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INTRODUCTION

ABSTRACT

We present a numerical approach for accurately evolving a dust grain-size distribution undergoing
number-conserving (such as sputtering) and/or mass-conserving (such as shattering) processes. As
typically observed interstellar dust distributions follow a power-law, our method adopts a power-
law discretisation and uses both the grain mass and number densities in each bin to determine the
power-law parameters. This power-law method is complementary to piecewise-constant and linear
methods in the literature. We find that the power-law method surpasses the other two approaches,
especially for small bin numbers. In the sputtering tests the relative error in the total grain mass
remains below 0.01% independent of the number of bins N, while the other methods only achieve
this for N > 50 or higher. Likewise, the shattering test shows that the method also produces
small relative errors in the total grain numbers while conserving mass. Not only does the power-law
method conserve the global distribution properties, it also preserves the inter-bin characteristics so
that the shape of the distribution is recovered to a high degree. This does not always happen for
the constant and linear methods, especially not for small bin numbers. Implementing the power-
law method in a hydrodynamical code thus minimises the numerical cost whilst maintaining high
accuracy. The method is not limited to dust grain distributions, but can also be applied to the
evolution of any distribution function, such as a cosmic-ray distribution affected by synchrotron
radiation or inverse-Compton scattering.
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Although the typical grain-size distribution follows the

Within the Interstellar Medium (ISM), dust grains are an
important ingredient as they lock up substantial fractions of
the heavy elements (Draine et al. 2007), produce the domi-
nant contribution to the opacity for radiation upward of the
Lyman limit (Draine & Lee 1984), contribute a significant
part of gas heating through photoelectric heating (Bakes &
Tielens 1994) and provide the surface onto which chemi-
cal elements can accrete and react (Garrod & Herbst 2006).
They also make up a significant fraction of the mass of the
ISM with a canonical value of about 1%. This value comes
from observational constraints by fitting extinction, scat-
tering or polarisation of background stellar radiation and
IR dust emission (e.g. Knapp & Kerr 1974; Jura 1979).
These restrictions further imply that the dust grains follow
a power-law size distribution given by

dn(a) —-3.5
2 o0, (1)

dn(a)
d

a
sity of grains with radii in the range [a, a+da] (Mathis et al.
1977; Weingartner & Draine 2001).

where a is the grain radius and da is the number den-
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Mathis et al. (1977) (MRN) distribution, local variations
are expected as the grain-size distribution is set by balanc-
ing dust production, growth and destruction processes. It is
thought that dust grains are produced in the upper atmo-
spheres of asymptotic giant branch (AGB) stars (Maercker
et al. 2018) as well as formed (Nozawa et al. 2003) and de-
stroyed (Kirchschlager et al. 2019) in supernova remnants. In
the dense, quiescent regions of molecular clouds grains pri-
marily grow in size due to coagulation and mantle accretion
(Jones & Williams 1985; Liffamn & Clayton 1989; Ossenkopf
1993; Inoue 2003; Ormel et al. 2009; Asano et al. 2013; Ysard
et al. 2016; Jones et al. 2017). In contrast, in star forming re-
gions, shocks mainly accommodate the destruction of dust
grain sizes due to sputtering, shattering and vaporisation
(Tielens et al. 1994; Jones et al. 1996; Flower & Pineau des
Foréts 2003; Hirashita & Yan 2009; Guillet et al. 2007, 2009,
2011; Anderl et al. 2013; Van Loo et al. 2013). In protoplan-
etary discs both growth and fragmentation of dust grains
take place (Brauer et al. 2008; Birnstiel et al. 2010, 2018;
Dullemond et al. 2018; Homma & Nakamoto 2018; Tamfal
et al. 2018).

As these grain processes affect the overall grain distri-
bution, they can have significant effects on the dynamics of
e.g. the ISM and protoplanetary discs. For example, in the
outflows of Young Stellar Objects (YSOs), dust grains are
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important charge and current carriers and therefore deter-
mine the structure of C-type shocks (van Loo et al. 2009),
while, in protoplanetary discs, different dust grain sizes in-
fluence the growth and structure of the magnetorotational
instability (Salmeron & Wardle 2008). Furthermore, grain-
processing leads to observational signatures. In typical ISM
conditions silicon is adsorbed onto dust grains. However, gas
phase SiO is detected in the clumpy structure of YSO out-
flows due to the shock-induced sputtering releasing silicon
into the gas phase (e.g. Martin-Pintado et al. 1992; Mikami
et al. 1992). Thus, it is essential to accurately follow the
evolution of the dust grain distribution to model both the
dynamics and emission signatures.

