-

covariance matrix,

Ω = (Ωi,j) ∈ R
K×K , with Ωi,j =

1

max (qi, qj)
.

The tuning parameter δ on the right-hand-side of (10) is a fixed non-zero constant that is used to

control the multiplicative constant of the dominant bias term and render that term equivalent to the

dominant bias term of d̂AG
r . The estimator, d̂GS

r , is then defined as the first component of the GLS

estimator of
(
d, β⊤)⊤, where β⊤ = (β2, β4, . . . , β2+2r) , that is,

(
d̂GS
r , β̂⊤

)⊤
=
(
Z⊤Ω−1Z

)−1
Z⊤Ω−1d̂, (11)

where d̂ is the (K × 1) dimensional vector with ith element d̂Nn,i
, and

Z⊤ =
(
z1, . . . , zK

)
∈ R

(2+r)×K , with z⊤i =
(
1, q2i , . . . , q

2r
i ,
(
q2+2r
i − δ

K∑

p=1

q2+2r
p

))
.

Both the raw LPR estimator, d̂n, and the weighted-average estimator, d̂GS
r , with r = 1, are used as

comparators of our proposed jackknife procedure in the Monte Carlo simulation exercises in Section 5.

3 The optimal jackknife log-periodogram regression estimator

3.1 Definition of the jackknife estimator

The idea behind jackknifing is to generate a set of sub-samples, by deleting one or more observations

of the original sample, while preserving the structure of dependence within the sub-samples; the aim

being to use (weighted) sub-sample estimates to produce a bias-corrected estimator of the parameter

of interest. Let yi (i = 1, 2, ...,m) denote a set of m sub-samples of y, each of which has equal

length, l, such that n = l × m. If sub-samples are chosen using the ‘non-overlapping’ method, then

y⊤
i =

(
y(i−1)l+1, . . . , yil

)
for i = 1, . . . ,m; alternatively if the sub-sampling scheme is ‘moving-block’

then y⊤
i = (yi, . . . , yi+l−1) for all i. In the current context we use the jackknife technique to bias

correct the LPR estimator. Hence, we need to produce the full-sample estimator, d̂n, and the LPR

estimators produced by applying OLS to the model in (2), using the relevant sub-sample. We denote

these m sub-sample estimators (based on either the non-overlapping or moving-block method) by d̂i,

i = 1, 2, ...,m. We summarize notation corresponding to the full-sample estimation and both forms of

sub-sample estimation in Table 1, for ease of subsequent referencing.
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Table 1: Quantities related to the full sample and the sub-samples used in the construction of the jackknife
estimator

Full sample ith sub-sample

(i) Frequency λj = 2πj/n µj = 2πj/l = 2πjm/n = mλj

(ii) Frequency range j = 1, ..., Nn j = 1, ..., Nl

(iii) Spectral density fY Y (λ) = (2 sin (λ/2))−2d f∗
Y Y (λ) fYiYi

(µ) = (2 sin (µ/2))−2d f∗
YiYi

(µ)

(iv) DFT D
(n)
Y (λ) = 1√

2πn

∑n
t=1 yt exp (−ıλt) D

(l)
Yi

(µ) = 1√
2πl

∑l
t=1 yt+i′ exp (−ıµt)

(v) Periodogram I
(n)
Y (λ) = |D(n)

Y (λ) |2 I
(l)
Yi

(µ) = |D(l)
Yi

(µ) |2

(vi) Error term ξj = log
(
I
(n)
Y (λj) /fY Y (λj)

)
ξ
(i)
j = log

(
I
(l)
Yi

(µj) /fYiYi
(µj)

)

Other notation:

(vii) xj = log(2 sin (λj/2)) x
′

j = log(2 sin (µj/2))

(viii) x =
∑Nn

t=1 xj

/
Nn x′ =

∑Nl

t=1 x
′

j

/
Nl

(ix) aj = xj − x a
′

j = x
′

j − x′

(x) Sxx =
∑Nn

j=1 a
2
j S

′

xx =
∑Nl

j=1 a
′2
j

Note, regarding the sub-sample notation in point (iv), if the sub-samples are drawn with the non-overlapping

scheme then, i′= (i− 1)l. If the moving-block scheme is used then, i′= i− 1.

Define the jackknife estimator, d̂J,m, as

d̂J,m = wnd̂n −
m∑

i=1

wid̂i, (12)

where wn and {wi}mi=1 are the weights assigned to the full-sample estimator and the sub-sample

estimators, respectively. Re-iterating, d̂n is the LPR estimator obtained from the full sample (as

defined directly in (5)) and d̂i (i = 1, 2, ...,m) denotes the ith sub-sample LPR estimator. Under the

conditions of Theorem 1, it is straightforward to show that

E
(
d̂J,m

)
=

(
wn −

m∑

i=1

wi

)
d0 −

(2π2

9

f∗′′
Y Y (0)

f∗
Y Y (0)

N2
n

n2
wn − 2π2

9

f∗′′
YiYi

(0)

f∗
YiYi

(0)

N2
l

l2

m∑

i=1

wi

)

+o
(N2

n

n2

)
+O

( log3Nn

Nn

)
, (13)

and

V ar
(
d̂J,m

)
=

π2

24Nn
w2
n +

π2

24Nl

m∑

i=1

w2
i + 2

m−1∑

i=1

m∑

j=i+1

wiwjCov
(
d̂i, d̂j

)

−2wn

m∑

i=1

wiCov
(
d̂n, d̂i

)
+ o
( 1

Nn

)
. (14)

The covariance between the full-sample LPR estimator and each sub-sample LPR estimator, Cov
(
d̂n, d̂i

)
,

and the covariances between the different sub-sample LPR estimators, Cov
(
d̂i, d̂j

)
, for i 6= j,

9
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i, j = 1, 2, ...,m, are given respectively by,

Cov
(
d̂n, d̂i

)
=

1

4Sxx

1

S′

xx

Nn∑

j=1

Nl∑

k=1

aja
(i)
k Cov

(
log I

(n)
Y (λj) , log I

(l)
Yi

(µk)
)

(15)

Cov
(
d̂i, d̂i′

)
=

1

4

1

(S′

xx)
2

Nl∑

j=1

Nl∑

k=1

a′ja
′
kCov

(
log I

(l)
Yi

(µj) , log I
(l)
Yi′

(µk)
)
, (16)

with all notation as defined in Table 1.

Our aim is to obtain the set of weights, {wn, w1, . . . , wm} , such that d̂J,m has the following prop-

erties:

(P.1) d̂J,m is an asymptotically unbiased estimator of d0, with bias reduced to an order of o(N2
n

/
n2),

and,

(P.2) d̂J,m achieves minimum variance among all such bias-reduced estimators.

The ‘optimal’ jackknife estimator so defined is derived via the Lagrangian method in the following

section. In Section 4, the asymptotic properties of the covariances in (B.1) and (B.2) that determine

the asymptotic behaviour of the estimator are derived, and the asymptotic efficiency of the estimator

then proven.

3.2 Derivation of the optimal estimator

The minimization problem is formulated as follows. Produce weights, {wn, w1, . . . , wm}, that satisfy:

min
wn,{wi}mi=1

V ar
(
d̂J,m

)
, (17)

subject to two constraints

g1(wn, w1, . . . , wm) = wn −
m∑

i=1

wi − 1 = 0, (18)

g2 (wn, w1, ..., wm) =
N2

n

n2
wn −m2N

2
l

l2

m∑

i=1

wi = 0. (19)

We refer to the optimal estimator so produced as d̂Opt
J,m hereinafter.

Constraints (18) and (19) ensure that Property (P.1) holds for the resultant estimator. Specifically,

(18) ensures that d̂Opt
J,m is asymptotically unbiased for d0, as can be seen by inspection of (13). The

dominant bias term of d̂Opt
J,m will be eliminated if and only if the second component appearing in (13)

is set to zero; that is, if and only if

2π2

9

f∗′′
Y Y (0)

f∗
Y Y (0)

N2
n

n2
wn − 2π2

9

f∗′′
YiYi

(0)

f∗
YiYi

(0)

N2
l

l2

m∑

i=1

wi = 0. (20)

Using Point (iii) of Table 1, we have that f∗
YiYi

(0) = f∗
Y Y (0) and f∗′′

YiYi
(0) = m2f∗′′

Y Y (0). Hence, the

condition in (20) collapses to constraint (19). Given (17), Property (P.2) is satisfied by construction.

10
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Henceforth writing, Cov
(
d̂n, d̂i

)
= c∗n,i and Cov

(
d̂i, d̂i′

)
= c†i,j , such that c†i,j = c†j,i, the Lagrangian

function is given by,

L̃ (wn, w1, . . . , wm, δ1, δ2) =
π2

24Nn
w2
n +

π2

24Nl

m∑

i=1

w2
i + 2

m−1∑

i=1

m∑

j=i+1

wiwjc
†
i,j

−2wn

m∑

i=1

wic
∗
n,i + δ1

(
wn −

m∑

i=1

wi − 1
)

+δ2

(N2
n

n2
wn −m2N

2
l

l2

m∑

i=1

wi

)
. (21)

The first-order conditions (FOCs) are thus given by,

∂L̃

∂δ1
= 0 ⇒ wn −

m∑

i=1

wi = 1,

∂L̃

∂δ2
= 0 ⇒ N2

n

n2
wn −m2N

2
l

l2

m∑

i=1

wi = 0,

∂L̃

∂wn
= 0 ⇒ 2π2

24Nn
wn − 2

m∑

i=1

wic
∗
n,i + δ1 +

N2
n

n2
δ2 = 0,

∂L̃

∂wi,m
= 0 ⇒ −2wnc

∗
n,i +

2π2

24Nl
wi + 2

m∑

j=1,j 6=i

wjc
†
i,j − δ1 −m2N

2
l

l2
δ2 = 0; i = 1, . . . ,m.

Defining

A =




1 −1 . . . −1 0 0
N2

n

n2 −m2N
2
l

l2
. . . −m2N

2
l

l2
0 0

π2

12Nn
−2c∗n,1 . . . −2c∗n,m 1 N2

n

n2

−2c∗n,1
π2

12Nl
. . . 2c†1,m −1 −m2N

2
l

l2

...
...

. . .
...

...
...

−2c∗n,m 2c†1,m . . . π2

12Nl
−1 −m2N

2
l

l2




, w =




wn

w1
...

wm

δ1
δ2




and b =




1
0
0
...
0
0




, (22)

the optimal solution, w∗ =
[
w∗
n w∗

1 . . . w∗
m δ∗1 δ∗2

]⊤
, is given by

w∗ = A−1b. (23)

Given the structure of b this means that the solutions for the weights are given by the elements of

the first column of A−1, and the optimal jackknife estimator is accordingly given as:

d̂Opt
J,m = w∗

nd̂n −
m∑

i=1

w∗
i d̂i, (24)

where w∗
n =

[
1− (Nnl/ (Nlmn))2

]−1
, given immediately by solving the first two FOCs.

To complete the result we need to show that (23) is a local minimizer of L̃ (·) . To do so, we need

to show that: (i) the constraint qualification – that the rank of the matrix formed by the first-order

derivatives at the solution of the constraints with respect to parameters, except the Lagrangian param-

11
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eters, is equal to the number of conditions – is met, (ii) the solution of the Lagrangian function satisfies

the FOCs, and, (iii) the leading principal minors of the bordered Hessian matrix, HB
(m+3)×(m+3), all

take the same sign of (−1)k , where k is the number of constraints (see, Chapter 12 of Chiang and

Wainwright, 2005, for more details).

In our problem, the number of constraints equals 2 and

Rank




∂g1

∂wn

∂g2

∂wn
∂g1

∂w1

∂g2

∂w1
...

...
∂g1

∂wm

∂g2

∂wm



= Rank




1 1
N2

n

n2 m2N
2
l

l2
...

...
N2

n

n2 m2N
2
l

l2



= 2.

Hence, the rank condition is met. The second condition is met by default. The important condition is

the third one, where we need to show that the leading principal minors of HB
(m+3)×(m+3), exceed zero

for every m = 2, 3, . . . . The bordered Hessian matrix for our case is given by

HB
(m+3)×(m+3) =




0 0 1 −1 · · · −1

0 0 N2
n

n2 −m2N
2
l

l2
. . . −m2N

2
l

l2

1 N2
n

n2
π2

12Nn
−2c∗n,1 . . . −2c∗n,m

−1 −m2N
2
l

l2
−2c∗n,1

π2

12Nl
. . . 2c†1,m

...
...

...
...

. . .
...

−1 −m2N
2
l

l2
−2c∗n,m 2c†1,m . . . π2

12Nl




.

The proof of positivity of the principal minors of the above matrix is given in Appendix B. Hence, the

solution in (23) is a local minimizer of L̃ (·).
We complete this section with three remarks:

Remark 1 If we consider only bias reduction to the order N2
n

/
n2, without concurrent variance re-

duction; that is, we produce an estimator that satisfies only (P.1), and not (P.2), then the formulae

for the weights are

w∗
n =

[
1−

(Nn

Nl

l

nm

)2]−1
and w∗

i =
1

m
(w∗

n − 1) , for i = 1, . . . ,m. (25)

These weights mimic those of Chambers (2013) in the short memory setting (under a non-overlapping

sub-sampling scheme), in which variance minimization was not a consideration.

Remark 2 When Chambers (2013) considers the moving-block sub-sampling scheme (again, in the

short memory setting), he chooses the sub-sample length to be l = n−m+ 1. In this case, when n is

large and m is small, the sub-sample length is l ≈ n, and the impact of bias correction is reduced as

a consequence; something that is in evidence in the Monte Carlo simulation results reported by that

author. As a result of this observation, in our investigations we use the common sub-sample length of

l = n/m, under both the non-overlapping and moving-block schemes.

12
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Remark 3 Condition 3.3 of Guggenberger and Sun (2006) has a similar purpose to our (19). The

difference is that we eliminate the O
(
N2

n

/
n2
)
term from the bias of the LPR estimator, whereas they

eliminate bias up to an order of N2r
n

/
n2r, for some r ≥ 1. The role played by (17) is somewhat different

from that played by Condition 3.4 of Guggenberger and Sun (2006). The latter condition is imposed

mainly to link the bias and variance of d̂GS
r to that of d̂AG

r , for any given r; this link occurring via the

introduction of the tuning parameter, δ (see (10) above), on which the finite sample performance of

their estimator depends. In our method, (17) is used to control the increase in variance that occurs

due to the reduction in bias, with the optimal weights determined by (17)-(19) not depending on any

arbitrary quantities.

4 Asymptotic results

The asymptotic properties of the optimal jackknife estimator depend on the optimal weights which,

in turn, are functions of the covariance terms between the log-periodograms associated with the full

sample and the sub-samples, as seen in (B.1) and (B.2). Provided that the DGP satisfies assumptions

(A.1) − (A.3), Lahiri (2003) has shown that periodogram ordinates are asymptotically independent

when the frequencies are at a sufficient distance apart, provided that the set of observations remain

the same. However, in our case, we are dealing with periodograms calculated both for the full set

of observations, and for subsets of the full set. Thus, two questions that arise here are: (i) Are the

periodograms of the full sample and the sub-samples at different frequency ordinates asymptotically

independent? and, (ii) When d 6= 0, do the periodograms still converge to a chi-square distribution

as they do when d = 0 (see Theorem 5.2.6 of Brillinger, 1981)? We address both questions in Section

4.1 and provide formulae for calculating the relevant covariance terms algebraically, adopting the

procedure used in Brillinger (1981). In Section 4.2 we then use these results to derive the asymptotic

properties of the optimal jackknife estimator.

4.1 Stochastic properties of periodograms in the full sample and in sub-samples

We begin by defining {X1, X2, . . . , Xh} as an arbitrary set of h stationary time series. We link these

series to the full sample and the m sub-samples of observations below. Our use of notation in this

section mimics, in large part, that of Brillinger (1981, ➜. 2.6).

Definition 1 Suppose {X1, X2, . . . , Xh} is a set of h stationary time series. The kth-order cumulant

κXa1 ,...,Xak
(u1, ..., uk−1) , for k = 1, 2, . . . , h, and uj = 0,±1,±2... for j = 1, 2, ..., k − 1, is defined as

follows,

κXa1 ,...,Xak
(u1, ..., uk−1) =

∫ π

−π
. . .

∫ π

−π
exp

(
− ı

k−1∑

j=1

λjuj

)
fXa1 ,...,Xak

(λ1, . . . , λk−1) dλ1 . . . dλk−1, (26)

where fXa1 ,...,Xak
(λ1, . . . , λk−1) is the kth-order joint spectral density of {Xa1 , . . . , Xak}, for −π <

λj < π, j = 1, 2, ..., k − 1, with a1, . . . , ak = 1, 2, . . . , h, and k = 1, 2, . . ..

13
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For
∑∞

u1=−∞ · · ·
∑∞

uk−1=−∞

∣∣∣κXa1 ,...,Xak
(u1, ..., uk−1)

∣∣∣ < ∞, then the inverse form of (26) is given by,

fXa1 ,...,Xak
(λ1, . . . , λk−1) = (2π)−k+1

∞∑

u1=−∞
· · ·

∞∑

uk−1=−∞
κXa1 ,...,Xak

(u1, ..., uk−1) exp
(
− ı

k−1∑

j=1

λjuj

)
.

(27)

Now let X1 = y denote the full sample of n observations on the random variable following the

model in (1); whilst X1+i = yi denotes the vector of observations for the sub-sample i = 1, 2, . . . ,m,

with length l. Set h = m + 1 in Definition 1. Let D
(n)
X1

(.) and D
(l)
X1+i

(.) respectively be the DFT of

the full sample and ith sub-sample at some frequency. Set

Li =

{
n if i = 1
l otherwise

. (28)

In Proposition 1 we give the expression for the kth-order joint cumulant of the DFTs of the

h = m+ 1 series associated with the full sample and the m sub-samples.

Proposition 1 Suppose Assumptions (A.1) − (A.3) hold. The kth-order cumulant of
{
D

(L1)
Xa1

(λ1) ,

D
(L2)
Xa2

(λ2) , ..., D
(Lk)
Xak

(λk)
}
, for k = 1, 2, . . ., is given by,

κDXa1
,...,DXak

(λ1, ..., λk−1) = L− k
2 (2π)

k
2
−1∆(L)

( k∑

j=1

λj

)
fXa1 ,...,Xak

(λ1, ..., λk−1)+o
(
L1−2d− k

2

)
, (29)

where, L = min {L1, . . . , Lk}.4

From Proposition 1 we can derive the relationship between the DFTs corresponding to full sample

and the m sub-samples as the sample size increases. The result is given in the following theorem:

Theorem 2 Suppose Assumptions (A.1)− (A.4) hold, and suppose λ = 2πr/Li and ω = 2πs/Lj for

integers r and s. Then for a fixed value of Li and Lj, D
(Li)
Xai

(λ) and D
(Lj)
Xaj

(µ) are asymptotically

independent, whenever max {Liλ, Ljµ} → ∞, for i 6= j.

Theorem 2 immediately implies the asymptotic independence of the periodograms of the full sample

and all sub-samples. However, in finite samples, the dependence structure across these periodograms

may play an important role in determining the variance of the jackknife estimator in (14), through the

form of the covariances in (B.1) and (B.2). Expressions for the covariances between the periodograms

corresponding to the full sample and the sub-samples are provided in the following theorem, from

which further insights on this point can be gleaned.

4The kth-order cumulant associated with the DFTs should, for completeness, be denoted by κ
D

(L1)

Xa1
,...,D

(Lk)

Xak

(., . . . , .).

For notational ease, however, we express the cumulant without making explicit the relevant sample sizes.

14
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Theorem 3 Let I
(Li)
Xai

(λ) and I
(Lj)
Xaj

(λ) be the periodograms associated with DFTs D
(Li)
Xai

(λ) and D
(Lj)
Xaj

(µ)

respectively. Suppose Assumptions (A.1)− (A.3) hold. Then,

Cov
(
I
(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)
)

=
2π

L
fXai

,Xai
,Xaj

,Xaj
(λ,−λ, µ) +

2π

L
[η (λ− µ) + η (λ+ µ)]

{
fXai

Xaj
(λ)
}2

+2π [η (λ− µ) + η (λ+ µ)] fXai
Xaj

(λ) o
(
L

−2d)
+ o
(
L

−1−2d)
, (30)

where η (ω) = limT→∞
1

2π

∑T
t=−T exp {−ıωt}, and L is as defined in Proposition 1. When Assumption

(A.4) also holds, the periodogram ordinates I
(Li)
Xai

(µ) and I
(Lj)
Xaj

(ω) with i 6= j, are asymptotically

fX1X1 (·) χ2
(2)

/
2 random variables.

Theorem 3 is a generalization of the result of Theorem 5.2.6 of Brillinger (1981) to the context

of jackknifing. Equation (30) provides the first few dominant terms of the covariance between the

periodograms associated with the full sample and a particular sub-sample, or between distinct sub-

samples, at various frequency ordinates. Further, (30) reflects the fact that, for finite n, the relevant

periodograms are positively correlated. This result is to be anticipated given that the sub-samples

are subsets of the full sample and, hence, retain the same dependence structure as the full sample.

Furthermore, the theorem states that the periodogram ordinates (for either the full sample and a given

sub-sample, or between sub-samples) have a limiting joint distribution of the form, fX1X1(λ) χ
2
(2)

/
2,

where fX1X1(.) is the spectral density of the time series from which the full sample is generated.