Previous studies of the dust processing have used dif-
ferent methods. In the simplest approach only a few dust
species with specified radii, i.e. typically, one or two grain
species representing small and/or large dust grains, are
evolved (e.g. Draine et al. 1983; Van Loo et al. 2013; Hi-
rashita 2015). While this is appropriate to capture number-
conserving grain processes such as sputtering and mantle ac-
cretion, it does not adequately model mass-conserving pro-
cesses such as shattering' and coagulation. A more rigorous
approach is to follow the dust grain distribution using a
discrete grain-size distribution. Here the distribution is up-
dated, by considering number conservation or mass conser-
vation, to redistribute the grains across the bins in a way ap-
propriate to capture the modelled grain process (e.g. Mizuno
et al. 1988; Jones et al. 1994, 1996; Liffamn & Clayton 1989;
McKinnon et al. 2018). As most of these studies focus on
coagulation and shattering, i.e. the mass-conserving grain
processes, these models only follow the total dust mass and
not the total grain number. In order to also model sputter-
ing and mantle accretion, McKinnon et al. (2018, hereafter
McK18) modified the discrete distribution approach by us-
ing a piecewise-linear discretisation in each grain-size bin to
conserve both mass and particle numbers. They show that
this technique is second-order accurate in the number of size
bins. However, to achieve an accuracy of the order of 1% in
both mass and number conservation, it is necessary to use
about 50 to 100 bins. Thus, including such a scheme into a
numerical hydrodynamics (HD) or magnetohydrodynamics
(MHD) code significantly increases the computational cost.

In this paper we propose a different approach to the
discretisation within a size bin in order to minimise the nu-
merical cost while maintaining high accuracy. As the typical
observed dust distribution follows a power-law, i.e. the MRN
distribution, we will adopt a power-law discretisation. Sec-
tion 2 outlines the method describing the determination of
the power-law coefficient and index, and the redistribution
of the dust grains for both number-conserving and mass-
conserving processes. In Section 3 the method is applied to a
number of test problems and the results are discussed. Then
Section 4 describes the modifications needed to the HD and
MHD equations in order that these reflect the power-law
distribution of the dust grains, and, finally, our conclusions
are given in Section 5.

1 'We note that shattering is not always strictly mass-conserving,
since fragments may be produced which are smaller than the min-
imum grain radius limit of the distribution.

2 NUMERICAL METHOD FOR GRAIN
DISTRIBUTION EVOLUTION

Here we will describe the numerical methods to evolve a
grain power-law distribution. First we consider the construc-
tion of a piecewise power-law distribution and the formula-
tion of the power-law coefficients and indices. As we compare
the power-law method to piecewise-linear and piecewise-
constant discretisations in Sect. 3, we also present these
formulations and explain how they relate to one another.
Finally, the routines to redistribute mass and number den-
sity of grains across the distribution bins are discussed for
grain processes that conserve the grain numbers or total
grain mass.

2.1 Discrete power-law distribution

Although dust grains are generally irregularly shaped (e.g.
Draine 2003), for the purpose of this paper we assume they
are spherical. This significantly simplifies the treatment of
the dust grains as the grain distribution depends only on
the grain radius a. Furthermore, we assume that the range
of grain radii is limited to the range [amin, @max]. This range
is then divided up logarithmically with a spacing determined
by

log (amax/amin)
Ag = —=——"—— 2
a 2/ dmin), 2)
where N is the number of bins. This means that the edges
of bin i are effectively

iAa
a5 = Amin€

; ®3)
Ai41 = an)ine(z+1)Aa
where i = 0,1, ..., N—1. Now we assume that the differential
grain-size number density distribution in bin ¢ has a power-
law shape, i.e.

on(a,t) s

) _ Az oz,L7 4
T | = A ()
where Mda is the number density of grains in a size

interval [a,C(LL + da] at time t. Note that, as grain processes
change the distribution function, the power-law coefficient
A; and index «a; are implicitly time-dependent.

To determine the power-law coefficient and index we
use the grains’ bin-averaged number density, n(t), and mass
density, p(t), which are followed according to the redistribu-
tion routine in Sect. 2.2. The bin-averaged number density
in bin ¢ at time ¢ is given by the integral

aiq1 A l-a; _ l-a; )
ni(t) = / on@t)] g (Gt —e™) et
a; Oa i A»L lOg (a¢+1/a¢) o = 1

(%)
It is actually convenient to use Eq. 3 to rewrite this expres-
sion as
o Aa
1—ay
ni(t) = Aia; s Aa F ((1 - ozi)T) , (6)

where F(x) = sinh(z)/x and applies to all values of «;, and

Qip1/2 = amine(”lﬂm“. However, this does not uniquely
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determine A; and «;. Therefore we need a second expression
provided by the grains’ bin-averaged mass density

Ai41

pi) = [ mi@ 25D da, (™)
where
m(a) = 47Tﬁag’ (8)

3

is the grain mass with pg the density of the grain material.
Similarly to Eq. 6 we obtain

41 o Aa

By combining Egs. 6 and 9 and recognising that the average
grain mass in bin ¢ is m; = pi/m, we derive an expression
that solely depends on the power-law index «;, i.e.