Using the covariance terms and the distribution of the periodograms provided in the above theo-

rem, we can find the joint distribution of the log-periodograms associated with the full sample and any

sub-sample (or for two distinct sub-samples). Using the joint distribution of the log-periodograms, we

can derive the moment generating function of the joint distribution. This leads to the derivation of

the covariance terms for the log-periodogram. This result is provided in Appendix B. The covariances

between log-periodograms allow us to obtain the covariances between the full-sample and sub-sample

LPR estimators given in (B.1) and (B.2). Exploiting the relationship between the different LPR esti-

mators, we then establish the consistency and asymptotic normality of the optimal jackknife estimator

in the following section.

4.2 Asymptotic properties of the optimal jackknife estimator

Using the results established in the previous section, we state the relationship between the full-sample

and sub-sample LPR estimators in Theorem 4. The asymptotic properties of the optimal jackknife

estimator are then established in Theorem 5.

Theorem 4 Let d̂n and d̂i be the LPR estimators for the full sample and the ith sub-sample with

sub-sample length, l. Suppose Assumptions (A.1)− (A.4) hold. Then, for a fixed value of m,

(i) d̂n and d̂i are asymptotically independent.

(ii) d̂i and d̂j for i 6= j, i, j = 1, . . . ,m, are asymptotically independent.

15
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From Theorem 1, the LPR estimator constructed from the full sample is consistent and satisfies

(8). Similarly, allowing the number of sub-samples, m, to be fixed (hence l changes as n changes such

that n = m× l), as l → ∞, d̂i →P d0, and
√
Nl

(
d̂i − d0

)
→D N

(
0, π

2

24

)
. This implies the sub-sample

LPR estimators have the same limiting distribution as the full-sample estimator. The asymptotic

properties of d̂Opt
J,m are given in the following theorem.

Theorem 5 Under the same assumptions and conditions given in Theorem 1, for a fixed value of m,

d̂Opt
J,m →P d0, and

√
Nn

(
d̂Opt
J,m − d0

)
→D N

(
0, π

2

24

)
as n → ∞

where d0 is the true value of d and d̂Opt
J,m is as given in (24).

Thus, it follows from Theorem 5 that d̂Opt
J,m is consistent for d0 and achieves a limiting normal

distribution with the same variance as the base LPR estimator itself. Further, the rate of convergence

of the optimal jackknife estimator,
√
Nn, is also the same as that of the LPR estimator. That is, there

is no loss of asymptotic efficiency compared to d̂n. Importantly, these asymptotic properties of the

jackknife estimator do not depend on the number of sub-samples or the sub-sample length, as long as

the former is fixed and the latter increases with n such that that n = m× l.

5 Simulation exercise

In this section, Monte Carlo simulation is used to compare the finite sample performance of the pro-

posed jackknife estimator with: (i) the weighted-average estimator of Guggenberger and Sun (2006),

d̂GS
r , with r = 1, (ii) the bias-corrected pre-filtered sieve bootstrap-based estimator of Poskitt et al.

(2016), d̂PFSB, (iii) the unadjusted LPR estimator, d̂n, (iv) the MLE, d̂MLE , and, (v) the pre-

whitened (PW) estimator, d̂PW . Performance is assessed in terms of bias and RMSE, and under a

variety of true DGPs. In Section 5.1 details of the basic Monte Carlo design are provided. Results

under correct and incorrect specification of the model are then documented in Section 5.2 and Section

5.3 respectively, with further computational details that pertain to those specific settings provided

therein. In order to assist the reader, we tabulate a ranking of the different estimators, under the

variety of settings considered, in Section 5.4. All numerical results are produced using MATLAB

2015b, version 8.6.0.267246, and all tables of results are collected in Appendix C.

5.1 Monte Carlo design

Data are generated from various versions of a Gaussian fractional process, ARFIMA(p0, d0, q0), where

p0 is the lag length of the true autoregressive (AR) component and q0 the lag length of the true

moving average (MA) component. The lag lengths p0 and q0 equal either one or zero in all settings.

For p0 = q0 = 1, the process is given by

(1 + φ0B) (1−B)d0 (Yt − µ0) = (1 + θ0B) εt, (31)
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where B is the backward shift operator, Bkxt = xt−k, for k = 1, 2, . . . , and εt ∼ i.i.d N (0, 1). Here,

µ0 is the mean parameter for Yt, and without loss of generality we assume that µ0 = 0. For the

parameter of interest, d, we select true values from the set, d0 = {−0.25, 0, 0.25, 0.45}. Values from

the set {−0.9,−0.4, 0.4, 0.9} are adopted for both φ0 and θ0.
5 Additional details are provided in

Sections 5.2 and 5.3.

Sample sizes n ∈ {96, 576} are considered. These values are chosen to reflect the size of samples

used in real world examples (see, for example, Diebold et al., 1991, Delgado and Robinson, 1994, Gil-

Alana and Robinson, 1997, and Reisen and Lopes, 1999). However, one should note that, in general,

the size of data sets from finance, in particular those recorded at high frequency (for example, Granger

and Hyung, 2004), or from biology (for example, the tree-ring data set of Contreras-reyes and Palma,

2013), or in certain other of the examples mentioned in the Introduction, are much larger than the

sample sizes considered here. On the other hand, these sample sizes are large enough to enable a

range of values for the number of sub-samples, m, to be explored, with the chosen range of m being

{2, 3, 4, 6, 8}. We also consider only sub-samples that have equal length, l = n/m, under both sub-

sampling approaches, with the slightly unorthodox values of n ∈ {96, 576} chosen in order to ensure

that l is an integer.

We adopt the following procedure in implementing the optimal jackknife bias-adjustment tech-

nique:

Step 1: Generate the full sample of size n, y, from the relevant stationary ARFIMA(p0, d0, q0) model.

Step 2: Compute the LPR estimator of d0, d̂n using (5).

Step 3: Draw the sub-samples, yi (i = 1, 2, ...,m) , from the full sample based on the relevant sub-

sampling technique (non-overlapping or moving-block) and compute the LPR estimator of d0,

d̂i, for each sub-sample.

Step 4: Depending on the sub-sample selection method chosen in Step 3, obtain the optimal weights for

the corresponding method based on the parameters of the (true) ARFIMA(p0, d0, q0) model and

compute the optimal jackknife estimator, d̂Opt
J,m. In the empirically realistic case in which the true

model parameters are unknown, a feasible version of the jackknife estimator is implemented,

with all details provided in the relevant sections below.

Step 5: Repeat Steps 1− 4 100, 000 times and compute estimates of the bias and RMSE of the optimal

jackknife estimator.

In Steps 2 and 3, the number of frequencies used to calculate the relevant LPR estimator is set

to NL = ⌊Lα⌋, with α = 0.65, where L is as defined in (28).6 The optimal jackknife estimators

5Additional results based on the assumption that εt is distributed as Student t with 5 degrees of freedom are available
from the authors on request. This additional design feature did not lead to qualitatively different results.

6Certain simulation results based on α = 0.5 have also been produced, but are not presented here due to space
considerations. These additional numerical results can be provided by the authors on request.
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calculated using the non-overlapping (abbreviated to Opt-NO), and moving-block (abbreviated to

Opt-MB) schemes, are denoted by d̂Opt−NO
J,m and d̂Opt−MB

J,m , respectively.

The weighted-average estimator of Guggenberger and Sun (2006) is computed as described in Sec-

tion 2.2, with the following additional details. For a given Nn, the set of bandwidths used to calculate

the constituent estimators in (10) are Nn,i = ⌊qiNn⌋, where q⊤ = (q1, q2, . . . , qK) = (1, 1.05, . . . , 2).

We produce the GS estimator (based on r = 1) using two different choices of Nn: (i) Nn = ⌊nα⌋,
with α = 0.65 (denoting this estimator by d̂GS

1 ), and (ii) the optimal choice of Nn as suggested

in Guggenberger and Sun (2006, page 876) (denoting this version by d̂Opt−GS
1 ). Importantly, band-

width choice (ii) depends on knowledge of the true values of the short memory parameters, whereas

bandwidth choice (i) yields an estimator that is feasible empirically. The parameter δ, required for

both versions of the GS estimator, is evaluated using the formula δ = τr/(τ
∗
r

∑K
i=1 q

2+2r
k ), where

τ∗r−1 = − (2π)2r r
/
[(2r)! (2r + 1)2] and the number τr is as defined in Andrews and Guggenberger

(2003). Details regarding the construction of the pre-filtered sieve bootstrap estimator (d̂PFSB) can be

found in Poskitt et al. (2016). In implementing this method, we set the number of bootstrap samples

to B = 1000.

The MLE, d̂MLE , is obtained by concentrating the Gaussian log-likelihood associated with an

assumed ARFIMA(p, d, q) model with respect to µ and σ2, subtracting from that the resulting constant

(n log n− n)/2, and maximizing the profile log-likelihood function

L(η) = −n

2
log
[
(y − µ̂1)⊤Σ−1

η (y − µ̂1)
]
− 1

2
log |Ση|, (32)

where 1 is the vector of ones and µ̂ = 1⊤Σ−1
η y

/ (
1⊤Σ−1

η 1
)
. The parameter η = (d, φ⊤, θ⊤)⊤, with d the

fractional differencing parameter, φ the p-dimensional vector of AR parameters, θ the q-dimensional

vector of MA parameters, and σ2Ση := [γi−j (η)] , i, j = 1, . . . , n,with γk (η) being the autocovariance

at lag k. When the MLE is implemented under correct model specification the assumed model corre-

sponds to an ARFIMA(p0, d0, q0) with µ0 set to 0; under misspecification, the ARFIMA(p, d, q) model

differs from the true data generating process (DGP) in some way. The estimation procedure under

misspecification is detailed in Section 5.3.

The PW estimator of d, d̂PW , is obtained in two steps. In the first step, an autoregressive-moving

average (ARMA) model of order (p, q) is fit to the data, and in the second step, d is estimated by

minimizing the sum of squares of the resultant residuals. Again, the PW estimator is implemented

under correct and incorrect specification of the short memory dynamics.

5.2 Finite sample bias and RMSE: Correct model specification

In this section, we document results under correct specification of the true DGP. Results are presented

for the full set of values: d0 = {−0.25, 0, 0.25, 0.45} and φ0/θ0 = {−0.9,−0.4, 0.4, 0.9}. The relative

performance of the jackknife method is, in turn, assessed under two scenarios: (i) when the values of

all parameters in the true DGP are used in the construction of the optimal jackknife weights and, (ii)

when all parameters in the true DGP are estimated, but the correct values for lag lengths p0 and q0
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are still adopted (with the superscript ‘Opt’ omitted in this case). An iterative method (described in

Section 5.2.2) is used to produce this feasible version of the jackknife estimator. To save on space,

results for both d̂Opt−NO
J,m and d̂NO

J,m are recorded for m = 2, 3, 4, 6, 8, whilst results for both d̂Opt−MB
J,m

and d̂MB
J,m based on only m = 2 are documented. We do note that the patterns exhibited (in terms of

both bias and RMSE) for d̂Opt−MB
J,m and d̂MB

J,m , across m, are similar to those exhibited for d̂Opt−NO
J,m and

d̂NO
J,m respectively.

In case (i) we compare the jackknife estimator with the GS estimator obtained with the optimal

choice of Nn (d̂Opt−GS
1 ) - which, of course, relies on the known values of the short memory parameters -

and with the sub-optimal estimator, d̂GS
1 . In case (ii) results for only d̂GS

1 are included for comparison,

as d̂Opt−GS
1 is infeasible when the true values of the short memory parameters are unknown.7 Note that

the finite sample results for the (raw) LPR and PFSB estimators remain the same in both scenarios,

(i) and (ii), as the construction of neither estimator relies on knowledge of the true parameters, nor

of p0 and q0. As concerns the parametric estimators, d̂MLE and d̂PW , in this correct specification

scenario, p = p0, q = q0 and µ = µ0 = 0, and d is estimated under the two cases: (i) where the

short memory parameters are set at their true values; and (ii) where the short memory parameters

are estimated simultaneously with d.

All relevant finite sample results for case (i) and case (ii) are presented and discussed in Section

5.2.1 and Section 5.2.2 respectively.

5.2.1 Case 1: True parameters are known

Tables 2 and 3 record the bias and RMSE of the various optimal jackknife estimators, the two dif-

ferent GS estimators, and the LPR, PFSB, MLE and PW estimators, for the case where the DGP

is ARFIMA(1, d0, 0) and the short memory parameter φ0 is known. The corresponding results for

the ARFIMA(0, d0, 1) DGP are presented in Tables 4 and 5. The lowest biases and RMSEs for each

design are marked in boldface. The second lowest values are italicized. Only that number which is

smallest at the precision of 8 decimal places is bolded. Values highlighted with a ‘*’ are equally small

to 4 decimal places.

- Table 2 here -

- Table 3 here -

- Table 4 here -

- Table 5 here -

With reference to Tables 2 and 3: as would be anticipated in this situation, in which the true

model is estimated and the true value of φ0 is imposed, the MLE is the least biased estimator of all

7Note that in the case where the short memory parameters are unknown Guggenberger and Sun (2006) suggest that
an adaptive procedure for the local Whittle-based estimator that they propose could be extended to the weighted-average
estimator based on LPR. Since the adaptive method is not provided in detail in their paper, we do not pursue this option
here.
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methods considered, and has the smallest RMSE. The parametric PW method has the second least

bias in a small number of cases, and also performs relatively well in terms of RMSE.

As is also consistent with expectations, and existing results (see, for example, Agiakloglou et al.,

1993, Nielsen and Frederiksen, 2005 and Poskitt et al., 2016), when short memory dynamics are

present, the raw, unadjusted, LPR estimator is biased, as the low frequencies are contaminated by the

spectral density of the short run dynamics, particularly for negative values of φ0 (which corresponds

to positive first-order autocorrelation). As is evident from the recorded results, the bias is particularly

large when there is a large negative value for φ0 in (31), and it decreases as this value increases.

Further, both bias and RMSE decline as the sample size increases, illustrating the consistency of the

estimator.

We shall now comment on the performance of all nine bias-corrected semi-parametric estimators

under the ARFIMA(1, d0, 0) process. With reference to Table 2, for the great majority of designs,

d̂Opt−NO
J,m with m = 2, has the smallest bias of all nine such estimators. For φ0 = −0.9 and n = 96,

the bias reduction of d̂Opt−NO
J,m (m = 2), relative to the raw LPR estimator is up to 3.6%, and when

n = 576, this rises to 5.7%.8 For the larger values of φ0, when n = 96, the bias reduction ranges

from 48% to 60%, and from 56% to 97% when n = 576. Only occasionally is this particular version of

the jackknife estimator inferior to an alternative semi-parametric estimator. Importantly, however, an

increase in m leads to an increase in bias for d̂Opt−NO
J,m and, hence, a reduction in its superiority over

all alternatives, including the raw LPR method in some cases. The reason is that the increase in m

leads to a smaller sub-sample length and, hence, increases the finite sample impact of the dominant

bias term on the sub-sample estimators used in the construction of the jackknife estimator.

Now referencing the results in Table 3, we see that, despite the lack of variance inflation in the

asymptotic distribution of the optimal jackknife estimator, the reduction in bias does cause some

finite sample increase in variance, leading to RMSEs for d̂Opt−NO
J,m that are occasionally slightly larger

than the RMSE of the raw LPR estimator. That said, in the vast majority of cases d̂Opt−NO
J,m with

m = 8, has the smallest RMSE of all semi-parametric estimators (including the raw LPR) and, in

many cases, the RMSE of the jackknife estimator with the smallest bias (d̂Opt−NO
J,m , m = 2) has a

RMSE which remains less than that of the raw estimator. In addition, all versions of the jackknife

estimator (including the moving-block version) tend to have smaller RMSEs than the three alternative

bias-corrected methods (d̂GS
1 , d̂Opt−GS

1 and d̂PFSB
1 ), most notably for the smaller sample size (n = 96 ).

As befits the optimality of the estimator, in almost all cases, d̂Opt−GS
1 out-performs d̂GS

1 , in terms of

both bias and RMSE, although both estimators, as already noted, are virtually always out-performed

by a version of the jackknife procedure.

The broad conclusions drawn above obtain under the ARFIMA(0, d0, 1) DGP, as seen from the

results recorded in Tables 4 and 5. The only notable difference is the improved RMSE performance

of d̂Opt−NO
J,8 , with this estimator ranked second overall (after d̂MLE) in terms of this measure.

8We remind the reader that when φ0 = −0.9 all estimators remain very biased.

20



NADARAJAH, MARTIN AND POSKITT

5.2.2 Case 2: True parameters are unknown

Evaluation of the optimal weights in (23), required for the construction of the optimal jackknife

estimator, depends on the covariances between both the different sub-sample LPR estimators and

between the full-sample and sub-sample estimators, as given in (B.1) and (B.2). These covariances

depend, in turn, on covariances between the various log-periodograms and, hence, on the values of

the parameters that underpin the true DGP, as is made explicit in (30) and Appendix B. Hence,

implementation of the optimal bias-correction procedure via the jackknife is not feasible in practice,

without modification. To this end, we propose the following iterative method for obtaining a feasible

version of the jackknife-based estimator; one still appropriate, however, for the case where the specified

model (i.e. the values of p0 and q0) is correct.

An iterative version of the optimal jackknife estimator

1. Prerequisite: Estimate the relevant short memory parameter(s) in the ARFIMA(p0, d0, q0)

model, using pre-filtered data based on df = d̂GS .

2. Initialization: Set k = 1 and tolerance level τ = τ (0).

3. Recursive step: For the kth recursion, perform the jackknife bias-correction procedure of

Section 3.2, but with the estimates of the short memory parameters from step 1, and df = d̂GS ,

now inserted into the formulae for the covariance terms in (B.1) and (B.2). Denote the resulting

estimator by d̂
(k)
J,m.

4. Stopping rule: If
∣∣∣d̂(k+1)

J,m − d̂
(k)
J,m

∣∣∣ > τ set k = k + 1 and τ = τ (k), and repeat steps 1 and 3

after updating df = d̂
(k)
J,m.

The basic idea behind the algorithm is as follows: estimation of the short memory parameter

requires pre-filtering via some preliminary estimate of d0. An obvious initial (consistent) choice is

df = d̂GS , as this estimator is already bias-adjusted, and a feasible estimator in the presence of

unknown values for the short memory parameter(s). However d̂GS will still exhibit some bias in finite

samples. Hence, iteration of the above algorithm, which involves replacing the initial pre-filtering

value with successively less biased values, df = d̂
(k)
J,m, is expected to yield a final feasible version of the

jackknife estimator, d̂
(k+1)
J,m , based on accurate estimates of all unknown parameters. (See also Poskitt

et al., 2016 for a related application of this form of iterative procedure). The feasible version of the

jackknife statistic at the final iteration is denoted hereafter by d̂NO
J,m if the sub-sampling method is

non-overlapping and d̂MB
J,m if the sub-sampling method is moving-block.

- Table 6 here -

- Table 7 here -

- Table 8 here -

- Table 9 here -
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Tables 6 and 7 record the bias and RMSE of all versions of the feasible jackknife estimator, the

feasible GS estimator, d̂GS
1 , and the LPR, PFSB, MLE and PW estimators, for the case where the

DGP is ARFIMA(1, d0, 0) and the short memory parameter φ0 is now estimated. The corresponding

results for the ARFIMA(0, d0, 1) DGP are presented in Tables 8 and 9. The results for the d̂GS
1 , LPR

and PFSB are the same as in the earlier corresponding tables, as these estimators do not depend on

knowledge or estimation of the short memory dynamics. The parametric estimators, MLE and PW,

do of course change when φ0 is estimated. Once again, the minimum bias and RMSE are shown in

bold font, and the second lowest values are italicized.

Consider the results for the ARFIMA(1, d0, 0) process (Tables 6 and 7). The (various versions of

the) feasible jackknife estimators show similar characteristics to the corresponding optimal estimators,

except for exhibiting larger bias and RMSE. This is to be expected given that the optimal weights are

now functions of estimates of both d0 and φ0. The increase in bias (relative to the known parameter

case) is particularly marked when φ0 = −0.9, with the feasible jackknife estimators seen to be more

biased overall than the raw LPR estimator itself, in three cases. However, for all other values of φ0,

the least biased versions of the feasible jackknife estimators are still almost always less biased than

the LPR estimator. For example, when φ0 = −0.4 and n = 96, the bias reduction of d̂NO
J,m with m = 2

compared to the raw LPR estimator is up to 35% and when n = 576, the bias reduction rises to 69%.

Overall, the d̂NO
J,2 , d̂GS

1 , d̂PFSB
1 and d̂MLE estimators share the title of the least, or second-least biased

estimator. The RMSE results in Table 7 indicate the consistency of the feasible jackknife estimators.

However, the MLE estimator still exhibits the least RMSE of all estimators considered, even when φ0

is estimated, with the LPR estimator taking second place.

The results in Tables 8 and 9, for the ARFIMA(0, d0, 1) process, tell a broadly similar story to

those for the ARFIMA(1, d0, 0) case, except for the fact that d̂NO
J,2 is now the least biased estimator

in more cases than any other competing estimator, and d̂NO
J,8 is sometimes ranked second in terms of

RMSE.

5.3 Finite sample bias and RMSE: Model misspecification

Misspecification occurs when the true DGP is ARFIMA(p0, d0, q0) and the fitted model is ARFIMA(p, d, q),

where p and q are such that {p 6= p0 ∪ q 6= q0} \ {p0 ≤ p ∩ q0 ≤ q}. We consider three different forms

of misspecification: (i) true DGP: ARFIMA(1, d0, 0); fitted model: ARFIMA(0, d, 0); (ii) true DGP:

ARFIMA(0, d0, 1); fitted model: ARFIMA(0, d, 0); and (iii) true DGP: ARFIMA(1, d0, 1); fitted

model: ARFIMA(2, d, 0). The first two forms of misspecification mimic a situation in which short

memory dynamics are present, but are ignored. In particular, these scenarios allow us to assess the

relative performance of the feasible jackknife estimator when no aspect of the short memory specifi-

cation is used in the calculation of the weights. The third form of misspecification allows for another

type of error in the specification of the short memory component. In all cases, we restrict both the

DGP and the fitted model to be within the stationary region. In order to reduce the number of results

to be tabulated and discussed, in Tables 10 to 13 we present results for the reduced set of values: d0 =
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{−0.25, 0.25, 0.45} and φ0/θ0 = {−0.9,−0.4, 0.4, 0.9}. In Tables 14 and 15, we reduce the settings

further by omitting results for φ0/θ0 = 0.9.

Under misspecification, the feasible jackknife estimates are obtained by using the fitted ARFIMA(p, d, q)

model in the Prerequisite step in Section 5.2.2, while the remaining steps are unchanged. The MLE

and PW estimators are produced as explained in Section 5.1.9 The estimators d̂n, d̂
GS and d̂PFSB are

not affected by misspecification of the short memory dynamics, as specification of that component of

the model plays no role in their construction. Hence, the results for these estimators in Tables 10 to

13 match the corresponding results in Tables 2 to 5. The results for all estimators in Table 14, under

the ARFIMA(1, d0, 1) DGP, are distinct from results in all other tables.

Tables 10 and 11 display the bias and RMSE results of all estimators under misspecification type

(i). The corresponding results for the misspecification types (ii) and (iii) are presented in Tables 12

to 15. As previously, the minimum bias and RMSE are shown in bold font, and the second lowest

values are italicized.

- Table 10 here -

- Table 11 here -

- Table 12 here -

- Table 13 here -

- Table 14 here -

- Table 15 here -

From Tables 10 and 11, we observe that under misspecification the (various versions of the) feasible

jackknife estimators show similar characteristics to those observed under correct model specification,

although with larger bias and RMSE. This is not surprising, given that the weights are now functions

of estimates of d only, with information on the true or estimated autoregressive coefficient in the DGP

ignored. The increase in bias (relative to the correct specification case) is particularly marked when

φ0 = −0.9. When φ0 > −0.9, the feasible jackknife estimators still tend to show reduced bias compared

to the LPR estimator, almost uniformly for m = 2. For example, when φ0 = −0.4 and n = 96, the

bias reduction of d̂NO
J,2 compared to the raw LPR estimator is up to 12%, and when n = 576, the

bias reduction rises to 39%. Moreover when φ0 = 0.9, d̂NO
J,2 is either the least, or second-least biased

estimator of all estimators considered.

Under this form of misspecification, at least for φ0 > −0.9, the MLE and PW estimators are more

biased than the feasible jackknife estimators, and much more so in some cases. This is expected, as

model misspecification has a direct impact on the parametric estimators. In contrast, for the jackknife

estimators, misspecification impinges more indirectly, only via the choice of weights. Overall, the

PFSB estimator shows the least bias and the feasible GS estimator shows the second-least bias.
9For more details on MLE under mis-specification of the short-memory dynamics see, Martin et al. (2020)
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The RMSE results in Table 11 demonstrate that neither the feasible jackknife estimators, nor the

parametric methods, out-perform the raw LPR estimator, which shows the least RMSE; the second

lowest RMSE usually being observed with one of d̂NO
J,8 , d̂GS

1 , d̂PFSB or d̂MLE .

The bias results for misspecification form (ii) in Table 12 display similar characteristics to those

described for misspecification form (i), apart from the much more distinct dominance of d̂NO
J,2 in this

case. The RMSE results in Table 13 reveal that, once again, d̂n has the smallest RMSE values, with

d̂MLE taking the second place.

Under the third form of misspecification, the bias estimates indicate that d̂GS
1 exhibits the least

bias, with d̂NO
J,2 taking the second place (refer Table 14). In terms of the RMSE results in Table 15,

once again the raw LPR has the lowest values most frequently, followed by d̂GS
1 , with the second

smallest RMSE values mostly observed for d̂NO
J,8 .

5.4 A summary of the simulation results

- Table 16 here -

To assist the reader, in Table 16 we summarize all of the simulation results tabulated in Tables

2 to 15, by ranking the estimators - from first to third - under the different scenarios. Panel A in

Table 16 summarizes the results in Tables 2 to 5; Panel B summarizes the results in Tables 6 to 9;

and Panel C summarizes the results in Tables 10 to 15, with the three misspecification types – (i) to

(iii) – corresponding to those described in the above section. An estimator is ranked first if it has the

smallest value (in bold font) for the relevant measure (bias or RMSE) the largest number of times in a

given table. The other ranks follow accordingly. If needed to complete the ranking, the method with

the largest number of second-smallest values (in italic font) in a given Table is referenced. And so on.

The rankings accord with the narrative in the preceding sections.

6 Discussion

With the fractionally integrated autoregressive moving-average model being one of the key model

classes for describing long memory processes, much effort has been expended on producing accurate

estimates of the fractional differencing parameter, d, in particular. This quest has been hampered

by certain problems, for both parametric and semi-parametric approaches. Specifically, the need to

fully specify the model for parametric estimation means that any incorrect specification of the short

memory dynamics has serious consequences, in terms of both finite sample and asymptotic properties

(see, for example, Chen and Deo, 2006 and Martin et al., 2020 ). On the other hand, the semi-

parametric estimators, whilst not requiring explicit modelling of the short memory component, can

suffer substantial finite sample bias in the presence of unaccounted for short memory dynamics. It is

bias-correction of this latter class of estimator that has been the focus of this paper.

A natural way of producing a bias-corrected version of the commonly used the log-periodogram

regression (LPR) estimator is suggested in this article, based on the jackknife technique. Optimality
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is achieved by allocating weights within the jackknife that are adjusted for the bias to a particular

order, and that minimize the increase in variance caused by the reduction in bias. The construction of

the optimally bias-corrected estimator requires expressions for the dominant bias term and variance

of the unadjusted LPR estimator. We show that the statistical properties of the LPR estimator, as

originally established by Hurvich et al. (1998), are valid for a more general class of fractional process

that is not necessarily Gaussian. Hence, the jackknife estimator that we construct from the optimally

weighted average of LPR estimators also has proven optimality under this general form of process. In

addition to proving the consistency of the optimal jackknife estimator, we have the important result

that the asymptotic variance of the estimator is equivalent to that of the unadjusted LPR estimator.

That is, bias adjustment is effected without any associated increase in asymptotic variance.

Our Monte Carlo study shows that, amongst the semi-parametric estimators, the optimal jack-

knife estimator based on a small number of non-overlapping sub-samples outperforms (in terms of bias

reduction) both the pre-filtered sieve bootstrap estimator of Poskitt et al. (2016) and the weighted-

average estimator of Guggenberger and Sun (2006), albeit in the somewhat artificial case in which

the parameters of the DGP are correctly identified and known, for the purpose of computing optimal

weights. In the realistic case in which these parameters are not known, we suggest an iterative pro-

cedure in which the weights are constructed using consistent estimates. In this case the method is

not dominant overall, compared to alternative bias-corrected methods, but is still the least biased in

some cases. The relationship between the semi-parametric methods and the two parametric methods

is much as anticipated. In particular, the semi-parametric methods dominate in terms of both bias

and RMSE when the short memory dynamics are misspecified. Once again, a version of the feasi-

ble jackknife method is ranked highly under certain misspecified settings, despite the fact that the

misspecification impacts on the construction of the jackknife weights.

Throughout the paper we assume that the number of sub-samples is fixed. One may wish to allow

the number of sub-samples to vary and explore the characteristics of the resultant bias-adjusted esti-

mators in this case. Importantly, alternative methods of estimating the weights are to be investigated,

including the possible use of a non-parametric estimate of the spectral density (see, Moulines and

Soulier, 1999), rather than replacing the true values with their consistent estimates, or the use of an

adaptive method in the spirit of that suggested by Guggenberger and Sun (2006).

Finally, although we focus on the LPR estimator, the jackknife procedure can easily be applied to

other estimators such as the local Whittle estimator of Künsch (1987), the local polynomial Whittle

estimator of Andrews and Sun (2004) or even to the (already analytically) bias-reduced estimators of

Andrews and Guggenberger (2003) and Guggenberger and Sun (2006). Another possible extension is

to relax the assumption of stationarity of the process using the results Velasco (1999), and to derive

the properties the optimal jackknife estimators in the nonstationary setting.
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Appendix A: Proofs of Theorems and Lemmas

Proof of Theorem 1. Under Assumptions (A.1) − (A.4), the proof of the theorem follows imme-

diately after applying the results of Corollary A.1 of Martin et al. (2020) to Lemmas, 2, 5, 6 and 7 of

Hurvich et al. (1998). Hence we omit the proof.

Prior to providing the proofs of the other theorems and lemmas, we will introduce the following

definition, and its properties, to be used hereinafter.

Define ∆(T ) (λ) =
∑T

t=1 exp (−ıλt) . Then,

∆(T ) (λ) = exp

(
−ı

λ

2
(T + 1)

)
sin
(
λT
2

)

sin
(
λ
2

) =





0 if λ 6≡ 0(mod π)

T if λ ≡ 0(mod 2π)

0 or T if λ = ±π,±3π, . . .

(A.1)

where, a ≡ b (modα) means that the difference (a− b) is an integral multiple of α for α, x, y ∈ R.

Consider

T∑

t=−T

exp {−ıλt} = 1 +

T∑

t=1

exp {−ıλt}+
T∑

t=1

exp {−ı (−λ) t}

= 1 + 2∆(T ) (λ) , using (A.1).

This immediately gives that

lim
T→∞

1

2π

T∑

t=−T

exp {−ıλt} = η (λ) . (A.2)

We will derive the following two properties of ∆(T ) (λ).

1. Sum:

lim
T→∞

[
∆(T ) (λ) + ∆(T ) (−λ)

]
= lim

T→∞

( T∑

t=−T

exp {ıλt} − 1
)

= 2πη (λ)− 1, by (A.2). (A.3)

29



OPTIMAL JACKKNIFE BIAS CORRECTION

2. Product:

T−2∆(T ) (−λ)∆(T ) (λ) = T−2
T∑

t=1

T∑

s=1

exp {−ıλ (t− s)}

= T−2
T−1∑

t=−(T−1)

(T − |t|) exp {−ıλt}

= T−1
T−1∑

t=−(T−1)

exp {−ıλt} −
T−1∑

t=−(T−1)

|t|
T 2

exp {−ıλt} . (A.4)

Consider the second term in the above expression,

∣∣∣
T−1∑

t=−(T−1)

|t|
T 2

exp {−ıλt}
∣∣∣ ≤

∣∣∣
T−1∑

t=−(T−1)

|t|
T 2

∣∣∣→ 0 as T → ∞.

Hence the expression in (A.4) is given by,

T−2∆(T ) (−λ)∆(T ) (λ) = T−12πη (λ) + o(1). (A.5)

Lemma 1 Let Wt be a stationary h vector-valued time series with n observations satisfying the

spectral density given in (1). Suppose that Assumptions (A.1) − (A.3) hold. The kth-order cumulant

of the multivariate series, κ
{
D

(n)
Wa1

(λ1) , ..., D
(n)
Wak

(λk)
}

is

n− k
2 (2π)

k
2
−1∆(n)

(
k∑

j=1

λj

)
fWa1 ...Wak

(λ1, ..., λk−1) + o
(
n1−2d− k

2
)
. (A.6)

where fWa1 ...Wak
(λ1, ..., λk−1) is the kth-order spectrum of the series Wt, with a1, . . . , ak = 1, 2, . . . , h,

and k = 1, 2, . . ..

Proof. By Lemma P4.2 of Brillinger (1981), the cumulant, κ
{
D

(n)
Wa1

(λ1) , ..., D
(n)
Wak

(λk)
}

has the

form
∞∑

t1=−∞
...

∞∑

tk=−∞
exp

(
− ı

k∑

j=1

λjtj

)
κWa1 ...Wak

(t1 − tk, ..., tk−1 − tk)

Substituting, uj = tj − t where t = tk, and −S ≤ uj ≤ S, for j = 1, . . . , k − 1 with S = 2 (n− 1) we

have that

κ
{
D

(n)
Wa1

(λ1) , D
(n)
Wa2

(λ2) , ..., D
(n)
Wak

(λk)
}

= (2πn)−
k
2

∞∑

t=−∞

S∑

u1=−S

· · ·
S∑

uk=−S

exp

(
− ı

k∑

j=1

λj (uj + t)

)
κWa1 ...Wak

(u1, ..., uk−1)

= (2πn)−
k
2

S∑

u1=−S

· · ·
S∑

uk=−S

exp

(
− ı

k−1∑

j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)

∞∑

t=−∞
exp

(
− ı

k∑

j=1

λjt

)

= (2π)−
k
2
+1 n− k

2∆(n)

(∑k

j=1
λj

) S∑

u1=−S

· · ·
S∑

uk=−S

exp

(
− ı

k−1∑

j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1) .
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The rapidity of the convergence of
∑S

u1=−S · · ·∑S
uk=−S exp(−ı

∑k−1
j=1 λjuj)κWa1 ...Wak

(u1, ..., uk−1)

to fWa1 ...Wak
(λ1, . . . , λk−1) as n → ∞ is measured as follows.

∣∣∣∣∣

S∑

u1=−S

· · ·
S∑

uk=−S

exp

(
− ı

k−1∑

j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)− fWa1 ...Wak
(λ1, . . . , λk−1)

∣∣∣∣∣

=

∣∣∣∣∣
∑

|u1|>S

· · ·
∑

|uk|>S

exp

(
− ı

k−1∑

j=1

λjuj

)
κWa1 ...Wak

(u1, ..., uk−1)

∣∣∣∣∣

≤
∑

|u1|>S

· · ·
∑

|uk|>S

∣∣∣κWa1 ...Wak
(u1, ..., uk−1)

∣∣∣

≤ n−1+2d
∑

|u1|>S

· · ·
∑

|uk|>S

(∣∣∣u1
n

∣∣∣
1−2d

+ · · ·+
∣∣∣uk−1

n

∣∣∣
1−2d

) ∣∣∣κWa1 ...Wak
(u1, ..., uk−1)

∣∣∣ .

Hence the proof is completed since Assumption (A.1) holds and n−1+2d (|u1|+ · · ·+ |uk−1|) → 0 as

n → ∞.

The above Lemma shows that when the DFTs correspond to multivariate time series with the

same number of observations in their sample, the kth-order cumulant of the multivariate series can be

approximated with the expression given in (A.6). The only difference between this Lemma and Propo-

sition 1 is that the proposition deals with different sample sizes for the time series in the multivariate

set-up.

Proof of Proposition 1. The proof of the proposition can be established in a similar fashion to

the above proof. Hence, we omit the proof here.

Proof of Theorem 2. The expectation of the DFT of the full sample or the sub-sample is

E
(
D

(Li)
Xai

(λ)
)

= 1√
2πn

∑n

t=1
exp (−ıλt)E (yt)

= µY√
2πLi

∆(Li) (λ)

=





0 if λ 6≡ 0 (mod π)√
Li

2πµY if λ ≡ π (mod 2π)

0 or
√

Li

2πµY if λ = ±π,±3π, . . .

,

where E (yt) = µY . Therefore, D
(Li)
Xai

(λ) behaves in the manner required by the theorem as the first-

order cumulant provides the mean of the random variable of interest.

The covariance between D
(Li)
Xai

(λ) and D
(Lj)
Xaj

(µ) is measured by the second-order cumulant and

Proposition 1 gives that

Cov
(
D

(Li)
Xai

(λ) , D
(Lj)
Xaj

(µ)
)
= 1

L∆
(L) (λ+ µ) fXai

,Xaj
(λ) + o

(
L

−2d
)
,

where L = min (Li, Lj). Thus, the covariance between the DFTs of the full sample and the sub-sample

tends to 0 as n → ∞.
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Proof of Theorem 3. The covariance between I
(Li)
Xai

(λ) and I
(Lj)
Xaj

(µ) is given by,

Cov
(
I
(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)
)

= E
(
I
(Li)
Xai

(λ) I
(Lj)
Xaj

(µ)
)
− E

(
I
(Li)
Xai

(λ)
)
E
(
I
(Lj)
Xaj

(µ)
)

= E
(
D

(Li)
Xai

(λ)D
(Li)
Xai

(−λ)D
(Lj)
Xaj

(µ)D
(Lj)
Xaj

(−µ)
)

−E
(
D

(Li)
Xai

(λ)D
(Li)
Xai

(−λ)
)
E
(
D

(Lj)
Xaj

(µ)D
(Lj)
Xaj

(−µ)
)
.

Since the expectations can be expressed in terms of cumulants (see Appendix B for more details), we

may express the covariance term as follows,

Cov
(
I
(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)
)

= κ
(
D

(Li)
Xai

(λ) , D
(Li)
Xai

(−λ) , D
(Lj)
Xaj

(µ) , D
(Lj)
Xaj

(−µ)
)

+ κ
(
D

(Li)
Xai

(−λ) , D
(Lj)
Xaj

(µ)
)
κ
(
D

(Li)
Xai

(λ) , D
(Lj)
Xaj

(−µ)
)

+ κ
(
D

(Li)
Xai

(λ) , D
(Lj)
Xaj

(µ)
)
κ
(
D

(Li)
Xai

(−λ) , D
(Lj)
Xaj

(−µ)
)
.

Then Proposition 1 gives us that,

Cov
(
I
(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)
)
= L−2 (2π)∆(L) (λ+ µ− λ− µ) fXai

Xai
Xaj

Xaj
(λ,−λ, µ) + o

(
L−1−2d

)

+
(
L−1∆(L) (−λ+ µ) fXai

Xaj
(−λ) + o

(
L−2d

))

×
(
L−1∆(L) (λ− µ) fXai

Xaj
(λ) + o

(
L−2d

))

+
(
L−1∆

(L)
(λ+ µ) fXai

Xaj
(λ) + o

(
L−2d

))

×
(
L−1∆(L) (−λ− µ) fXai

Xaj
(−λ) + o

(
L−2d

))

= L−2 (2π)∆(L) (0) fXai
Xai

Xaj
Xaj

(λ,−λ, µ) + o
(
L−1−2d

)

+ L−2∆(L) (−λ+ µ)∆(L) (λ− µ)
(
fXai

Xaj
(λ)
)2

+ L−1
(
∆(L) (−λ+ µ) + ∆(L) (λ− µ)

)
fXai

Xaj
(λ) o

(
L−2d

)

+ L−2∆(L) (λ+ µ)∆(L) (−λ− µ)
(
fXai

Xaj
(λ)
)2

+ L−1∆(L) (λ+ µ) fXai
Xaj

(−λ) + ∆(L) (−λ− µ) fXai
Xaj

(−λ) o
(
L−2d

)

= L−1 (2π) fXai
Xai

Xaj
Xaj

(λ,−λ, µ) + L−2
[
∆(L) (−λ+ µ)∆(L) (λ− µ)

+ ∆(L) (λ+ µ)∆(L) (−λ− µ)
] (

fXai
Xaj

(λ)
)2

+
[
∆(L) (−λ+ µ)

+ ∆(L) (λ− µ) + ∆(L) (λ+ µ) + ∆(L) (−λ− µ)
]
fXai

Xaj
(λ) o

(
L−2d

)

+ o
(
L−1−2d

)
+ o

(
L−4d

)
. (A.7)

Using the two properties in (A.3) and (A.5), the covariance in (A.7) is simplified further as follows,

Cov
(
I
(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)
)

=
2π

L
[η (λ− µ) + η (λ+ µ)]

{
fXai

Xaj
(λ)
}2

+
2π

l†
fXai

Xai
Xaj

Xaj
(λ,−λ, µ)

+ 2π [η (λ− µ) + η (λ+ µ)] fXai
Xaj

(λ) o
(
l†

−2d
)
+ o

(
L−1−2d

)
.
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Now let us consider the asymptotic distribution of I
(Li)
Xai

(λ) . We may re-write the periodogram as

follows,

I
(Li)
Xai

(λ) =
[
ReD

(Li)
Xai

(λ)
]2

+
[
ImD

(Li)
Xai

(λ)
]2

,

where

ReD
(Li)
Xai

(λ) = 1√
2πLi

Li∑

t=1

yt cos (λt) , and, ImD
(Li)
Xai

(λ) = 1√
2πLi

Li∑

t=1

yt sin (λt) .

Following Theorem 2.1 of Lahiri (2003), we have that




ReD
(Li)
Xai

(λ)− E
(
ReD

(Li)
Xai

(λ)
)

√
LifXai

Xai
(λ)

ImD
(Li)
Xai

(λ)− E
(
ImD

(Li)
Xai

(λ)
)

√
LifXai

Xai
(λ)




→D N (0, I2) .

Hence the result.

Proof of Theorem 4. Recall that xj = ln(2 sin (λj/2)), aj = xj−x and Sxx =
Nn∑
j=1

(
Xj −X

)2
. From

Hurvich et al. (1998) we have that Sxx = Nn (1 + o (1)) and aj = log j − logNn + 1+ o (1) + o
(
N2

n

n2

)
,

j = 1, . . . , Nn. Thus,

sup
j

|aj | = 1 + o (1) +O

(
N2

n

n2

)
.