L <(1 - ai)%) -F ((4 - ai)%) =0 (10)
m(ait1/2) 2 2
This expression needs to be solved numerically using a
root-finding algorithm, for example the Newton-Raphson
method. As F in Eq. 10 is a monotonic function, only a
few iterations are needed to find the solution, especially if
the initial guess is close to the root. Once «; is determined,
the value of A; can be directly calculated from Eq.6 or Eq. 9.
The power-law description can be compared to meth-
ods previously used in the literature such as the piecewise-
constant and piecewise-linear ones (e.g. Mizuno et al. 1988,;
Jones et al. 1994, 1996; Liffamn & Clayton 1989, McK18).
The piecewise-constant discretisation takes on a constant
value for the distribution in bin ¢ according to
on(a,t) _ n;(t) (11)
da

. (a1 —ai)’

where we have chosen here that the constant reflects the
total number density of grains in the bin. Alternatively,
one can choose the distribution to reflect the mass density
of the grains in the bin. A clear disadvantage is that this
method only accurately describes the number density or the
mass density, but not both. The piecewise-linear method of
McK18 fixes this by assuming a linear distribution around
the bin’s midpoint ac; = (a; + ai+1)/2

871;(2’ ) = (a:ll(i)ai) +si(t)(a — ac,), (12)

7

where the slope s;(t) is chosen so that the mass density in
the bin is equal to p;. Note, however, that the linear distribu-
tion can become negative and non-physical if the slope is too
steep. This is remedied by imposing a slope limiter ensuring
positivity of the distribution function and conserving grain
mass density (see Section 3.2.1 of McK18). Unfortunately,
this also implies that the grain numbers within the bin are
not conserved. The piecewise-constant and piecewise-linear
methods can be considered to be first and second-order ap-
proximations to the power-law, respectively. The accuracy
depends on the bin size and on the distribution that needs
to be modelled. For example, if the distribution is flat within
the bin, all three methods give identical results as s; = 0 in
the piecewise-linear method and a; = 0 in the power-law
method.

In describing the methods we have implicitly assumed
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that the grain distribution fills an entire bin. This does not
necessarily need to be true, especially near the limits of the
distribution rmin and rmax (where amin < Tmin < Tmax <
Gmax). Then it is possible that the distribution is skewed to-
wards one of the bin edges. In the piecewise-linear method of
McK18, this causes the distribution function to become neg-
ative within the bin and slope limiting is required. On the
other hand, the power-law method always guarantees pos-
itivity, but, unfortunately, a skewed distribution produces
a large power-law index resulting, numerically, in a float-
ing point error. To take into account the possibility that
bin 4 is only partly populated, we set a;j = max(a;, "min)
and aj,; = min(ai41,"max) as bin limits. Furthermore, we
need to take Aa” = log (aj}1/aj) and aj 5 = are®® /2 to
determine A; and «;. This small modification avoids float-
ing point errors and conserves both grain mass and numbers.
Note that this also means we are not restricted to logarith-
mically uniform bin widths, but can have randomly sized
bins.

While using Aa™ in the root finding algorithm for Eq. 10
improves the conservation properties of the distribution
function, it also highlights a concern when Aa* becomes
small, i.e. the root finding algorithm does not find a unique
solution for «;, or finds no solution at all. This is due to
the shape of the function F. For small values of «, and thus
Aa*, the function reduces to F(z) ~ 1 + % and is numeri-
cally a constant for z < 1.5 x 1072 (as the second term falls
below the machine precision of 1077). Given that Aa* is of
the same order as x, we are limited to using the root finding
algorithm for values of Aa* > 5 x 1073, For values below
this limit, we opt to use a; = 0 and thus assume that the
distribution is constant within the bin.