Using Appendix B we have that

Cov
(
log I

(Li)
Xai

(λj) , log I
(Lj)
Xaj

(µk)
)

=
(
1− ρ2

) 1
2

∞∑

k=1

(
Ψ

(
1

2
+ k

)
+Ψ

(
1

2

))2 Γ
(
1
2 + k

)

Γ
(
1
2

)
(
ρ2
)k

k!

−
(
1− ρ2

)
( ∞∑

k=1

(
Ψ

(
1

2
+ k

)
+Ψ

(
1

2

))
Γ
(
1
2 + k

)

Γ
(
1
2

)
(
ρ2
)k

k!

)2

≤
(
1− ρ2

) 1
2

∞∑

k=1

(
Ψ

(
1

2
+ k

)
+Ψ

(
1

2

))2 Γ
(
1
2 + k

)

Γ
(
1
2

)
(
ρ2
)k

k!
,

where ρ = Corr
(
I
(Li)
Xai

(λj) , I
(Lj)
Xaj

(µk)
)
= o

(
n−1

)
by Theorem 3. Thus,

Cov
(
log I

(Li)
Xai

(λj) , log I
(Lj)
Xaj

(µk)
)
= o

(
n−1

)
.
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This leads to

Cov
(
d̂n, d̂i

)
=

1

4Sxx

1

S′

xx

Nn∑

j=1

Nl∑

k=1

aja
(i)
k Cov

(
log I

(Li)
Xai

(λj) , log I
(Lj)
Xaj

(µk)
)

≤ sup
j,k

1

4Sxx

1

S′

xx

NnNl

∣∣∣aja(i)k Cov
(
log I

(Li)
Xai

(λj) , log I
(Lj)
Xaj

(µk)
)∣∣∣

=
(1 + o (1))−2

4
sup
j,k

|aj |
∣∣∣a(i)k

∣∣∣
∣∣∣Cov

(
log I

(Li)
Xai

(λj) , log I
(Lj)
Xaj

(µk)
)∣∣∣

=
(1 + o (1))−2

4

(
1 + o (1) +O

(
N2

n

n2

))2

sup
j,k

∣∣∣Cov
(
log I

(Li)
Xai

(λj) , log I
(Lj)
Xaj

(µk)
)∣∣∣

= o
(
n−1

)
.

Similarly, we can prove that Cov
(
d̂i, d̂j

)
= o

(
n−1

)
. Hence the result.

Proof of Theorem 5. Consider,

(
d̂Opt
J,m − d0

)
= w∗

n

(
d̂n − d0

)
−

m∑

i=1

w∗
i

(
d̂i,m − d0

)
. (A.8)

Recall that w∗
n =

[
1−

(
1
m

Nn

n
l
Nl

)2]−1

and
∑m

i=1w
∗
i = w∗

n − 1; for i = 1, . . . ,m. Let us firstly consider

w∗
n. For fixed m and for the choice of Nn such that Nn logNn/n → 0,

w∗
n =

1

1− (n−1ln−1+αl1−α)2
= 1 + o (1) , (A.9)

and hence
m∑

i=1

w∗
i = o (1) , (A.10)

with w∗
i → 0 as n → ∞ (see the proof of Theorem 4).

By virtue of the consistency of d̂n, we have that the first term in (A.8) such that w∗
n

(
d̂n − d

)
=

op (1), using (A.9).

Now, we show that the second term in (A.8) is op (1) .

lim
n→∞

Pr

[∣∣∣∣∣

m∑

i=1

w∗
i

(
d̂i − d0

)∣∣∣∣∣ ≥ ε

]
≤ lim

n→∞

E
(∑m

i=1w
∗
i

(
d̂i − d0

))2

ε2

= lim
n→∞

V ar
(
d̂i

)

ε2

m∑

i=1

(w∗
i )

2

+
2

ε2
lim
n→∞

m∑

i=1

m∑

j=i+1

w∗
iw

∗
jCov

(
d̂i, d̂j

)

= 0,

since limn→∞ V ar
(
d̂i

)
= 0 from Theorem 1, limn→∞Cov

(
d̂i, d̂j

)
= 0 directly from Theorem 2 and

the limit of
∑m

i=1w
∗
i given in (A.10). This completes the proof of consistency.

The proof of asymptotic normality of the optimal jackknife estimator depends on the joint conver-
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gence of d̂n and d̂i,m. Firstly, let us consider the following standardized optimal jackknife estimator,

√
Nn

(
d̂Opt
J,m − d0

)
= w∗

n

√
Nn

(
d̂n − d0

)
−

m∑

i=1

w∗
i

√
Nn

(
d̂i − d0

)
. (A.11)

Using Theorem 1 we have that
√
Nn

(
d̂n − d0

)
→D N

(
0, π

2

24

)
. Therefore, regarding the first compo-

nent in (A.11), it immediately follows that

w∗
n

√
Nn

(
d̂n − d0

)
→d N

(
0,

π2

24

)
, using (A.9).

Now, let us consider the second term in (A.11):

lim
n→∞

Pr

[∣∣∣∣∣

m∑

i=1

w∗
i

√
Nn

(
d̂i − d0

)∣∣∣∣∣ ≥ ε

]
≤ lim

n→∞

E
(∑m

i=1w
∗
i

(
d̂i − d0

))2

ε2
Nn

= lim
n→∞

V ar
(
d̂i

)

ε2
Nn

m∑

i=1

(w∗
i )

2

+ lim
n→∞

2Nn

ε2

m∑

i=1

m∑

j=i+1

w∗
iw

∗
jCov

(
d̂i, d̂j

)
. (A.12)

By considering the first term in (A.12), for fixed m we have that

lim
n→∞

V ar
(
d̂i

)

ε2
Nn

m∑

i=1

(w∗
i )

2 = lim
n→∞

∑m
i=1 (w

∗
i )

2

ε2

[
π2

24
+ o (1)

]
= 0,

using Theorem 1 and (A.9). The second term in (A.12) would give us that,

lim
n→∞

2Nn

ε2

m∑

i=1

m∑

j=i+1

w∗
iw

∗
jCov

(
d̂i, d̂j

)
= 0,

immediately from (A.9). Therefore, Pr
[∣∣∣
∑m

i=1w
∗
i

√
Nl

(
d̂i − d0

)∣∣∣ ≥ ε
]
→ 0 as n → ∞. Hence the

proof completes.

Appendix B: Additional technical results

Recall that the covariance between the full-sample LPR estimator and each sub-sample LPR estimator,

Cov
(
d̂n, d̂i

)
, and the covariances between the different sub-sample LPR estimators, Cov

(
d̂i, d̂j

)
, for

i 6= j, i, j = 1, 2, ...,m, are given respectively by,

Cov
(
d̂n, d̂i

)
=

1

4Sxx

1

S′

xx

Nn∑

j=1

Nl∑

k=1

aja
(i)
k Cov

(
log I

(n)
Y (λj) , log I

(l)
Yi

(µk)
)

(B.1)

Cov
(
d̂i, d̂i′

)
=

1

4

1

(S′

xx)
2

Nl∑

j=1

Nl∑

k=1

a′ja
′
kCov

(
log I

(l)
Yi

(µj) , log I
(l)
Yi′

(µk)
)
, (B.2)

with all notation as defined in Table 1.
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Evaluation of the covariance terms in (B.1) and (B.2)

The main purpose of this exercise is to calculate the covariances between the full-sample and sub-

sample LPR estimators (refer to (B.1)) and the covariance between two distinct sub-sample LPR

estimators (refer to (B.2)). These covariance terms depend on the covariance between the log-

periodograms associated with either the full sample and a given sub-sample or two different sub-

samples.

To obtain the covariance between the log-periodograms associated with the full sample and a given

sub-sample, or between sub-samples, we follow the method stated below.

Step 1: Write down the joint distribution of the periodograms (I
(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)).

Step 2: Write down the joint distribution of the log transformed periodograms (log I
(Li)
Xai

(λ) , log I
(Lj)
Xaj

(µ))

using the expression of the covariance between the two different periodograms.

Step 3: Find the expression for the covariance between the above mentioned log-periodograms, Cov(log I
(Li)
Xai

(λ) ,

log I
(Lj)
Xaj

(µ)), using the moment generating function.

In relation to Step 1: Using the results of Theorem 3, we can say that the periodograms associ-

ated with the full sample and the sub-sample have a limiting distribution of the form fX1X1(λ) χ
2
(2)

/
2.

For notational convenience, let us denote by (U, V ) the bivariate χ2
k random variables, (I

(Li)
Xai

(λ) , I
(Lj)
Xaj

(µ)).

Although k = 2, we use the generic notation for the degrees of freedom, k. Note that we ignore the

constant term fX1X1(λ)/ 2 for convenience, as these terms will disappear in the calculation of the

covariance between two different LPR estimators (either the full- and sub-sample LPR estimators or

two distinct sub-sample LPR estimators).

The joint probability density function (pdf), fU,V (u, v) , is defined by (see, Krishnaiah et al., 1963)

fU,V (u, v) =
(
1− ρ2

) k−1
2

∞∑

i=0

Γ
(
k−1
2 + i

)
ρ2i (uv)

k−3+2i
2 exp

[
− u+v

2(1−ρ2)

]

Γ
(
k−1
2

)
i!
[
2

k−1
2

+iΓ
(
k−1
2 + i

)
(1− ρ2)

k−1
2

+i
]2 ,

where ρ =
σuv
σuσv

. Here, σuv = cov (U, V ) . Then, the marginal densities of U and V, fU (u) and fV (v),

are respectively given by,

fU (u) =
1

2
k
2Γ
(
k
2

)u
k
2 exp

{
−u

2

}
, and, fV (v) =

1

2
k
2Γ
(
k
2

)v
k
2 exp

{
−v

2

}
.

In relation to Step 2: Let W = logU = log I
(Li)
Xai

(λ) and Z = log V = log I
(Lj)
Xaj

(µ) . Then, the
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joint pdf of W and Z is given by,

fW,Z (w, z) = fU,V (expw, exp z)

∣∣∣∣
∂ expw
∂w

∂ expw
∂z

∂ exp z
∂w

∂ exp z
∂z

∣∣∣∣

=
(
1− ρ2

) k−1
2

∞∑

i=0

Γ
(
k−1
2 + i

)
ρ2i (expw exp z)

k−3+2i
2 exp

[
− expw+exp z

2(1−ρ2)

]

Γ
(
k−1
2

)
i!
[
2

k−1
2

+iΓ
(
k−1
2 + i

)
(1− ρ2)

k−1
2

+i
]2 expw exp z

=
(
1− ρ2

) k−1
2

∞∑

i=0

Γ
(
k−1
2 + i

)
ρ2i exp

(
k−1
2 + i

)
(w + z) exp

[
− expw+exp z

2(1−ρ2)

]

Γ
(
k−1
2

)
i!
[
2

k−1
2

+iΓ
(
k−1
2 + i

)
(1− ρ2)

k−1
2

+i
]2 .

In relation to Step 3: The moment generating function (MGF) of (W,Z) is given by,

MW,Z (t1, t2) = E (exp (t1W + t2Z)) =

∫ ∞

0

∫ ∞

0
exp (t1w + t2z) fW,Z (w, z) dwdz

=
(
1− ρ2

) k−1
2

∞∑

i=0

Γ
(
k−1
2 + i

)
ρ2i

Γ
(
k−1
2

)
i!
[
2

k−1
2

+iΓ
(
k−1
2 + i

)
(1− ρ2)

k−1
2

+i
]2

×
∫ ∞

0

∫ ∞

0
exp (t1w + t2z) exp

(
k−1
2 + i

)
(w + z) exp

[
− expw+exp z

2(1−ρ2)

]
dwdz

=
(
1− ρ2

) k−1
2

∞∑

i=0

Γ
(
k−1
2 + i

)
ρ2i

Γ
(
k−1
2

)
i!
[
2

k−1
2

+iΓ
(
k−1
2 + i

)
(1− ρ2)

k−1
2

+i
]2

×
∫ ∞

0
exp

(
k−1
2 + t1 + i

)
w exp

[
− expw

2(1−ρ2)

]
dw

×
∫ ∞

0
exp

(
k−1
2 + t2 + i

)
z exp

[
− exp z

2(1−ρ2)

]
dz. (B.3)

Now let us consider the form of the last expression in (B.3). Let α1 =
k−1
2 +t2+i and α2 =

1
2(1−ρ2)

.

Then, substituting x = exp z would give us that

∫ ∞

0
expα1z exp [−α2 exp z] dz =

∫ ∞

0
xα1−1 exp [−α2x] dx =

Γ (α1)

αα1
2

. (B.4)

Therefore, using (B.4), the MGF given in (B.3) may be re-arranged as follows,

MW,Z (t1, t2) =
[
2
(
1− ρ2

)]t1+t2 (1− ρ2
) k−1

2

∞∑

i=0

Γ
(
k−1
2 + i

)
ρ2iΓ

(
k−1
2 + t2 + i

)
Γ
(
k−1
2 + t1 + i

)

i!Γ
(
k−1
2

) [
Γ
(
k−1
2 + i

)]2

=
[
2
(
1− ρ2

)]t1+t2 (1− ρ2
) k−1

2
Γ
(
k−1
2 + t1

)
Γ
(
k−1
2 + t2

)
[
Γ
(
k−1
2

)]2

×
∞∑

i=0

Γ
(
k−1
2 + t1 + i

)
Γ
(
k−1
2 + t2 + i

)
Γ
(
k−1
2

)

Γ
(
k−1
2 + t1

)
Γ
(
k−1
2 + t2

)
Γ
(
k−1
2 + i

)
(
ρ2
)i

i!

=
[
2
(
1− ρ2

)]t1+t2 (1− ρ2
) k−1

2
Γ
(
k−1
2 + t1

)
Γ
(
k−1
2 + t2

)
[
Γ
(
k−1
2

)]2

×2F1

(
k−1
2 + t1,

k−1
2 + t2;

k−1
2 ; ρ2

)
.
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Setting k = 2 gives,

MW,Z (t1, t2) =
[
2
(
1− ρ2

)]t1+t2 (1− ρ2
) 1

2
Γ
(
1
2 + t1

)
Γ
(
1
2 + t2

)
[
Γ
(
1
2

)]2 2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)
.

Therefore the cumulant generating function is given by K (t1, t2) = logMW,Z (t1, t2) and

K (t1, t2) = (t1 + t2) log
[
2
(
1− ρ2

)]
+ 1

2 log
(
1− ρ2

)
+ log Γ

(
1
2 + t1

)

+ log Γ
(
1
2 + t2

)
− 2 log

[
Γ
(
1
2

)]
+ log2 F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)
.

The covariance between W and Z when k = 2, is given by, cov (W,Z) = ∂2K(t1,t2)
∂t1∂t2

∣∣∣
t1=0,t2=0

.

Therefore, let us firstly evaluate ∂K (t1, t2)/ ∂t1, as

∂K (t1, t2)

∂t1
= log

[
2
(
1− ρ2

)]
+Ψ

(
1
2 + t1

)

+
(
2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
))−1 ∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1
, (B.5)

where Ψ (.) is the digamma function and ∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)/

∂t1 is given by,

∞∑

i=1

∂ Γ
(
1
2 + t1 + i

)/
Γ
(
1
2 + t1

)

∂t1

Γ
(
1
2 + t2 + i

)
Γ
(
1
2

)

Γ
(
1
2 + t2

)
Γ
(
1
2 + i

)
(
ρ2
)i

i!

=
∞∑

i=1

(
Γ
(
1
2 + t1

)
Γ
(
1
2 + t1 + i

)
Ψ
(
1
2 + t1 + i

)
(
Γ
(
1
2 + t1

))2 +
Γ
(
1
2 + t1 + i

)
Ψ
(
1
2 + t1

)
Γ
(
1
2 + t1

)
(
Γ
(
1
2 + t1

))2

)

× Γ
(
1
2 + t2 + i

)
Γ
(
1
2

)

Γ
(
1
2 + t2

)
Γ
(
1
2 + i

)
(
ρ2
)i

i!

=

∞∑

i=1

(
Γ
(
1
2 + t1 + i

)
Ψ
(
1
2 + t1 + i

)
+ Γ

(
1
2 + t1 + i

)
Ψ
(
1
2 + t1

)

Γ
(
1
2 + t1

)
)

Γ
(
1
2 + t2 + i

)
Γ
(
1
2

)

Γ
(
1
2 + t2

)
Γ
(
1
2 + i

)
(
ρ2
)i

i!
.

(B.6)

This leads to,

∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1

∣∣∣∣∣
t1=0,t2=0

=
∞∑

i=1

(
Ψ
(
1
2 + i

)
+Ψ

(
1
2

)) Γ
(
1
2 + i

)

Γ
(
1
2

)
(
ρ2
)i

i!
.

The first derivative of 2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)
with respect to t2 is also given by (B.6).

Now let us evaluate the second order derivative of K (t1, t2) ,

∂2K (t1, t2)

∂t1∂t2
=

∂
(
2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
))−1 ∂2F1( 1

2
+t1,

1
2
+t2;

1
2
;ρ2)

∂t1

∂t2

=
(
2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
))−1 ∂

2
2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1∂t2

−
(
2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
))−2 ∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t2

×∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1
,
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where ∂2
2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)/

∂t1∂t2 is given by,

∞∑

i=1

(
Γ
(
1
2 + t1 + i

)
Ψ
(
1
2 + t1 + i

)

Γ
(
1
2 + t1

) +
Γ
(
1
2 + t1 + i

)
Ψ
(
1
2 + t1

)

Γ
(
1
2 + t1

)
)

Γ
(
1
2

)

Γ
(
1
2 + i

)
(
ρ2
)i

i!

×
(
Γ
(
1
2 + t2 + i

)
Ψ
(
1
2 + t2 + i

)

Γ
(
1
2 + t2

) +
Γ
(
1
2 + t2 + i

)
Ψ
(
1
2 + t2

)

Γ
(
1
2 + t2

)
)
,

with
∂2

2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1∂t2

∣∣∣∣∣
t1=0,t2=0

=

∞∑

i=1

(
Ψ
(
1
2 + i

)
+Ψ

(
1
2

))2 Γ
(
1
2 + i

)

Γ
(
1
2

)
(
ρ2
)i

i!
.

Hence cov (W,Z) is given by,

(
1− ρ2

) 1
2
∂2

2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1∂t2

∣∣∣∣∣
t1=0,t2=0

−
(
1− ρ2

) ∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t1

∂2F1

(
1
2 + t1,

1
2 + t2;

1
2 ; ρ

2
)

∂t2

∣∣∣∣∣
t1=0,t2=0

=
(
1− ρ2

) 1
2

∞∑

i=1

(
Ψ
(
1
2 + i

)
+Ψ

(
1
2

))2 Γ
(
1
2 + i

)

Γ
(
1
2

)
(
ρ2
)i

i!

−
(
1− ρ2

)
( ∞∑

i=1

(
Ψ
(
1
2 + i

)
+Ψ

(
1
2

)) Γ
(
1
2 + i

)

Γ
(
1
2

)
(
ρ2
)i

i!

)2

, (B.7)

using the fact 1F0 (a; ; z) = (1− z)−a .

Let us now provide the expression for ρ in (B.7). For example, consider calculating the correlation

between the full- and sub-sample periodograms. Using the similar arguments, the correlation between

two sub-samples periodograms, ρ = corr
(
I
(n)
Y (λ) , I

(l)
Yi

(µ)
)
can be derived using

Cov
(
I
(n)
Y (λ) , I

(l)
Yi

(µ)
)
≈ 2π

l
fY Y YiYi

(λ,−λ, µ) + l−2
[
∆(l) (−λ+ µ)∆(l) (λ− µ)

+ ∆(l) (λ+ µ)∆(l) (−λ− µ)
]
|fY Yi

(λ)|2 , (B.8)

and V ar
(
I
(n)
Y (λ)

)
and V ar

(
I
(l)
Yi

(µ)
)

can be calculated from the above given covariance formula.

The covariance and variance terms rely upon certain joint spectral densities. Those spectral densities

can be expressed in closed form as follows. Let us firstly consider the cross spectrum corresponding

to the full sample and jth sub-sample, fY Yj
(λ) . Suppose we consider the jackknife approach using

39



OPTIMAL JACKKNIFE BIAS CORRECTION

non-overlapping sub-samples. Then, the general definition of spectral density gives that

fY Yj
(λ) =

1

2π

∞∑

k=−∞
exp (−ikλ)κ

(
Yt+k, Yt+(j−1)l

)

=
1

2π

∞∑

k=−∞
exp (−ikλ) γ (k − (j − 1) l)

=
exp (−i (j − 1) lλ)

2π

∞∑

k=−∞
exp (−i (k − (j − 1) l)λ) γ (k − (j − 1) l)

= exp (−i (j − 1) lλ) fY Y (λ) .

Similarly, for moving-block sub-samples we have the relationship fY Yj
(λ) = exp (−i (j + l − 1)λ) fY Y (λ)

and fYjYk
(λ) = exp (−i (j − k) lλ) fY Y (λ) .

Lemma 2 of Yajima (1989) immediately gives that,

fY Y Y Y (λ,−λ, µ) =
1

(2π)3
b (λ) b (−λ) b (µ) b (−µ) fεεεε (λ,−λ, µ) ,

where b (λ) =
∑∞

j=0 bj exp (ıjω) with bj =
∑j

r=0

k (j − r) Γ (r + d)

Γ (r + 1)Γ (d)
, and k (z) is the transfer function

of a stable and invertible autoregressive moving average (ARMA) process such that
∑∞

j=0 |k (j)| < ∞.