2.2 Redistribution of grain numbers and mass

The evolution of an advected dust grain-size distribution can
be expressed as (Tsai & Mathews 1995)

ot da da " Oa Oa dt

(13)

where da/dt is the rate of change of the grain radius and
S(a,t) a source or sink of grains. Note that, if the right-hand
side terms are equal to zero, this just represents changes in
the distribution due to advection. Therefore, physical pro-
cesses that affect the grain-size distribution are described by
the terms on the right-hand side of the expression. The first
term represents processes that increase or decrease the grain
radius and conserve the total grain numbers, e.g. sputter-
ing and mantle accretion, while production and destruction
processes are included in the second one. Of the latter pro-
cesses we only focus on the ones that conserve mass, such
as shattering and coagulation, as other processes like super-
nova dust production are straightforward to implement. In
the following we use sputtering and shattering, which are
relevant to C-type shocks, to illustrate the methods for the
grain distribution evolution.

9 (M) W.(MV) __ 9 <M@)+s(a7t)7
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2.2.1 Number-conserving processes

In the ISM the impact of neutral particles and ions on dust
grains releases, or sputters, grain material such as Si, Mg,
and O, at a rate (Tielens et al. 1994)

dNg

dt
where N is the number of sputtered species, n, the number
density of impact particles, u, the relative speed between
the impacting particles and the grains and Ys(up) the sput-
tering yield for species s integrated over all impact angles
and evaluated for an impact velocity of u,. Then the change
in rate of the grain radius can be determined using the mass
of the sputtered species ms and is given by

- Z mS"p (up)- (15)

= 27ra2npquS(up), (14)

Note that da/dt does not explicitly depend on the grain
radius, but it does have a weak dependency through the
sputtering yield. This is because the relative speed between
the impinging neutral or ion species and the grains is grain
radius-dependent (e.g. van Loo et al. 2009) and, for small
grains, the projectile particle may be able to pass through
the grain, therefore reducing the sputtering yield at these
sizes (Bocchio et al. 2014).

When da/dt (or a) is a constant the time evolution of
the grain distribution simply reduces to

on(a,t + At)  On(a — aAt,t)

Oa N Oa ’
and it is possible to split the effect of number-conserving
processes from Eq. 13. Then the number density distribution
at time t + At for bin i is given by

(16)

a]+1

a1 i+1
ni(t+At) = 7871(@’;:_ At) da = / 7(9” a4 B;At H
(17)

where a! = max|a;,a; + aAt] and afill = min[a;41,a;4+1 +
aAt]. Thus, to determine the evolved number density in bin
1, it is only necessary to determine from which size bin j
the dust grains now residing in bin ¢ come from. This can
be done simply by calculating the position of the edges of
bin j at time t + At, i.e. [a; + aAt, aj+1 + aAt], and estab-
lishing which bins overlap with bin ¢. The contribution to
the number density is then worked out analytically using A;
and «; describing the power-law distribution in bin j at time
t. Similarly, we can determine the updated volume density
using

i1

pi(t + At) = m( (e, ;;r At) da,
wo i (18)
_ Z / (a — G,At, t) da
B = da i

From the updated n;(t + At) and p; (¢t + At) we can solve for

the power-law coefficient A; and the index «a; at time t + At

on(a,t + At)
da

to find the discrete distribution function

2

2.2.2 Mass-conserving processes

In contrast to sputtering, shattering due to grain-grain col-
lisions conserves the total mass of the grain distribution but
not their total number. Above a threshold impact velocity,
some volume fraction of the grains involved will fragment
into smaller dust grains which themselves follow a size dis-

Ntra, _
tribution, that is % o a*? (Jones et al. 1996). The

evolution of the grain distribution is then described as (e.g.
Jones et al. 1994)

Amax

on on
S(a,t)—f% / dala—ala(a,m)

Amin

Amax Amax

1 817, 817, aNfrag
+§ / clal81 /daga—ma(al,ag) 9a (a,a1,a2),

Amin Amin

(19)

where a(ai,a2) = w(a1 + a2)2vr91(a1,a2), when multiplied
by the grain number density is the collision frequency of
grains with radius a1 and a2 above a threshold velocity for
shattering and, otherwise, is equal to zero. Md
is the number of grains with radii in the range [a a + da)
produced by interactions of grains with radius a1 and as .
Note that the first term describes the removal of dust grains
from the interval and the second term the contribution to it
due to fragmentation and requires integration over the entire
grain-size distribution.