Here,

fεεεε (λ,−λ, µ) =
∞∑

u1=−∞

∞∑

u2=−∞

∞∑

u3=−∞
exp (−i (λu1 − λu2 + µu3))κεεεε (u1, u2, u3) ,

where

κεεεε (u1, u2, u3) = κ (εt+u1 , εt+u2 , εt+u3 , εt)

= E (εt+u1εt+u2εt+u3εt)− E (εt+u1εt+u2)E (εt+u3εt)

− E (εt+u2εt+u3)E (εt+u1εt)− E (εt+u1εt+u3)E (εt+u2εt) .

Suppose the errors are i.i.d normal random variables with zero mean and a constant variance σ2,

κεεεε (u1, u2, u3) =

{
E
(
ε4t
)
− 3

(
E
(
ε2t
))2

, if u1 = u2 = u3 = 0
0, otherwise

=

{
3σ4, if u1 = u2 = u3 = 0
0, otherwise

.

Then fY Y Y Y (λ,−λ, µ) is simplified as follows using the fact that fY Y (λ) =
σ2

2π
b (λ) b (−λ).

fY Y Y Y (λ,−λ, µ) =
3σ4

(2π)3
b (−λ) b (λ) b (µ) b (−µ) =

3

2π
fY Y (λ) fY Y (µ) .
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Now let us consider fY Y YjYj
(λ,−λ, µ).

fY Y YjYj
(λ,−λ, µ) =

1

(2π)3

∞∑

u1=−∞

∞∑

u2=−∞

∞∑

u3=−∞
exp (−ı (λu1 − λu2 + µu3))

×κ
(
Yt+u1 , Yt+u2 , Yt+(j−1)l+u3

, Yt+(j−1)l

)

=
1

(2π)3

∞∑

u1=−∞

∞∑

u2=−∞

∞∑

u3=−∞
exp (−ı (λ (u1 − (j − 1) l)− λ (u2 − (j − 1) l) + µu3))

×κ
(
Yt−(j−1)l+u1

, Yt−(j−1)l+u2
, Yt+u3 , Yt

)

= fY Y Y Y (λ,−λ, µ) .

The covariance and variance terms in (B.8) can thus be simplified as follows.

Cov
(
I
(n)
Y (λ) , I

(l)
Yi

(µ)
)

≈ 3

l
fY Y (λ) fY Y (µ) +

1

l2

[
∆(l) (−λ+ µ)∆(l) (λ− µ)

+ ∆(l) (λ+ µ)∆(l) (−λ− µ)
]
(fY Y (λ))2 ,

V ar
(
I
(n)
Y (λ)

)
≈

[
1 +

3

l
+

1

l2
∆(l) (2λ)∆(l) (−2λ)

]
(fY Y (λ))2 .

Hence, the correlation is given by,

ρ ≈
3
l +

1
l2

[
∆(l) (−λ+ µ)∆(l) (λ− µ) + ∆(l) (λ+ µ)∆(l) (−λ− µ)

] fY Y (λ)
fY Y (µ)√(

1 + 3
l +

1
l2
∆(l) (2λ)∆(l) (−2λ)

)√(
1 + 3

l +
1
l2
∆(l) (2µ)∆(l) (−2µ)

) .

Positiveness of the principle minors of the bordered Hessian matrix

Here we show that for every m ∈ N,
∣∣∣HB

(m+3)×(m+3)

∣∣∣ > 0 using mathematical induction. For our

convenience, we assume that

ϕmin

(
HB

(m+3)×(m+3)

)
> (m+ 3)2

12Nl

π2
,

where ϕmin (A) is the minimum eigenvalue corresponding to the matrix A.

Let us start with m = 1. The first minor of the bordered Hessian matrix, HB
4×4, is,

∣∣HB
4×4

∣∣ =

∣∣∣∣∣∣∣∣

0 0 −m2N
2
l

l2

1 N2
n

n2 −2c∗n,1
−1 −m2N

2
l

l2
π2

12Nl

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

0 0 N2
n

n2

1 N2
n

n2
π2

12Nn

−1 −m2N
2
l

l2
−2c∗n,1

∣∣∣∣∣∣∣

= −m2N
2
l

l2

(
−m2N

2
l

l2
+

N2
n

n2

)
+

N2
n

n2

(
−m2N

2
l

l2
+

N2
n

n2

)
=

(
N2

n

n2
−m2N

2
l

l2

)2

> 0.

That is,
∣∣∣HB

(m+3)×(m+3)

∣∣∣ > 0 for m = 1.

Suppose that
∣∣∣HB

(m+3)×(m+3)

∣∣∣ > 0 is true for m = k, then we need to show that it is true for
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m = k + 1. To do so, we consider the partition of HB
(k+4)×(k+4) is as follows:

HB
(k+4)×(k+4) =

(
HB

(k+3)×(k+3) U

UT π2

12Nl

)
,

where U⊤ =
[
−1 − (k + 1)2

N2
l

l2
−2c∗n,k+1 2c†1,k+1 . . . 2c†k,k+1

]
. Then,

∣∣∣HB
(k+4)×(k+4)

∣∣∣ =
∣∣∣HB

(k+3)×(k+3)

∣∣∣
(

π2

12Nl
−U⊤

(
HB

(k+3)×(k+3)

)−1
U

)
.

Since
∣∣∣HB

(k+3)×(k+3)

∣∣∣ > 0,

0 < U⊤
(
HB

(k+3)×(k+3)

)−1
U ≤ 1

ϕmin

(

HB
(k+3)×(k+3)

) max
U∈Rk+3\{0}

U⊤U <
π2

12Nl
, as max

U∈Rk+3\{0}
U⊤U = 1.

Hence this completes the proof.

Appendix C: Monte Carlo results: Tables 2 to 16
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Table 2: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(1, d0, 0) with Gaussian innovations. The

optimal jackknife estimates are evaluated as described in Section 5.1. The estimates are obtained by setting α
= 0.65 and assuming the model is correctly specified. The lowest values are bold-faced and the second lowest

values are italicized.

φ0 d0 n d̂n d̂Opt-NO
J,2 d̂Opt-NO

J,3 d̂Opt-NO
J,4 d̂Opt-NO

J,6 d̂Opt-NO
J,8 d̂Opt-MB

J,2 d̂GS
1 d̂Opt-GS

1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 0.8145 0.7852 0.7903 0.7995 0.8072 0.8120 0.8156 0.8002 0.7902 0.7908 0.6408 0.7047
576 0.5945 0.5614 0.5682 0.5726 0.5804 0.5946 0.5841 0.5724 0.5657 0.5898 0.5051 0.5520

0 96 0.8053 0.7865 0.7945 0.7988 0.8042 0.8169 0.7927 0.8015 0.7957 0.7955 0.7026 0.7373
576 0.5912 0.5581 0.5627 0.5699 0.5773 0.5843 0.5608 0.5761 0.5630 0.5888 0.4905 0.5264

0.25 96 0.7752 0.7477 0.7515 0.7694 0.7747 0.7804 0.7799 0.7673 0.7517 0.7685 0.7182 0.7589
576 0.5883 0.5553 0.5622 0.5687 0.5731 0.5816 0.5673 0.5716 0.5628 0.5638 0.4943 0.5381

0.45 96 0.7006 0.6783 0.6842 0.6905 0.7046 0.7172 0.6945 0.6946 0.6846 0.6705 0.6182 0.6858
576 0.5748 0.5423 0.5487 0.5535 0.5586 0.5629 0.5567 0.5659 0.5580 0.5451 0.4941 0.5225

-0.4 -0.25 96 0.1756 0.1223 0.1344 0.1459 0.1563 0.1660 0.1560 0.1367 0.1286 0.1435 0.1108 0.1444
576 0.0607 0.0043 0.0429 0.0534 0.0585 0.0599 0.0599 0.0304 0.0245 0.0286 0.0362 0.0488

0 96 0.1653 0.1203 0.1216 0.1395 0.1596 0.1674 0.1674 0.1304 0.1276 0.1353 0.0904 0.1206
576 0.0560 0.0127 0.0253 0.0307 0.0479 0.0569 0.0369 0.0264 0.0152 0.0249 0.0216 0.0371

0.25 96 0.1629 0.1190 0.1274 0.1314 0.1508 0.1665 0.0731 0.1329 0.1276 0.1294 0.1084 0.1243
576 0.0571 0.0179 0.0243 0.0341 0.0431 0.0599 0.0599 0.0289 0.0181 0.0251 0.0178 0.0239

0.45 96 0.1653 0.1154 0.1226 0.1353 0.1560 0.1702 0.1702 0.1400 0.1245 0.1277 0.1042 0.1215
576 0.0625 0.0203 0.0325 0.0495 0.0518 0.0667 0.0667 0.0359 0.0217 0.0261 0.0197 0.0258

0.4 -0.25 96 -0.0363 -0.0194 -0.0136 -0.0259 -0.0323 -0.0493 -0.0393 -0.0047 -0.0068 -0.0147 -0.0068* -0.0256
576 -0.0056 -0.0004* -0.0037 -0.0046 -0.0057 -0.0076 -0.0076 0.0056 -0.0027 -0.0004 -0.0026 -0.0122

0 96 -0.0534 -0.0114 -0.0145 -0.0298 -0.0360 -0.0449 -0.0549 -0.0089 -0.0092 -0.0175 -0.0065 -0.0178
576 -0.0125 -0.0007 -0.0049 -0.0038 -0.0031 -0.0028 -0.0128 -0.0008 -0.0007* -0.0040 -0.0006 -0.0064

0.25 96 -0.0559 -0.0121 -0.0188 -0.0281 -0.0350 -0.0458 -0.0558 -0.0068 -0.0050 -0.0153 -0.0072 -0.0196
576 -0.0115 -0.0003 -0.0014 -0.0024 -0.0079 -0.0100 -0.0100 0.0017 -0.0008 -0.0027 -0.0016 -0.0063

0.45 96 -0.0501 -0.0091 -0.0092 -0.0302 -0.0460 -0.0486 -0.0486 0.0032 0.0090 -0.0111 -0.0085 -0.0129
576 -0.0058 -0.0003 -0.0037 -0.0054 -0.0062 -0.0078 -0.0028 0.0089 -0.0061 0.0004 -0.0007 -0.0082

0.9 -0.25 96 -0.0291 -0.0150 -0.0167 -0.0213 -0.0276 -0.0312 -0.0245 -0.0175 -0.0153 -0.0162 -0.0039 -0.0166
576 -0.0058 -0.0003 -0.0020 -0.0035 -0.0059 -0.0080 -0.0040 -0.0034 -0.0011 -0.0023 -0.0002 -0.0054

0 96 -0.0170 -0.0076 -0.0131 -0.0149 -0.0184 -0.0222 -0.0117 -0.0140 -0.0115 -0.0082 -0.0024 -0.0101
576 -0.0029 -0.0001* -0.0009 -0.0018 -0.0023 -0.0044 -0.0011 -0.0009 -0.0004 -0.0005 -0.0001 -0.0028

0.25 96 -0.0249 -0.0112 -0.0156 -0.0184 -0.0207 -0.0269 -0.0156 -0.0162 -0.0129 -0.0117 -0.0017 -0.0177
576 -0.0044 -0.0019 -0.0038 -0.0041 -0.0068 -0.0081 -0.0055 -0.0032 -0.0020 -0.0020 -0.0002 -0.0033

0.45 96 -0.0241 -0.0095 -0.0157 -0.0198 -0.0226 -0.0275 -0.0218 -0.0175 -0.0112 -0.0126 -0.0011 -0.0185
576 -0.0077 -0.0017 -0.0029 -0.0038 -0.0042 -0.0065 -0.0021 -0.0038 -0.0026 -0.0018 -0.0003 -0.0031
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Table 3: RMSE estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(1, d0, 0) with Gaussian innovations. The

optimal jackknife estimates are evaluated as described in Section 5.1. The estimates are obtained by setting α
= 0.65 and assuming the model is correctly specified. The lowest values are bold-faced and the second lowest

values are italicized.

φ0 d0 n d̂n d̂Opt-NO
J,2 d̂Opt-NO

J,3 d̂Opt-NO
J,4 d̂Opt-NO

J,6 d̂Opt-NO
J,8 d̂Opt-MB

J,2 d̂GS
1 d̂Opt-GS

1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 1.0359 1.0627 1.0532 1.0596 1.0358 1.0286 1.1837 1.3386 1.1864 1.2885 0.7257 0.9158
576 0.7398 0.7490 0.7403 0.7372 0.7325 0.7299 0.7382 0.7371 0.7200 0.7359 0.6353 0.6994

0 96 1.1148 1.1398 1.1275 1.1158 1.1080 1.0966 1.1576 1.1819 1.1120 1.2167 0.7380 0.9181
576 0.8288 0.8370 0.8311 0.8294 0.8216 0.8157 0.8215 0.8173 0.8173 0.8053 0.5261 0.5429

0.25 96 1.1618 1.1857 1.1066 1.0971 1.0944 1.0913 1.1162 1.1484 1.1285 1.2299 0.7492 0.9726
576 0.9175 0.9250 0.9203 0.9186 0.9128 0.9076 0.9115 1.1171 1.0172 1.1130 0.5258 0.5530

0.45 96 1.1286 1.1552 1.1325 1.1294 1.1200 1.1168 1.1132 1.4331 1.3331 1.5385 0.6482 0.9438
576 0.9708 0.9781 0.9732 0.9650 0.9558 0.9546 0.9687 1.1124 1.0524 1.1647 0.5263 0.5492

-0.4 -0.25 96 0.2568 0.2292 0.2568 0.2422 0.2384 0.2376 0.2576 0.2594 0.2441 0.3028 0.1308 0.1953
576 0.1098 0.0978 0.0974 0.0884 0.0873 0.0896 0.1096 0.1118 0.0995 0.1272 0.0662 0.0948

0 96 0.2498 0.2395 0.2284 0.2146 0.2138 0.2117 0.2517 0.2560 0.2416 0.2930 0.1309 0.1999
576 0.1069 0.0837 0.0879 0.0819 0.0787 0.0778 0.1078 0.1104 0.0967 0.1247 0.0530 0.1065

0.25 96 0.2490 0.2678 0.2574 0.2435 0.2354 0.2254 0.3254 0.2580 0.2404 0.2879 0.1382 0.1896
576 0.1079 0.1036 0.0965 0.0901 0.0819 0.0797 0.1097 0.1115 0.1029 0.1239 0.0528 0.1047

0.45 96 0.2506 0.2615 0.2563 0.2434 0.2390 0.2243 0.2544 0.2616 0.2511 0.2506 0.1371 0.1966
576 0.1115 0.0963 0.0878 0.0808 0.0777 0.0742 0.1142 0.1143 0.1005 0.1230 0.0593 0.1028

0.4 -0.25 96 0.1917 0.1721 0.1654 0.1629 0.1544 0.1529 0.1929 0.2212 0.2157 0.2717 0.0904 0.1445
576 0.0919 0.0762 0.0747 0.0665 0.0632 0.0624 0.0924 0.1081 0.0695 0.1198 0.0335 0.0764

0 96 0.1946 0.1726 0.1717 0.1631 0.1569 0.1557 0.1957 0.2203 0.2162 0.2546 0.0872 0.1439
576 0.0920 0.0890 0.0793 0.0751 0.0730 0.0724 0.0924 0.1073 0.0684 0.1166 0.0434 0.0753

0.25 96 0.1960 0.2107 0.2063 0.2008 0.1913 0.1966 0.1966 0.2209 0.2091 0.2482 0.0912 0.1535
576 0.0922 0.0705 0.0696 0.0644 0.0627 0.0624 0.0924 0.1076 0.0688 0.1158 0.0381 0.0736

0.45 96 0.1955 0.2178 0.2140 0.2085 0.2061 0.2058 0.1958 0.2218 0.2143 0.2453 0.0944 0.1538
576 0.0926 0.0710 0.0684 0.0667 0.0634 0.0569 0.0929 0.1089 0.0701 0.1149 0.0499 0.0752

0.9 -0.25 96 0.1115 0.1039 0.1006 0.0994 0.0913 0.0886 0.0932 0.1365 0.1132 0.1266 0.0482 0.0872
576 0.0624 0.0522 0.0513 0.0482 0.0440 0.0402 0.0399 0.0708 0.0659 0.0600 0.0127 0.0331

0 96 0.1010 0.1012 0.0954 0.0911 0.0827 0.0813 0.0955 0.1121 0.0992 0.1093 0.0438 0.0838
576 0.0602 0.0504 0.0486 0.0455 0.0422 0.0391 0.0400 0.0698 0.0632 0.0705 0.0121 0.0323

0.25 96 0.1114 0.1053 0.1011 0.0942 0.0930 0.0913 0.1106 0.1328 0.1179 0.1282 0.0463 0.0880
576 0.0518 0.0500 0.0482 0.0438 0.0419 0.0374 0.0491 0.0626 0.0573 0.0581 0.0139 0.0341

0.45 96 0.1053 0.0992 0.0914 0.0824 0.0862 0.0801 0.0937 0.1253 0.1188 0.1215 0.0418 0.0868
576 0.0526 0.0518 0.0583 0.0503 0.0455 0.0412 0.0527 0.0769 0.0600 0.0684 0.0122 0.0351
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Table 4: Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(0, d0, 1) with Gaussian innovations. The

optimal jackknife estimates are evaluated as described in Section 5.1. The estimates are obtained by setting α
= 0.65 and assuming the model is correctly specified. The lowest values are bold-faced and the second lowest

values are italicized.

θ0 d0 n d̂n d̂Opt-NO
J,2 d̂Opt-NO

J,3 d̂Opt-NO
J,4 d̂Opt-NO

J,6 d̂Opt-NO
J,8 d̂Opt-MB

J,2 d̂GS
1 d̂Opt-GS

1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 -0.5671 -0.5276 -0.5348 -0.5429 -0.5574 -0.5653 -0.5536 -0.5450 -0.5329 -0.5466 -0.3341 -0.4090
576 -0.4527 -0.4149 -0.4266 -0.4357 -0.4404 -0.4595 -0.4375 -0.4385 -0.4248 -0.4285 -0.1068 -0.1539

0 96 -0.7042 -0.6416 -0.6502 -0.6642 -0.6743 -0.6869 -0.6724 -0.6575 -0.6476 -0.6664 -0.3050 -0.4042
576 -0.5594 -0.5112 -0.5259 -0.5384 -0.5469 -0.5572 -0.5346 -0.5256 -0.5156 -0.5375 -0.0972 -0.1577

0.25 96 -0.7763 -0.7299 -0.7345 -0.7466 -0.7547 -0.7681 -0.7367 -0.7524 -0.7425 -0.7661 -0.3175 -0.4132
576 -0.5880 -0.5299 -0.5374 -0.5450 -0.5581 -0.5623 -0.5348 -0.5473 -0.5373 -0.5621 -0.0962 -0.1521

0.45 96 -0.8004 -0.7414 -0.7588 -0.7615 -0.7741 -0.7878 -0.7649 -0.7600 -0.7501 -0.7854 -0.3135 -0.4142
576 -0.5880 -0.5061 -0.5127 -0.5349 -0.5457 -0.5537 -0.5224 -0.5351 -0.5151 -0.5527 -0.0984 -0.1564

-0.4 -0.25 96 -0.1437 -0.1013 -0.1152 -0.1105 -0.1211 -0.1371 -0.1271 -0.1120 -0.1057 -0.1240 -0.0512 -0.1038
576 -0.0476 -0.0342 -0.0234 -0.0139 -0.0234 -0.0303 -0.0303 -0.0187 -0.0123 -0.0271 -0.0135 -0.0392

0 96 -0.1653 -0.1199 -0.1213 -0.1293 -0.1394 -0.1472 -0.1472 -0.1305 -0.1209 -0.1248 -0.0569 -0.1023
576 -0.0560 -0.0226 -0.0353 -0.0407 -0.0579 -0.0570 -0.0370 -0.0265 -0.0274 -0.0307 -0.0118 -0.0374

0.25 96 -0.1692 -0.1136 -0.1273 -0.1292 -0.1398 -0.1496 -0.1496 -0.1297 -0.1170 -0.1200 -0.0591 -0.1061
576 -0.0552 -0.0122 -0.0366 -0.0475 -0.0529 -0.0543 -0.0443 -0.0243 -0.0160 -0.0287 -0.0163 -0.0339

0.45 96 -0.1630 -0.0712 -0.1374 -0.1510 -0.1605 -0.1620 -0.1420 -0.1190 -0.1036 -0.1118 -0.0546 -0.1033
576 -0.0493 -0.0155 -0.0177 -0.0314 -0.0436 -0.0436 -0.0268 -0.0169 -0.0126 -0.0244 -0.0182 -0.0312

0.4 -0.25 96 0.0637 0.0036 0.0475 0.0563 0.0628 0.0637 0.0437 0.0154 0.0092 0.0651 0.0119 0.0339
576 0.0175 0.0037 0.0092 0.0068 0.0141 0.0161 0.0061 0.0049 0.0040 0.0132 0.0062 0.0185

0 96 0.0525 0.0202 0.0234 0.0288 0.0351 0.0340 0.0340 0.0081 0.0077 0.0603 0.0067 0.0342
576 0.0125 0.0088 0.0148 0.0137 0.0130 0.0128 0.0088 0.0006 0.0007 0.0100 0.0005 0.0169

0.25 96 0.0504 0.0164 0.0397 0.0511 0.0566 0.0535 0.0335 0.0110 0.0095 0.0574 0.0085 0.0218
576 0.0136 0.0028 0.0048 0.0072 0.0083 0.0157 0.0057 0.0031 0.0030 0.0108 0.0018 0.0102

0.45 96 0.0549 0.0192 0.0375 0.0474 0.0641 0.0592 0.0393 0.0204 0.0112 0.0570 0.0077 0.0225
576 0.0192 0.0049 0.0072 0.0069 0.0073 0.0129 0.0119 0.0103 0.0050 0.0132 0.0013 0.0116

0.9 -0.25 96 0.0359 0.0082 0.0106 0.0166 0.0203 0.0245 0.0246 0.0109 0.0076 0.0085 0.0051 0.0199
576 0.0065 0.0009 0.0011 0.0025 0.0033 0.0053 0.0031 0.0020 0.0009* 0.0014 0.0002 0.0068

0 96 0.0347 0.0073 0.0086 0.0098 0.0106 0.0132 0.0101 0.0091 0.0081 0.0076 0.0038 0.0184
576 0.0052 0.0007 0.0010 0.0016 0.0021 0.0039 0.0037 0.0015 0.0009 0.0010 0.0005 0.0061

0.25 96 0.0293 0.0065 0.0072 0.0089 0.0115 0.0146 0.0102 0.0130 0.0070 0.0073 0.0032 0.0121
576 0.0083 0.0012 0.0018 0.0021 0.0034 0.0047 0.0014 0.0057 0.0012* 0.0019 0.0010 0.0055

0.45 96 0.0235 0.0068 0.0079 0.0095 0.0129 0.0168 0.0119 0.0132 0.0086 0.0075 0.0043 0.0132
576 0.0195 0.0035 0.0058 0.0069 0.0105 0.0121 0.0086 0.0071 0.0037 0.0042 0.0006 0.0063
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Table 5: RMSE Bias estimates of the unadjusted LPR estimator, the optimal jackknife estimator based on

2,3,4,6,8 non-overlapping (NO) sub-samples, the optimal jackknife estimator based on 2 moving block (MB)

sub-samples, both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likeli-

hood estimator (MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(0, d0, 1) with Gaussian

innovations. The optimal jackknife estimates are evaluated as described in Section 5.1. The estimates are

obtained by setting α = 0.65 and assuming the model is correctly specified. The lowest values are bold-faced

and the second lowest values are italicized.

θ0 d0 n d̂n d̂Opt-NO
J,2 d̂Opt-NO

J,3 d̂Opt-NO
J,4 d̂Opt-NO

J,6 d̂Opt-NO
J,8 d̂Opt-MB

J,2 d̂GS
1 d̂Opt-GS

1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 0.6233 0.6345 0.6275 0.6177 0.6112 0.6020 0.6284 0.6385 0.6086 0.8247 0.3671 0.3729
576 0.4794 0.4812 0.4723 0.4662 0.4553 0.4492 0.4671 0.4885 0.4686 0.4977 0.1352 0.1945

0 96 0.7361 0.8081 0.7972 0.7875 0.7726 0.7642 0.7815 0.8413 0.7214 0.8510 0.6705 0.6938
576 0.5687 0.5919 0.5822 0.5719 0.5641 0.5527 0.5637 0.5838 0.5639 0.5942 0.5426 0.5941

0.25 96 0.7996 0.8096 0.7918 0.7872 0.7716 0.7615 0.7715 0.8268 0.7869 0.8430 0.7592 0.8081
576 0.5951 0.6193 0.6022 0.5976 0.5843 0.5693 0.5826 0.6219 0.6019 0.6590 0.5513 0.5993

0.45 96 0.8219 0.8410 0.8325 0.8224 0.8135 0.8064 0.8231 0.8590 0.8190 0.8327 0.7883 0.8184
576 0.5950 0.6066 0.5953 0.5871 0.5763 0.5642 0.5783 0.6298 0.6198 0.6487 0.5609 0.6063

-0.4 -0.25 96 0.2376 0.2253 0.2218 0.2198 0.2133 0.2102 0.2401 0.2488 0.2255 0.3103 0.1682 0.2094
576 0.1037 0.0923 0.0895 0.0745 0.0672 0.0652 0.1052 0.1098 0.1004 0.1254 0.0526 0.1027

0 96 0.2497 0.2385 0.2278 0.2142 0.2136 0.2015 0.2514 0.2559 0.2512 0.2883 0.1644 0.2043
576 0.1070 0.0936 0.0979 0.0819 0.0887 0.0778 0.1078 0.1105 0.0845 0.1215 0.0511 0.1011

0.25 96 0.2527 0.2451 0.2425 0.2379 0.2343 0.2335 0.2535 0.2560 0.2495 0.2782 0.1679 0.2087
576 0.1068 0.0987 0.1052 0.1057 0.0964 0.0867 0.1067 0.1103 0.0934 0.1199 0.0518 0.1128

0.45 96 0.2496 0.2524 0.2459 0.2476 0.2493 0.2495 0.2495 0.2518 0.2441 0.2725 0.1682 0.2093
576 0.1047 0.0928 0.0900 0.0855 0.0830 0.0740 0.1040 0.1098 0.0991 0.1188 0.0566 0.1066

0.4 -0.25 96 0.1982 0.1894 0.1875 0.1825 0.1793 0.1687 0.1987 0.2212 0.2153 0.2809 0.1083 0.1422
576 0.0932 0.0858 0.0988 0.0947 0.0935 0.0933 0.0933 0.1078 0.0812 0.1268 0.0594 0.0739

0 96 0.1944 0.1826 0.1815 0.1729 0.1666 0.1654 0.1955 0.2203 0.2146 0.2701 0.1042 0.1492
576 0.0919 0.0890 0.0893 0.0850 0.0829 0.0824 0.0924 0.1072 0.0930 0.1243 0.0518 0.0725

0.25 96 0.1947 0.1945 0.1918 0.1878 0.1780 0.1762 0.1962 0.2213 0.2048 0.2663 0.1015 0.1786
576 0.0925 0.0942 0.1079 0.0983 0.0942 0.0832 0.0932 0.1077 0.0924 0.1238 0.0539 0.0731

0.45 96 0.1964 0.1769 0.1649 0.1544 0.1407 0.1483 0.1984 0.2223 0.2175 0.2643 0.1028 0.1818
576 0.0943 0.0902 0.0831 0.0846 0.0772 0.0756 0.0955 0.1090 0.0939 0.1229 0.0541 0.0857

0.9 -0.25 96 0.0886 0.0983 0.0944 0.0907 0.0883 0.0864 0.0938 0.1105 0.1073 0.1253 0.0543 0.0912
576 0.0344 0.0518 0.0504 0.0493 0.0426 0.0376 0.0467 0.0561 0.0538 0.0589 0.0215 0.0421

0 96 0.0863 0.1086 0.1011 0.0977 0.0945 0.0912 0.0975 0.1209 0.1158 0.1288 0.0607 0.0832
576 0.0312 0.0572 0.0542 0.0519 0.0482 0.0460 0.0493 0.0674 0.0625 0.0729 0.0202 0.0404

0.25 96 0.0865 0.1113 0.1086 0.1012 0.0974 0.0928 0.0972 0.1287 0.1176 0.1286 0.0653 0.0926
576 0.0304 0.0574 0.0548 0.0519 0.0496 0.0433 0.0487 0.0692 0.0614 0.0706 0.0195 0.0451

0.45 96 0.0885 0.1268 0.1206 0.1158 0.1107 0.1073 0.1069 0.1181 0.1093 0.1197 0.0654 0.0933
576 0.0378 0.0592 0.0541 0.0517 0.0482 0.0459 0.0528 0.0647 0.0580 0.0695 0.0122 0.0424
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Table 6: Bias estimates of the unadjusted LPR estimator, the feasible jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(1, d0, 0) with Gaussian innovations.

The feasible jackknife estimates are evaluated using the iterative procedure described in Section 5.2.2. The

estimates are obtained by setting α = 0.65 and assuming the model is correctly specified. The lowest values

are bold-faced and the second lowest values are italicized.

φ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 0.8145 0.8274 0.8301 0.8362 0.8427 0.8488 0.8322 0.8002 0.7908 0.7331 0.8022
576 0.5945 0.5743 0.5792 0.5815 0.5880 0.5903 0.5853 0.5724 0.5898 0.5918 0.6120

0 96 0.8053 0.8158 0.8226 0.8279 0.8104 0.8272 0.8184 0.8015 0.7955 0.7215 0.7965
576 0.5912 0.6263 0.6342 0.6393 0.6428 0.6528 0.6335 0.5761 0.5888 0.5953 0.6097

0.25 96 0.7752 0.7664 0.7738 0.7702 0.7816 0.7953 0.7729 0.7673 0.7685 0.7722 0.8158
576 0.5883 0.5737 0.5820 0.5896 0.5942 0.6054 0.5728 0.5716 0.5638 0.5669 0.6136

0.45 96 0.7006 0.6930 0.7056 0.7174 0.7227 0.7287 0.7036 0.6946 0.6705 0.7378 0.8079
576 0.5748 0.5428 0.5549 0.5591 0.5608 0.5691 0.5584 0.5659 0.5451 0.5463 0.6121

-0.4 -0.25 96 0.1756 0.1418 0.1465 0.1508 0.1577 0.1626 0.1427 0.1367 0.1435 0.1375 0.1754
576 0.0607 0.0189 0.0254 0.0338 0.0590 0.0616 0.0392 0.0304 0.0286 0.0412 0.0512

0 96 0.1653 0.1143 0.1186 0.1201 0.1295 0.1328 0.1276 0.1304 0.1353 0.1325 0.1706
576 0.0560 0.0288 0.0313 0.0370 0.0422 0.0465 0.0321 0.0264 0.0249 0.0328 0.0471

0.25 96 0.1629 0.1116 0.1174 0.1223 0.1320 0.1387 0.1122 0.1329 0.1294 0.1382 0.1743
576 0.0571 0.0284 0.0291 0.0326 0.0379 0.0429 0.0358 0.0289 0.0251 0.0253 0.0431

0.45 96 0.1653 0.1073 0.1132 0.1245 0.1302 0.1444 0.1520 0.1400 0.1277 0.1352 0.1615
576 0.0625 0.0289 0.0315 0.0384 0.0438 0.0557 0.0529 0.0359 0.0261 0.0269 0.0499

0.4 -0.25 96 -0.0363 -0.0174 -0.0236 -0.0288 -0.0317 -0.0392 -0.0284 -0.0047 -0.0147 -0.0115 -0.0402
576 -0.0056 -0.0086 -0.0113 -0.0157 -0.0187 -0.0216 -0.0122 0.0056 -0.0004 -0.0026 -0.0153

0 96 -0.0534 -0.0178 -0.0210 -0.0256 -0.0303 -0.0382 -0.0234 -0.0089 -0.0175 -0.0098 -0.0340
576 -0.0125 -0.0085 -0.0096 -0.0114 -0.0155 -0.0184 -0.0032 -0.0008 -0.0040 -0.0010 -0.0086

0.25 96 -0.0559 -0.0116 -0.0150 -0.0182 -0.0238 -0.0296 -0.0221 -0.0068 -0.0153 -0.0112 -0.0357
576 -0.0115 -0.0082 -0.0066 -0.0045 -0.0064 -0.0094 -0.0056 0.0017 -0.0027 -0.0026 -0.0088

0.45 96 -0.0501 -0.0095 -0.0110 -0.0182 -0.0249 -0.0319 -0.0197 0.0032 -0.0111 -0.0152 -0.0396
576 -0.0058 -0.0073 -0.0025 -0.0059 -0.0043 -0.0088 -0.0174 0.0089 0.0004 -0.0018 -0.0092

0.9 -0.25 96 -0.0291 -0.0100 -0.0127 -0.0152 -0.0185 -0.0217 -0.0121 -0.0175 -0.0162 -0.0098 -0.0206
576 -0.0058 -0.0017 -0.0020 -0.0036 -0.0054 -0.0074 -0.0035 -0.0034 -0.0023 -0.0005 -0.0062

0 96 -0.0170 -0.0096 -0.0119 -0.0148 -0.0173 -0.0195 -0.0128 -0.0140 -0.0082 -0.0093 -0.0194
576 -0.0029 -0.0010 -0.0011 -0.0026 -0.0044 -0.0036 -0.0012 -0.0009 -0.0005 -0.0007 -0.0051

0.25 96 -0.0249 -0.0095 -0.0135 -0.0182 -0.0215 -0.0248 -0.0126 -0.0162 -0.0117 -0.0098 -0.0267
576 -0.0044 -0.0018 -0.0032 -0.0041 -0.0059 -0.0073 -0.0045 -0.0032 -0.0020 -0.0004 -0.0044

0.45 96 -0.0241 -0.0089 -0.0114 -0.0176 -0.0199 -0.0249 -0.0179 -0.0175 -0.0126 -0.0090 -0.0192
576 -0.0077 -0.0019 -0.0034 -0.0039 -0.0046 -0.0063 -0.0017 -0.0038 -0.0018 -0.0004 -0.0040
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Table 7: RMSE estimates of the unadjusted LPR estimator, the feasible jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(1, d0, 0) with Gaussian innovations.

The feasible jackknife estimates are evaluated using the iterative procedure described in Section 5.2.2. The

estimates are obtained by setting α = 0.65 and assuming the model is correctly specified. The lowest values

are bold-faced and the second lowest values are italicized.

φ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 1.0359 1.2162 1.2053 1.1907 1.1853 1.1814 1.2193 1.3386 1.2885 0.9538 1.0562
576 0.7398 0.7688 0.7621 0.7586 0.7549 0.7451 0.7618 0.7371 0.7359 0.6315 0.7365

0 96 1.1148 1.1491 1.1400 1.1365 1.1334 1.1240 1.1391 1.1819 1.2167 0.9243 0.9847
576 0.8288 0.8418 0.8397 0.8322 0.8282 0.8239 0.8306 0.8173 0.8053 0.6221 0.6648

0.25 96 1.1618 1.1835 1.1773 1.1666 1.1537 1.1428 1.1588 1.1484 1.2299 0.9428 1.0275
576 0.9175 0.9409 0.9348 0.9275 0.9212 0.9187 0.9334 1.1171 1.1130 0.6385 0.6611

0.45 96 1.1286 1.2150 1.2061 1.1982 1.1933 1.1869 1.2186 1.4331 1.5385 0.9382 1.0335
576 0.9708 0.9842 0.9711 0.9672 0.9627 0.9574 0.9775 1.1124 1.1647 0.6415 0.7069

-0.4 -0.25 96 0.2568 0.2841 0.2726 0.2699 0.2606 0.2515 0.2635 0.2594 0.3028 0.1863 0.2671
576 0.1098 0.1249 0.1168 0.1134 0.1121 0.1276 0.1149 0.1118 0.1272 0.0946 0.1339

0 96 0.2498 0.2772 0.2724 0.2685 0.2576 0.2418 0.2643 0.2560 0.2930 0.1792 0.2496
576 0.1069 0.1278 0.1218 0.1106 0.1073 0.1005 0.1055 0.1104 0.1247 0.0867 0.1348

0.25 96 0.2490 0.2835 0.2782 0.2737 0.2688 0.2630 0.3108 0.2580 0.2879 0.1814 0.2473
576 0.1079 0.1374 0.1326 0.1248 0.1160 0.1053 0.1164 0.1115 0.1239 0.0992 0.1340

0.45 96 0.2506 0.2833 0.2761 0.2619 0.2598 0.2541 0.2759 0.2616 0.2506 0.1836 0.2497
576 0.1115 0.1428 0.1411 0.1337 0.1276 0.1128 0.1221 0.1143 0.1230 0.0934 0.1306

0.4 -0.25 96 0.1917 0.2350 0.2335 0.2278 0.2210 0.2172 0.2266 0.2212 0.2717 0.1244 0.1984
576 0.0919 0.1229 0.1189 0.1144 0.1075 0.1035 0.1020 0.1081 0.1198 0.0531 0.0909

0 96 0.1946 0.2295 0.2251 0.2177 0.2114 0.2001 0.2163 0.2203 0.2546 0.1194 0.1939
576 0.0920 0.1246 0.1208 0.1145 0.1185 0.1099 0.1176 0.1073 0.1166 0.0617 0.0946

0.25 96 0.1960 0.2281 0.2219 0.2163 0.2267 0.2296 0.2225 0.2209 0.2482 0.1273 0.2088
576 0.0922 0.1168 0.1113 0.1087 0.1055 0.1019 0.1150 0.1076 0.1158 0.0566 0.0999

0.45 96 0.1955 0.2379 0.2318 0.2206 0.2284 0.2178 0.2174 0.2218 0.2453 0.1282 0.2094
576 0.0926 0.1241 0.1241 0.1179 0.1055 0.1013 0.1084 0.1089 0.1149 0.0476 0.0913

0.9 -0.25 96 0.1115 0.1385 0.1306 0.1282 0.1243 0.1210 0.1284 0.1365 0.1266 0.0712 0.1160
576 0.0624 0.0687 0.0660 0.0616 0.0579 0.0548 0.0599 0.0708 0.0600 0.0369 0.0649

0 96 0.1010 0.1162 0.1123 0.1105 0.1088 0.1023 0.1187 0.1121 0.1093 0.0681 0.1097
576 0.0602 0.0629 0.0609 0.0549 0.0533 0.0521 0.0577 0.0698 0.0705 0.0344 0.0539

0.25 96 0.1114 0.1324 0.1318 0.1268 0.1222 0.1198 0.1229 0.1328 0.1282 0.0771 0.1142
576 0.0518 0.0695 0.0641 0.0616 0.0589 0.0552 0.0572 0.0626 0.0581 0.0322 0.0530

0.45 96 0.1053 0.1284 0.1307 0.1284 0.1229 0.1216 0.1179 0.1253 0.1215 0.0725 0.1031
576 0.0526 0.0681 0.0635 0.0610 0.0595 0.0549 0.0581 0.0769 0.0684 0.0349 0.0528
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Table 8: Bias estimates of the unadjusted LPR estimator, the feasible jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(0, d0, 1) with Gaussian innovations.

The feasible jackknife estimates are evaluated using the iterative procedure described in Section 5.2.2. The

estimates are obtained by setting α = 0.65 and assuming the model is correctly specified. The lowest values

are bold-faced and the second lowest values are italicized.

θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 -0.5671 -0.5487 -0.5519 -0.5586 -0.5627 -0.5738 -0.5862 -0.5450 -0.5466 -0.5372 -0.6278
576 -0.4527 -0.4259 -0.4364 -0.4429 -0.4581 -0.4694 -0.4575 -0.4385 -0.4285 -0.4294 -0.4663

0 96 -0.7042 -0.6510 -0.6627 -0.6681 -0.6729 -0.6786 -0.6692 -0.6575 -0.6664 -0.6586 -0.6638
576 -0.5594 -0.5237 -0.5344 -0.5492 -0.5542 -0.5649 -0.5437 -0.5256 -0.5375 -0.5131 -0.5445

0.25 96 -0.7763 -0.7482 -0.7535 -0.7686 -0.7715 -0.7899 -0.7559 -0.7524 -0.7661 -0.7375 -0.7784
576 -0.5880 -0.5462 -0.5561 -0.5548 -0.5726 -0.5772 -0.5628 -0.5473 -0.5621 -0.5367 -0.5647

0.45 96 -0.8004 -0.7515 -0.7587 -0.7653 -0.7749 -0.7841 -0.7736 -0.7600 -0.7854 -0.7615 -0.7935
576 -0.5880 -0.5349 -0.5395 -0.5438 -0.5485 -0.5509 -0.5394 -0.5351 -0.5527 -0.5345 -0.5732

-0.4 -0.25 96 -0.1437 -0.1116 -0.1186 -0.1274 -0.1348 -0.1486 -0.1357 -0.1120 -0.1240 -0.1153 -0.1465
576 -0.0476 -0.0382 -0.0405 -0.0458 -0.0495 -0.0517 -0.0393 -0.0187 -0.0271 -0.0243 -0.0485

0 96 -0.1653 -0.1234 -0.1282 -0.1340 -0.1494 -0.1538 -0.1488 -0.1305 -0.1248 -0.1286 -0.1436
576 -0.0560 -0.0290 -0.0379 -0.0454 -0.0510 -0.0686 -0.0395 -0.0265 -0.0307 -0.0239 -0.0588

0.25 96 -0.1692 -0.1275 -0.1304 -0.1399 -0.1438 -0.1544 -0.1317 -0.1297 -0.1200 -0.1362 -0.1527
576 -0.0552 -0.0184 -0.0397 -0.0472 -0.0565 -0.0605 -0.0492 -0.0243 -0.0287 -0.0275 -0.0573

0.45 96 -0.1630 -0.0837 -0.1399 -0.1623 -0.1708 -0.1769 -0.1433 -0.1190 -0.1118 -0.1385 -0.1586
576 -0.0493 -0.0160 -0.0184 -0.0398 -0.0416 -0.0483 -0.0305 -0.0169 -0.0244 -0.0283 -0.0526

0.4 -0.25 96 0.0637 0.0084 0.0490 0.0615 0.0684 0.0709 0.0534 0.0154 0.0651 0.0384 0.0494
576 0.0175 0.0051 0.0117 0.0180 0.0233 0.0168 0.0095 0.0049 0.0132 0.0083 0.0212

0 96 0.0525 0.0313 0.0396 0.0424 0.0356 0.0397 0.0388 0.0081 0.0603 0.0317 0.0375
576 0.0125 0.0135 0.0271 0.0315 0.0340 0.0284 0.0094 0.0006 0.0100 0.0076 0.0199

0.25 96 0.0504 0.0239 0.0418 0.0568 0.0599 0.0633 0.0428 0.0110 0.0574 0.0364 0.0475
576 0.0136 0.0065 0.0083 0.0105 0.0173 0.0209 0.0073 0.0031 0.0108 0.0088 0.0154

0.45 96 0.0549 0.0245 0.0386 0.0495 0.0626 0.0600 0.0455 0.0204 0.0570 0.0347 0.0426
576 0.0192 0.0063 0.0095 0.0074 0.0099 0.0129 0.0103 0.0103 0.0132 0.0091 0.0182

0.9 -0.25 96 0.0359 0.0097 0.0119 0.0176 0.0237 0.0262 0.0254 0.0109 0.0085 0.0153 0.0246
576 0.0065 0.0012 0.0018 0.0028 0.0035 0.0056 0.0042 0.0020 0.0014 0.0027 0.0181

0 96 0.0347 0.0084 0.0092 0.0095 0.0101 0.0140 0.0119 0.0091 0.0076 0.0089 0.0279
576 0.0052 0.0010 0.0011 0.0018 0.0025 0.0045 0.0041 0.0015 0.0010 0.0034 0.0126

0.25 96 0.0293 0.0074 0.0077 0.0092 0.0120 0.0136 0.0117 0.0130 0.0073 0.0117 0.0281
576 0.0083 0.0013 0.0028 0.0029 0.0033 0.0051 0.0026 0.0057 0.0019 0.0059 0.0122

0.45 96 0.0235 0.0075 0.0080 0.0095 0.0110 0.0173 0.0117 0.0132 0.0075 0.0121 0.0260
576 0.0195 0.0039 0.0066 0.0077 0.0119 0.0118 0.0091 0.0071 0.0042 0.0060 0.0130
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Table 9: RMSE estimates of the unadjusted LPR estimator, the feasible jackknife estimator based on 2,3,4,6,8

non-overlapping (NO) sub-samples, the feasible jackknife estimator based on 2 moving block (MB) sub-samples,

both versions of the GS estimator, the pre-filtered sieve bootstrap estimator, the maximum likelihood estimator

(MLE) and the pre-whitened (PW) estimator, for the DGP: ARFIMA(0, d0, 1) with Gaussian innovations.

The feasible jackknife estimates are evaluated using the iterative procedure described in Section 5.2.2. The

estimates are obtained by setting α = 0.65 and assuming the model is correctly specified. The lowest values

are bold-faced and the second lowest values are italicized.

θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 0.6233 0.6561 0.6463 0.6405 0.6348 0.6319 0.6653 0.6385 0.8247 0.5982 0.6663
576 0.4794 0.4980 0.4927 0.4854 0.4771 0.4727 0.4785 0.4888 0.4977 0.4406 0.4858

0 96 0.7361 0.8327 0.8291 0.8247 0.8189 0.8006 0.8114 0.8413 0.8510 0.7234 0.7604
576 0.5687 0.6371 0.6034 0.6152 0.6038 0.5972 0.6241 0.5838 0.5942 0.5621 0.6329

0.25 96 0.7996 0.8238 0.8186 0.8013 0.7926 0.7884 0.8108 0.8268 0.8430 0.7429 0.8215
576 0.5951 0.6339 0.6257 0.6108 0.6075 0.5922 0.6249 0.6219 0.6590 0.5513 0.6359

0.45 96 0.8219 0.8562 0.8414 0.8393 0.8242 0.8107 0.8233 0.8590 0.8327 0.8107 0.8353
576 0.5950 0.6384 0.6279 0.6211 0.6184 0.6124 0.6589 0.6298 0.6487 0.5918 0.6337

-0.4 -0.25 96 0.2376 0.2517 0.2441 0.2384 0.2300 0.2283 0.2566 0.2488 0.3103 0.2173 0.2923
576 0.1037 0.1352 0.1239 0.1192 0.1116 0.1085 0.1232 0.1098 0.1254 0.0954 0.1326

0 96 0.2497 0.2743 0.2662 0.2545 0.2449 0.2406 0.2457 0.2559 0.2883 0.2284 0.2873
576 0.1070 0.1366 0.1245 0.1184 0.1105 0.1044 0.1193 0.1105 0.1215 0.1020 0.1478

0.25 96 0.2527 0.2719 0.2636 0.2591 0.2530 0.2418 0.2495 0.2648 0.2782 0.2305 0.2995
576 0.1068 0.1384 0.1315 0.1251 0.1144 0.1084 0.1267 0.1103 0.1199 0.1032 0.1526

0.45 96 0.2496 0.2737 0.2608 0.2549 0.2521 0.2512 0.2528 0.2518 0.2725 0.2311 0.2880
576 0.1047 0.1392 0.1384 0.1300 0.1243 0.1154 0.1276 0.1098 0.1188 0.1044 0.1539

0.4 -0.25 96 0.1982 0.2348 0.2217 0.2106 0.2058 0.2007 0.2245 0.2212 0.2809 0.1729 0.2035
576 0.0932 0.1079 0.1155 0.1249 0.1163 0.1096 0.0972 0.1078 0.1268 0.0883 0.1185

0 96 0.1944 0.2315 0.2242 0.2215 0.2194 0.2072 0.2159 0.2203 0.2701 0.1637 0.1927
576 0.0919 0.1232 0.1119 0.1076 0.1026 0.0944 0.1036 0.1072 0.1243 0.0906 0.1053

0.25 96 0.1947 0.2224 0.2153 0.2018 0.1982 0.1902 0.2247 0.2213 0.2663 0.1625 0.1901
576 0.0925 0.1105 0.1151 0.1172 0.1069 0.1010 0.1108 0.1077 0.1238 0.0853 0.1136

0.45 96 0.1964 0.2247 0.2172 0.2033 0.1946 0.1916 0.2265 0.2223 0.2643 0.1639 0.2084
576 0.0943 0.1221 0.1134 0.1076 0.1016 0.0992 0.1157 0.1090 0.1229 0.0927 0.1120

0.9 -0.25 96 0.0886 0.1213 0.1189 0.1083 0.1035 0.0953 0.1166 0.1105 0.1253 0.0834 0.1117
576 0.0344 0.0695 0.0637 0.0559 0.0521 0.0486 0.0578 0.0561 0.0589 0.0315 0.0538

0 96 0.0863 0.1136 0.1120 0.1084 0.1043 0.0997 0.1045 0.1209 0.1288 0.0807 0.1013
576 0.0312 0.0613 0.0595 0.0546 0.0504 0.0488 0.0491 0.0674 0.0729 0.0299 0.0526

0.25 96 0.0865 0.1224 0.1210 0.1171 0.1123 0.1161 0.1140 0.1287 0.1286 0.0818 0.1157
576 0.0304 0.0628 0.0654 0.0613 0.0592 0.0568 0.0606 0.0692 0.0706 0.0253 0.0530

0.45 96 0.0885 0.1262 0.1241 0.1109 0.1185 0.1136 0.1175 0.1181 0.1197 0.0824 0.1128
576 0.0378 0.0630 0.0581 0.0542 0.0473 0.0495 0.0536 0.0647 0.0695 0.0271 0.0563
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Table 10: Bias estimates of the unadjusted LPR estimator, the feasible GS estimator and the pre-filtered

sieve bootstrap estimator, for the DGP: ARFIMA(1, d0, 0) with Gaussian innovations. The bias estimates of

the feasible jackknife estimator based on 2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife

estimator based on 2 moving block (MB) sub-samples, the maximum likelihood estimator (MLE) and the pre-

whitened (PW) estimator are obtained under the misspecified model: ARFIMA(0, d, 0) using the approach

described in Section 5.3. The estimates are obtained by setting α = 0.65. The lowest values are bold-faced

and the second lowest values are italicized.

φ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 0.8145 0.8566 0.8595 0.8643 0.8681 0.8734 0.8540 0.8002 0.7908 0.8195 0.8318
576 0.5945 0.6389 0.6422 0.6490 0.6553 0.6608 0.6321 0.5724 0.5898 0.6104 0.6444

0.25 96 0.7752 0.8075 0.8134 0.8217 0.8246 0.8392 0.8273 0.7673 0.7685 0.7945 0.8258
576 0.5883 0.6464 0.6429 0.6326 0.6255 0.6233 0.6356 0.5716 0.5638 0.5943 0.6305

0.45 96 0.7006 0.7426 0.7482 0.7538 0.7599 0.7646 0.7520 0.6946 0.6705 0.7895 0.8377
576 0.5748 0.6105 0.6154 0.6203 0.6286 0.6397 0.6118 0.5659 0.5451 0.5986 0.6390

-0.4 -0.25 96 0.1756 0.1543 0.1626 0.1691 0.1753 0.1804 0.1629 0.1367 0.1435 0.1947 0.2021
576 0.0607 0.0419 0.0484 0.0507 0.0541 0.0585 0.0426 0.0304 0.0286 0.0743 0.1035

0.25 96 0.1629 0.1536 0.1588 0.1614 0.1669 0.1760 0.1512 0.1329 0.1294 0.1840 0.2064
576 0.0571 0.0348 0.0376 0.0491 0.0527 0.0598 0.0506 0.0289 0.0251 0.0587 0.0996

0.45 96 0.1653 0.1546 0.1592 0.1648 0.1688 0.1735 0.1648 0.1400 0.1277 0.1886 0.2145
576 0.0625 0.0445 0.0498 0.0572 0.0645 0.0686 0.0749 0.0359 0.0261 0.0534 0.1031

0.4 -0.25 96 -0.0363 -0.0286 -0.0359 -0.0397 -0.0462 -0.0481 -0.0388 -0.0047 -0.0147 -0.0385 -0.0490
576 -0.0056* -0.0105 -0.0128 -0.0156 -0.0184 -0.0229 -0.0154 -0.0056 -0.0004 -0.0163 -0.0258

0.25 96 -0.0559 -0.0267 -0.0293 -0.0319 -0.0350 -0.0424 -0.0372 -0.0068 -0.0153 -0.0372 -0.0593
576 -0.0115 -0.0104 -0.0131 -0.0177 -0.0176 -0.0239 -0.0168 0.0017 -0.0027 -0.0095 -0.0269

0.45 96 -0.0501 -0.0279 -0.0249 -0.0325 -0.0381 -0.0458 -0.0294 0.0032 -0.0111 -0.0314 -0.0627
576 -0.0058 -0.0115 -0.0157 -0.0186 -0.0195 -0.0210 -0.0153 0.0089 0.0004 -0.0088 -0.0251

0.9 -0.25 96 -0.0291 -0.0123 -0.0129 -0.0145 -0.0193 -0.0224 -0.0148 -0.0175 -0.0162 -0.0156 -0.0339
576 -0.0058 -0.0020 -0.0028 -0.0041 -0.0066 -0.0075 -0.0049 -0.0034 -0.0023 -0.0037 -0.0142

0.25 96 -0.0249 -0.0106 -0.0132 -0.0220 -0.0241 -0.0269 -0.0153 -0.0162 -0.0117 -0.0163 -0.0326
576 -0.0044 -0.0021 -0.0047 -0.0055 -0.0073 -0.0084 -0.0062 -0.0032 -0.0020 -0.0034 -0.0174

0.45 96 -0.0241 -0.0095 -0.0126* -0.0217 -0.0229 -0.0241 -0.0175 -0.0175 -0.0126 -0.0145 -0.0366
576 -0.0077 -0.0026 -0.0035 -0.0042 -0.0048 -0.0065 -0.0029 -0.0038 -0.0018 -0.0048 -0.0134

51



OPTIMAL JACKKNIFE BIAS CORRECTION

Table 11: RMSE estimates of the unadjusted LPR estimator, the feasible GS estimator and the pre-filtered

sieve bootstrap estimator, for the DGP: ARFIMA(1, d0, 0) with Gaussian innovations. The bias estimates of

the feasible jackknife estimator based on 2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife

estimator based on 2 moving block (MB) sub-samples, the maximum likelihood estimator (MLE) and the pre-

whitened (PW) estimator are obtained under the misspecified model: ARFIMA(0, d, 0) using the approach

described in Section 5.3. The estimates are obtained by setting α = 0.65. The lowest values are bold-faced

and the second lowest values are italicized.

φ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 1.0359 1.2624 1.2506 1.2406 1.2416 1.2384 1.2395 1.3386 1.2885 1.2247 1.2372
576 0.7398 0.7851 0.7827 0.7795 0.7628 0.7695 0.7726 0.7371 0.7359 0.8030 0.8428

0.25 96 1.1618 1.2137 1.2154 1.2042 1.2069 1.1958 1.2073 1.1484 1.2299 1.2149 1.2226
576 0.9175 0.9769 0.9732 0.9618 0.9594 0.9537 0.9678 1.1171 1.1130 0.9556 0.9638

0.45 96 1.1286 1.2446 1.2384 1.2329 1.2280 1.2186 1.2349 1.4331 1.5385 1.2285 1.2385
576 0.9708 1.0975 1.0299 1.0183 0.9716 0.9824 1.0198 1.1124 1.1647 0.9929 1.0064

-0.4 -0.25 96 0.2568 0.3063 0.3015 0.2940 0.2874 0.2711 0.2726 0.2594 0.3028 0.2736 0.2915
576 0.1098 0.1408 0.1377 0.1305 0.1249 0.1153 0.1281 0.1118 0.1272 0.1242 0.1463

0.25 96 0.2490 0.3034 0.2956 0.2874 0.2713 0.2624 0.3097 0.2580 0.2879 0.2794 0.2905
576 0.1079 0.1410 0.1393 0.1318 0.1275 0.1248 0.1290 0.1375 0.1239 0.1329 0.1539

0.45 96 0.2506 0.3087 0.3016 0.2971 0.2840 0.2737 0.2972 0.2616 0.2506 0.2840 0.3017
576 0.1115 0.1672 0.1508 0.1438 0.1378 0.1225 0.1482 0.1143 0.1230 0.1385 0.1228

0.4 -0.25 96 0.1917 0.2441 0.2318 0.2473 0.2319 0.2301 0.2333 0.2212 0.2717 0.2425 0.2573
576 0.0919 0.1323 0.1295 0.1206 0.1134 0.1199 0.1210 0.1253 0.1198 0.1347 0.1836

0.25 96 0.1960 0.2359 0.2306 0.2239 0.2406 0.2378 0.2381 0.2209 0.2482 0.2385 0.2529
576 0.0922 0.1330 0.1289 0.1211 0.1281 0.1166 0.1199 0.1366 0.1158 0.1093 0.1545

0.45 96 0.1955 0.2416 0.2345 0.2394 0.2296 0.2244 0.2267 0.2218 0.2453 0.2236 0.2530
576 0.0926 0.1305 0.1287 0.1226 0.1148 0.1106 0.1292 0.1089 0.1149 0.1058 0.1551

0.9 -0.25 96 0.1115 0.1419 0.1381 0.1305 0.1267 0.1212 0.1284 0.1365 0.1266 0.1315 0.1589
576 0.0624 0.0795 0.0754 0.0713 0.0691 0.0627 0.0553 0.0708 0.0600 0.0703 0.0846

0.25 96 0.1114 0.1482 0.1469 0.1337 0.1304 0.1289 0.1376 0.1328 0.1282 0.1293 0.1428
576 0.0518 0.0800 0.0786 0.0711 0.0678 0.0624 0.0545 0.0626 0.0581 0.0540 0.0722

0.45 96 0.1053 0.1495 0.1461 0.1398 0.1376 0.1268 0.1272 0.1253 0.1215 0.1214 0.1473
576 0.0526 0.0714 0.0790 0.0774 0.0722 0.0659 0.0698 0.0769 0.0684 0.0648 0.0739
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Table 12: Bias estimates of the unadjusted LPR estimator, the feasiblel GS estimator and the pre-filtered

sieve bootstrap estimator, for the DGP: ARFIMA(0, d0, 1) with Gaussian innovations. The bias estimates of

the feasible jackknife estimator based on 2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife

estimator based on 2 moving block (MB) sub-samples, the maximum likelihood estimator (MLE) and the pre-

whitened (PW) estimator are obtained under the misspecified model: ARFIMA(0, d, 0) using the approach

described in Section 5.3. The estimates are obtained by setting α = 0.65. The lowest values are bold-faced

and the second lowest values are italicized.

θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 -0.5671 -0.5355 -0.5398 -0.5437 -0.5541 -0.5626 -0.5584 -0.5450 -0.5466 -0.5692 -0.6361
576 -0.4527 -0.4216 -0.4273 -0.4349 -0.4479 -0.4581 -0.4469 -0.4385 -0.4285 -0.4375 -0.4858

0.25 96 -0.7763 -0.7394 -0.7401 -0.7475 -0.7523 -0.7670 -0.7416 -0.7524 -0.7661 -0.7718 -0.8149
576 -0.5880 -0.5482 -0.5529 -0.5653 -0.5776 -0.5798 -0.5629 -0.5473 -0.5621 -0.5426 -0.5846

0.45 96 -0.8004 -0.7469 -0.7504 -0.7638 -0.7769 -0.7716 -0.7553 -0.7600 -0.7854 -0.7713 -0.7942
576 -0.5880 -0.5033 -0.5059 -0.5249 -0.5384 -0.5529 -0.5247 -0.5351 -0.5527 -0.5484 -0.5927

-0.4 -0.25 96 -0.1437 -0.1468 -0.1288 -0.1201 -0.1175 -0.1435 -0.1586 -0.1120 -0.1240 -0.1379 -0.1728
576 -0.0476 -0.0296 -0.0379 -0.0334 -0.0562 -0.0560 -0.0392 -0.0187 -0.0271 -0.0584 -0.0957

0.25 96 -0.1692 -0.1172 -0.1243 -0.1289 -0.1350 -0.1462 -0.1471 -0.1297 -0.1200 -0.1381 -0.1783
576 -0.0552 -0.0222 -0.0318 -0.0425 -0.0531 -0.0573 -0.0469 -0.0243 -0.0287 -0.0558 -0.0990

0.45 96 -0.1630 -0.0716 -0.1076 -0.1277 -0.1392 -0.1436 -0.1318 -0.1190 -0.1118 -0.1254 -0.1739
576 -0.0493 -0.0152 -0.0183 -0.0309 -0.0473 -0.0414 -0.0205 -0.0169 -0.0244 -0.0509 -0.0948

0.4 -0.25 96 0.0637 0.0139 0.0226 0.0274 0.0395 0.0433 0.0381 0.0154 0.0651 0.0312 0.0661
576 0.0175 0.0066 0.0091 0.0095 0.0122 0.0146 0.0070 0.0049 0.0132 0.0198 0.0283

0.25 96 0.0504 0.0141 0.0364 0.0490 0.0526 0.0548 0.0301 0.0110 0.0574 0.0248 0.0529
576 0.0136 0.0082 0.0087 0.0096 0.0121 0.0137 0.0050 0.0031 0.0108 0.0153 0.0238

0.45 96 0.0549 0.0189 0.0321 0.0458 0.0529 0.0585 0.0362 0.0204 0.0570 0.0274 0.0668
576 0.0192 0.0053 0.0075 0.0083 0.0104 0.0129 0.0083 0.0103 0.0132 0.0135 0.0269

0.9 -0.25 96 0.0359 0.0075 0.0083 0.0092 0.0116 0.0142 0.0117 0.0109 0.0085 0.0131 0.0354
576 0.0065 0.0024 0.0039 0.0069 0.0086 0.0109 0.0078 0.0020 0.0014 0.0045 0.0151

0.25 96 0.0293 0.0096 0.0138 0.0157 0.0199 0.0237 0.0195 0.0130 0.0073 0.0099 0.0322
576 0.0083 0.0022 0.0036 0.0043 0.0055 0.0063 0.0029 0.0057 0.0019 0.0052 0.0137

0.45 96 0.0235 0.0109 0.0128 0.0146 0.0165 0.0198 0.0149 0.0132 0.0075 0.0084 0.0353
576 0.0195 0.0030 0.0075 0.0081 0.0076 0.0116 0.0084 0.0071 0.0042 0.0044 0.0120
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Table 13: RMSE estimates of the unadjusted LPR estimator, the feasible GS estimator and the pre-filtered

sieve bootstrap estimator, for the DGP: ARFIMA(0, d0, 1) with Gaussian innovations. The bias estimates of

the feasible jackknife estimator based on 2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife

estimator based on 2 moving block (MB) sub-samples, the maximum likelihood estimator (MLE) and the pre-

whitened (PW) estimator are obtained under the misspecified model: ARFIMA(0, d, 0) using the approach

described in Section 5.3. The estimates are obtained by setting α = 0.65. The lowest values are bold-faced

and the second lowest values are italicized.

θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.25 96 0.6233 0.6882 0.6854 0.6825 0.6797 0.6774 0.6828 0.6385 0.8247 0.6619 0.7538
576 0.4794 0.5335 0.5391 0.5447 0.5482 0.5505 0.5549 0.4885 0.4977 0.5043 0.5578

0.25 96 0.7996 0.8695 0.8662 0.8533 0.8504 0.8442 0.8451 0.8268 0.8430 0.8072 0.8459
576 0.5951 0.6749 0.6685 0.6612 0.6553 0.6490 0.6514 0.6219 0.6590 0.6049 0.6318

0.45 96 0.8219 0.8806 0.8829 0.8781 0.8700 0.8651 0.8588 0.8590 0.8327 0.8381 0.8637
576 0.5950 0.6474 0.6433 0.6419 0.6349 0.6355 0.6671 0.6298 0.6487 0.6015 0.6372

-0.4 -0.25 96 0.2376 0.2996 0.2963 0.2927 0.2903 0.2847 0.2834 0.2488 0.3103 0.2688 0.3142
576 0.1037 0.1534 0.1588 0.1556 0.1485 0.1414 0.1549 0.1098 0.1254 0.1236 0.1540

0.25 96 0.2527 0.2958 0.2964 0.2942 0.2846 0.2812 0.2833 0.2560 0.2782 0.2645 0.3162
576 0.1068 0.1576 0.1529 0.1486 0.1455 0.1438 0.1482 0.1103 0.1199 0.1182 0.1573

0.45 96 0.2496 0.2999 0.2927 0.2900 0.2867 0.2815 0.2795 0.2518 0.2725 0.2691 0.3029
576 0.1047 0.1553 0.1518 0.1489 0.1421 0.1358 0.1365 0.1098 0.1188 0.1105 0.1661

0.4 -0.25 96 0.1982 0.2589 0.2556 0.2528 0.2438 0.2482 0.2473 0.2212 0.2809 0.2140 0.2344
576 0.0932 0.1442 0.1418 0.1397 0.1362 0.1315 0.1428 0.1078 0.1268 0.1026 0.1473

0.25 96 0.1947 0.2546 0.2439 0.2418 0.2317 0.2338 0.2496 0.2213 0.2663 0.2187 0.2365
576 0.0925 0.1483 0.1426 0.1474 0.1322 0.1272 0.1349 0.1077 0.1238 0.1043 0.1558

0.45 96 0.1964 0.2565 0.2534 0.2429 0.2412 0.2324 0.2448 0.2223 0.2643 0.2125 0.2424
576 0.0943 0.1338 0.1288 0.1265 0.1169 0.1142 0.1396 0.1090 0.1229 0.0975 0.1466

0.9 -0.25 96 0.0886 0.1384 0.1357 0.1329 0.1310 0.1294 0.1367 0.1105 0.1253 0.1254 0.1427
576 0.0344 0.0712 0.0696 0.0653 0.0628 0.0611 0.0636 0.0561 0.0589 0.0685 0.0749

0.25 96 0.0865 0.1393 0.1329 0.1314 0.1299 0.1245 0.1343 0.1287 0.1286 0.0952 0.1426
576 0.0304 0.0794 0.0768 0.0752 0.0746 0.0699 0.0712 0.0692 0.0706 0.0487 0.0758

0.45 96 0.0885 0.1375 0.1348 0.1311 0.1297 0.1249 0.1324 0.1181 0.1197 0.0991 0.1424
576 0.0378 0.0728 0.0715 0.0676 0.0619 0.0588 0.0662 0.0647 0.0695 0.0454 0.0743
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Table 14: Bias estimates of the unadjusted LPR estimator, the feasible GS estimator and the pre-filtered

sieve bootstrap estimator, for the DGP: ARFIMA(1, d0, 1) with Gaussian innovations. The bias estimates of

the feasible jackknife estimator based on 2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife

estimator based on 2 moving block (MB) sub-samples, the maximum likelihood estimator (MLE) and the pre-

whitened (PW) estimator are obtained under the misspecified model: ARFIMA(2, d, 0) using the approach

described in Section 5.3. The estimates are obtained by setting α = 0.65. The lowest values are bold-faced

and the second lowest values are italicized.

φ0 θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.9 -0.25 96 -0.5908 -0.5874 -0.5986 -0.6020 -0.6135 -0.6159 -0.6954 -0.5065 -0.5557 -0.6790 -0.6939
576 -0.4027 -0.3853 -0.3899 -0.3936 -0.4007 -0.4048 -0.3941 -0.3164 -0.3860 -0.3946 -0.4226

0.25 96 -0.6384 -0.5932 -0.5975 -0.6061 -0.6126 -0.6194 -0.5946 -0.5353 -0.5780 -0.6295 -0.6354
576 -0.5379 -0.4940 -0.5008 -0.5049 -0.5174 -0.5236 -0.5073 -0.4801 -0.5128 -0.5396 -0.5585

0.45 96 -0.7769 -0.7739 -0.7824 -0.7884 -0.7935 -0.7997 -0.7834 -0.6807 -0.7504 -0.7648 -0.7920
576 -0.5886 -0.5677 -0.5785 -0.5842 -0.5878 -0.5911 -0.5970 -0.5307 -0.5622 -0.5764 -0.5985

-0.4 -0.25 96 -0.0697 -0.0523 -0.0572 -0.0621 -0.0663 -0.0694 -0.0575 -0.0491 -0.0541 -0.0639 -0.0828
576 -0.0092 -0.0086 -0.0094 -0.0108 -0.0137 -0.0179 -0.0095 -0.0369 -0.0144 -0.0188 -0.0395

0.25 96 -0.2476 -0.2038 -0.2080 -0.2131 -0.2185 -0.2260 -0.2048 -0.1294 -0.1543 -0.2563 -0.2884
576 -0.0721 -0.0554 -0.0613 -0.0675 -0.0726 -0.0798 -0.0657 -0.0250 -0.0343 -0.0885 -0.0967

0.45 96 -0.2392 -0.2046 -0.2095 -0.2147 -0.2189 -0.2206 -0.2068 -0.1106 -0.1530 -0.2476 -0.2859
576 -0.0635 -0.0498 -0.0548 -0.0624 -0.0665 -0.0701 -0.0639 -0.0148 -0.0281 -0.0545 -0.0984

0.4 -0.25 96 -0.0044 -0.0056* -0.0069 -0.0097 -0.0126 -0.0148 -0.0092 0.0197 0.0071 -0.0056 -0.0376
576 0.0086 0.0064 0.0085 0.0103 0.0130 0.0196 0.0105 0.0099 0.0159 0.0102 0.0105

0.25 96 0.0221 0.0105 0.0157 0.0194 0.0228 0.0259 0.0176 0.0079 0.0207 0.0354 0.0339
576 0.0013 0.0041 0.0060 0.0095 0.0106 0.0187 0.0085 0.0052 0.0060 0.0193 0.0140

0.45 96 0.0414 0.0319 0.0369 0.0427 0.0482 0.0517 0.0189 0.0399 0.0180 0.0368 0.0353
576 0.0035 0.0036 0.0063 0.0088 0.0105 0.0120 0.0055 0.0094 0.0063 0.0147 0.0142

-0.4 -0.9 -0.25 96 -0.4968 -0.4469 -0.4527 -0.4636 -0.4690 -0.4742 -0.4506 -0.3998 -0.4012 -0.5026 -0.5293
576 -0.3861 -0.3357 -0.3463 -0.3554 -0.3628 -0.3680 -0.3539 -0.3141 -0.3498 -0.3729 -0.4098

0.25 96 -0.8033 -0.7530 -0.7629 -0.7683 -0.7753 -0.7822 -0.7749 -0.7328 -0.7932 -0.8013 -0.8347
576 -0.5966 -0.5639 -0.5685 -0.5700 -0.5775 -0.5893 -0.5730 -0.5413 -0.5550 -0.5739 -0.5941

0.45 96 -0.8501 -0.8046 -0.8153 -0.8203 -0.8279 -0.8328 -0.8276 -0.7819 -0.8092 -0.8362 -0.8504
576 -0.5943 -0.5537 -0.5584 -0.5629 -0.5669 -0.5725 -0.5648 -0.5396 -0.5560 -0.5835 -0.6095

-0.4 -0.25 96 -0.1826 -0.1455 -0.1538 -0.1597 -0.1638 -0.1687 -0.1594 -0.0885 -0.1352 -0.1944 -0.2263
576 -0.0505 -0.0226 -0.0275 -0.0312 -0.0379 -0.0413 -0.0395 -0.0085 -0.0155 -0.0493 -0.1028

0.25 96 -0.2172 -0.1648 -0.1728 -0.1749 -0.1884 -0.1926 -0.1754 -0.1169 -0.1351 -0.2274 -0.2343
576 -0.0650 -0.0356 -0.0372 -0.0418 -0.0479 -0.0535 -0.0473 -0.0202 -0.0328 -0.0426 -0.1124

0.45 96 -0.2261 -0.1748 -0.1812 -0.1856 -0.1940 -0.1972 -0.1749 -0.1227 -0.1297 -0.2375 -0.2559
576 -0.0598 -0.0324 -0.0376 -0.0418 -0.0463 -0.0495 -0.0437 -0.0137 -0.0269 -0.0468 -0.1076

0.4 -0.25 96 0.0147 0.0115 0.0179 0.0206 0.0238 0.0269 0.0148 0.0121 0.0249 0.0253 0.0563
576 0.0089 0.0080 0.0088 0.0093 0.0104 0.0134 0.0093 0.0075 0.0063 0.0079 0.0176

0.25 96 0.0182 0.0096 0.0114 0.0145 0.0186 0.0209 0.0189 0.0168 0.0115 0.0182 0.0412
576 0.0025 0.0029 0.0045 0.0068 0.0083 0.0095 0.0057 0.0034 0.0015 0.0045 0.0134

0.45 96 0.0167 0.0132 0.0176 0.0199 0.0205 0.0258 0.0155 0.0067 0.0090 0.0281 0.0458
576 0.0106 0.0093 0.0104 0.0146 0.0188 0.0211 0.0178 0.0134 0.0022 0.0102 0.0195

0.4 -0.9 -0.25 96 0.2462 0.1905 0.1969 0.2023 0.2069 0.2135 0.1958 0.1307 0.1461 0.2646 0.2958
576 0.0806 0.0548 0.0613 0.0649 0.0695 0.0710 0.0637 0.0333 0.0450 0.0817 0.1139

0.25 96 0.2225 0.1842 0.1936 0.1970 0.2044 0.2153 0.1973 0.1141 0.1372 0.2309 0.2555
576 0.0774 0.0515 0.0546 0.0563 0.0628 0.0694 0.0603 0.0331 0.0475 0.0832 0.1149

0.45 96 0.2308 0.1948 0.2063 0.2159 0.2190 0.2243 0.2175 0.1356 0.1470 0.2294 0.2656
576 0.0811 0.0453 0.0496 0.0528 0.0579 0.0639 0.0582 0.0374 0.0712 0.0957 0.1127

-0.4 -0.25 96 0.0144 0.0087 0.0095 0.0126 0.0174 0.0183 0.0131 0.0131 0.0249 0.0255 0.0578
576 0.0110 0.0062 0.0086 0.0098 0.0132 0.0148 0.0114 0.0092 0.0068 0.0108 0.0186

0.25 96 0.0097 0.0089 0.0096 0.0113 0.0158 0.0169 0.0147 0.0186 0.0115 0.0156 0.0490
576 0.0010 0.0025 0.0036 0.0051 0.0073 0.0089 0.0064 0.0008 0.0015 0.0084 0.0147

0.45 96 0.0103 0.0057 0.0066 0.0081 0.0098 0.0109 0.0079 0.0084 0.0090 0.0275 0.0389
576 0.0037 0.0022 0.0038 0.0049 0.0037 0.0046 0.0033 0.0043 0.0022 0.0089 0.0165

0.4 -0.25 96 0.2349 0.1828 0.1950 0.1986 0.2058 0.2158 0.2074 0.1412 0.2509 0.2548 0.2873
576 0.0740 0.0453 0.0515 0.0548 0.0594 0.0613 0.0553 0.0293 0.0580 0.0577 0.1098

0.25 96 0.2172 0.1775 0.1824 0.1869 0.1936 0.2004 0.1783 0.1303 0.2243 0.2263 0.2464
576 0.0707 0.0379 0.0438 0.0518 0.0549 0.0593 0.0476 0.0279 0.0525 0.0954 0.1153

0.45 96 0.2193 0.1846 0.1895 0.1938 0.1996 0.2026 0.1857 0.1426 0.2139 0.2295 0.2367
576 0.0738 0.0438 0.0489 0.0527 0.0579 0.0637 0.0554 0.0332 0.0497 0.0840 0.1081
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Table 15: RMSE estimates of the unadjusted LPR estimator, the feasible GS estimator and the pre-filtered

sieve bootstrap estimator, for the DGP: ARFIMA(1, d0, 1) with Gaussian innovations. The bias estimates of

the feasible jackknife estimator based on 2,3,4,6,8 non-overlapping (NO) sub-samples, the feasible jackknife

estimator based on 2 moving block (MB) sub-samples, the maximum likelihood estimator (MLE) and the pre-

whitened (PW) estimator are obtained under the misspecified model: ARFIMA(2, d, 0) using the approach

described in Section 5.3. The estimates are obtained by setting α = 0.65. The lowest values are bold-faced

and the second lowest values are italicized.

φ0 θ0 d0 n d̂n d̂NO
J,2 d̂NO

J,3 d̂NO
J,4 d̂NO

J,6 d̂NO
J,8 d̂MB

J,2 d̂GS
1 d̂PFSB d̂MLE d̂PW

-0.9 -0.9 -0.25 96 0.6822 0.7230 0.7187 0.7146 0.7048 0.6932 0.7044 0.6912 0.6943 0.7867 0.9373
576 0.4804 0.5062 0.4935 0.4895 0.4893 0.4811 0.4928 0.4830 0.4916 0.5538 0.6328

0.25 96 0.6832 0.7048 0.6964 0.6929 0.6924 0.6843 0.6923 0.6849 0.7020 0.7571 0.8299
576 0.5506 0.5885 0.5837 0.5735 0.5692 0.5606 0.5682 0.5675 0.5608 0.6059 0.6738

0.45 96 0.8021 0.8420 0.8356 0.8310 0.8278 0.8109 0.8339 0.8191 0.8486 0.8546 0.9461
576 0.5963 0.6142 0.6099 0.6034 0.5963 0.6025 0.6062 0.6024 0.5975 0.6259 0.7026

-0.4 -0.25 96 0.2310 0.2539 0.2485 0.2426 0.2377 0.2318 0.2447 0.2549 0.2798 0.2810 0.3138
576 0.1089 0.1354 0.1247 0.1183 0.1162 0.1094 0.1153 0.1274 0.1792 0.1955 0.2200

0.25 96 0.3075 0.3418 0.3356 0.3295 0.3249 0.3241 0.3166 0.3113 0.3180 0.3257 0.3547
576 0.1153 0.1367 0.1281 0.1214 0.1185 0.1073 0.1258 0.1192 0.1165 0.1328 0.1505

0.45 96 0.3057 0.3369 0.3298 0.3248 0.3176 0.3119 0.3165 0.3104 0.3034 0.3273 0.3442
576 0.1109 0.1387 0.1350 0.1319 0.1282 0.1221 0.1379 0.1159 0.1172 0.1351 0.1518

0.4 -0.25 96 0.1927 0.2319 0.2284 0.2166 0.2078 0.1946 0.2053 0.2362 0.2425 0.2550 0.2863
576 0.0873 0.1057 0.1011 0.0978 0.0943 0.0910 0.0967 0.1039 0.1247 0.1349 0.1478

0.25 96 0.1979 0.2229 0.2195 0.2169 0.2143 0.2016 0.2038 0.2399 0.2414 0.2666 0.2949
576 0.0886 0.1006 0.0978 0.0922 0.0906 0.0883 0.0946 0.1062 0.1159 0.1328 0.1455

0.45 96 0.1806 0.2074 0.1940 0.1863 0.1810 0.1839 0.1947 0.2256 0.2694 0.2862 0.3050
576 0.0965 0.1285 0.1239 0.1157 0.1075 0.1028 0.1068 0.1147 0.1172 0.1374 0.1528

-0.4 -0.9 -0.25 96 0.5789 0.6079 0.6030 0.5982 0.5893 0.5830 0.5871 0.5831 0.5940 0.6159 0.6819
576 0.4357 0.4661 0.4568 0.4477 0.4446 0.4394 0.4465 0.4644 0.4696 0.4760 0.5229

0.25 96 0.8289 0.8375 0.8236 0.8164 0.8092 0.7973 0.8084 0.7727 0.8217 0.8421 0.8931
576 0.6037 0.6369 0.6295 0.6231 0.6203 0.6169 0.6138 0.6124 0.6131 0.6302 0.6529

0.45 96 0.8724 0.9146 0.9073 0.9074 0.8940 0.8920 0.8856 0.8777 0.8759 0.8913 0.9204
576 0.6008 0.6373 0.6319 0.6277 0.6186 0.6159 0.6270 0.6096 0.6108 0.6278 0.6559

-0.4 -0.25 96 0.2724 0.2968 0.2926 0.2883 0.2815 0.2796 0.2843 0.2819 0.3181 0.3319 0.3463
576 0.1081 0.1253 0.1218 0.1168 0.1130 0.1098 0.1189 0.1121 0.1228 0.1430 0.1738

0.25 96 0.2870 0.3216 0.3155 0.3079 0.3026 0.2954 0.3165 0.2943 0.3015 0.3276 0.3424
576 0.1136 0.1388 0.1342 0.1265 0.1248 0.1219 0.1278 0.1222 0.1294 0.1448 0.1575

0.45 96 0.2922 0.3353 0.3297 0.3169 0.3082 0.2905 0.3057 0.2958 0.2987 0.3132 0.3406
576 0.1084 0.1279 0.1220 0.1195 0.1126 0.1104 0.1138 0.1092 0.1134 0.1473 0.1738

0.4 -0.25 96 0.1840 0.2156 0.2109 0.2086 0.1958 0.1876 0.1945 0.2260 0.2600 0.3119 0.3362
576 0.0923 0.1160 0.1148 0.1099 0.1031 0.0984 0.1179 0.1094 0.1112 0.1380 0.1594

0.25 96 0.1808 0.2188 0.2119 0.2055 0.1974 0.1945 0.2051 0.2218 0.2546 0.2699 0.2883
576 0.0910 0.1279 0.1236 0.1178 0.1127 0.1028 0.1149 0.1082 0.1057 0.1168 0.1378

0.45 96 0.1809 0.2051 0.2012 0.1963 0.1912 0.1888 0.1973 0.2190 0.2482 0.2605 0.2756
576 0.0943 0.1126 0.1098 0.0942 0.0919 0.0958 0.1028 0.1120 0.1072 0.1285 0.1564

0.4 -0.9 -0.25 96 0.3064 0.3385 0.3365 0.3286 0.3202 0.3160 0.3194 0.3172 0.3118 0.3326 0.3658
576 0.1210 0.1432 0.1373 0.1338 0.1293 0.1249 0.1376 0.1130 0.1275 0.1475 0.1692

0.25 96 0.2916 0.3164 0.3127 0.3089 0.3044 0.2962 0.3083 0.2565 0.3104 0.3326 0.3566
576 0.1196 0.1347 0.1289 0.1235 0.1210 0.1178 0.1275 0.1125 0.1326 0.1549 0.1741

0.45 96 0.2933 0.3276 0.3190 0.3139 0.3077 0.3023 0.3198 0.2583 0.3015 0.3285 0.3478
576 0.1224 0.1436 0.1382 0.1327 0.1295 0.1241 0.1326 0.1148 0.1250 0.1463 0.1653

-0.4 -0.25 96 0.1896 0.2435 0.2359 0.2268 0.2144 0.2037 0.2254 0.2332 0.2600 0.2844 0.2727
576 0.0936 0.1237 0.1210 0.1174 0.1133 0.1085 0.1153 0.1105 0.1112 0.1375 0.1540

0.25 96 0.1842 0.2352 0.2276 0.2215 0.2146 0.2072 0.2378 0.2255 0.2546 0.2768 0.2803
576 0.0923 0.1328 0.1268 0.1174 0.1057 0.1175 0.1245 0.1095 0.1057 0.1239 0.1456

0.45 96 0.1878 0.2367 0.2257 0.2193 0.2142 0.2018 0.2229 0.2288 0.2482 0.2680 0.2807
576 0.0939 0.1295 0.1238 0.1176 0.1116 0.1063 0.1165 0.1113 0.1072 0.1254 0.1482

0.4 -0.25 96 0.2992 0.3273 0.3190 0.3128 0.3067 0.3018 0.3176 0.3412 0.3540 0.3707 0.3964
576 0.1164 0.1368 0.1341 0.1289 0.1226 0.1200 0.1348 0.1108 0.1375 0.1442 0.1508

0.25 96 0.2839 0.3156 0.3073 0.2958 0.2895 0.2759 0.2836 0.2564 0.3382 0.3538 0.3511
576 0.1171 0.1327 0.1289 0.1230 0.1187 0.1142 0.1284 0.1131 0.1309 0.1518 0.1695

0.45 96 0.2905 0.3219 0.3176 0.3064 0.2954 0.2882 0.2972 0.2721 0.3351 0.3564 0.3774
576 0.1187 0.1388 0.1326 0.1259 0.1202 0.1147 0.1274 0.1144 0.1337 0.1532 0.1660
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Table 16: A ranking of the estimation methods.

Panel A: Correct Specification; known parameters (Tables 2-5)

True DGP Bias RMSE
First Second Third First Second Third

ARFIMA(1,d0, 0) d̂MLE d̂Opt−NO
J,2 d̂GS

1 d̂MLE d̂PW d̂Opt−NO
J,8

ARFIMA(0,d0, 1) d̂MLE d̂Opt−NO
J,2 d̂Opt−GS

1 d̂MLE d̂Opt−NO
J,8 d̂PW

Panel B: Correct Specification; unknown parameters (Tables 6-9)

True DGP Bias RMSE
First Second Third First Second Third

ARFIMA(1,d0, 0) d̂GS
1 /d̂PFSB d̂NO

J,2 d̂MLE d̂MLE d̂n d̂PW

ARFIMA(0,d0, 1) d̂NO
J,2 d̂GS

1 d̂MLE d̂MLE d̂n d̂NO
J,8

Panel C: Misspecification (Tables 10-15)

Form of misspec. Bias RMSE

First Second Third First Second Third

(i) d̂PFSB d̂GS
1 d̂NO

J,2 d̂n d̂PFSB d̂GS
1

(ii) d̂NO
J,2 d̂GS

1 d̂PFSB d̂n d̂MLE d̂GS
1

(iii) d̂GS
1 d̂NO

J,2 d̂PFSB d̂n d̂GS
1 d̂NO

J,8
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