For the purpose of evolving a discrete distribution,
Eq. 19 needs to be integrated over the different bins. Hence
the change of the number density as a function of time for
bin 7 is given by

a;p1
5,1 = / dasS(a, 1)

N-1

==Y moa((a)s, (a);) ming {(a®)i +2(a)i(a); + (a®);}

1
+ D) Z 7T’l)r91(<a>j, <a> ) n]nka]r’ag i

(20)
where
Qi1 o
! 1 1 0n
i=_— [ doa—- 21
(@) n; “ % Ba (21)
where [ is an integer, and
@41 a
k _ Nfrag
N = / da—p = (a, (a);, (a)1), (22)

ag

is the number of grains with sizes between [a;, ai+1] due to
fragmentation by collisions of grains within bin j and k.
Here, we assumed that the distribution of grain fragments is
the same for all grains in bin j and k, i.e. a]\éﬂ(

ON.
af;ag (

a,a1,az) =

a, {a);, (a)r). If we know the analytic form of the size
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distribution of fragments and its dependency on the projec-
tile and target radii, a more accurate version of Eq. 20 can
be derived. Furthermore, it is presumed that all grains in a
size bin have the same velocity and, thus, the relative ve-
locity between two bins is also constant. Using Eq. 20, the
number density in bin i at time ¢ + At is then

ni(t + At) = n; (t) + S (t) At. (23)
Likewise, the volume density can be updated using

pi(t + At) = pi(t) + Si(t)At, (24)
where S;(t) can be derived from multiplying Eq. 19 with
m(a) and then discretising the integrals. We then find

_ Ampg

10 =~ T2 (@) 3 mva(a)i a),) min,

x {{a®)i + 2(a)i(a); + (a®); }

N—-1N-1

1 .
5 30 wva(la)s, ) mymmily

j=0 k=0
x {(a®); + 2(a); (a)k + (a®)x } .

Here the mass transferred to bin ¢ due to collisions of grains
within bins j and k is given by

(25)

ai41

j aNra
mity = [ dam@ 255 0, ) (@), (26)

This means that the radius of the fragmented grains is not
taken into account, but only an appropriate mass for all
grains within a bin is assumed. Note that this assumption
must also be reflected in the mass-loss term, i.e. the first
term on the left-hand side, as otherwise a systematic dis-
crepancy arises between the mass loss due to fragmentation
and the redistributed mass across the distribution. Again,
such simplifications are not needed when we know the ana-
lytic expression of the fragment distribution in terms of the
radii of the colliding grains. Equations 20 and 25 are anal-
ogous to the expressions of other authors who have used
either a piecewise-constant or linear description for the dis-
crete distribution function (e.g. Mizuno et al. 1988; Jones
et al. 1994, 1996; Hirashita & Yan 2009, McK18).

3 TESTS AND RESULTS

To test the power-law description of the grain distribution
we apply the methods of Sect. 2 to the test problems outlined
in McK18. As these tests have analytical solutions, this al-
lows a direct analysis of the performance of the method, but
also a direct comparison with both the piecewise-constant
and linear methods studied in McK18. Note that these tests
do not necessarily represent physical or realistic situations.

3.1 Sputtering of a boxcar distribution

Here we will test the convergence of the error in the to-
tal grain mass depending on the number of size bins used.
McK18 show that the piecewise-linear method exhibits a
1/N? scaling of the convergence and, thus, second-order be-
haviour, which is an improvement of the piecewise-constant
method that is only first order.
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Figure 1. Fractional error of the total grain mass as functions
of number of bins, N, for an initial boxcar distribution affected
by sputtering. The boxes show the results for the power-law
(blue), piecewise-linear (green) and piecewise-constant method
(red). The dashed lines show a 1/N scaling (red) and 1/N? scaling
(green).

The initial distribution is taken to be a boxcar function

on |1 cm™?
da  )0cm™*
where [ar,ar] = [amin (amax/amin):i/8 , Gmin (Gmax/Gmin)
and @min and amax are set to 0.00lpm and amax = lpm,
respectively. Contrary to McK18, who adopt a grain
growth rate, we take a constant grain sputtering rate of
4= —24x10""cmGyr ! applied for a time of t = 5 Gyr
in 100 equal time steps. A constant sputtering rate is used
here to ensure that the test is analogous to that of McK18.
In reality the sputtering rate is size-dependent via the
sputtering yield (e.g. Bocchio et al. 2014). Grains which are
sputtered to a size smaller than amin are assumed to be too
small to participate in further sputtering and are removed
from the distribution. As sputtering only affects the grain
mass, the final distribution is still a boxcar function between
the limits [ar, + at,ar + at].

Figure 1 shows the fractional error in the total grain
mass as a function of bin number (from N = 8 to N = 2048)
for the piecewise-constant, piecewise-linear and power-law
methods. Both the piecewise-constant and linear methods
show their expected first and second order dependence, re-
spectively, on bin size and the latter method outperforms
the former. However, the power-law method surpasses both
of these with an accuracy below 0.1% over all bin numbers
(N = 8 — 2048). Especially for a small number of bins we
find that the accuracy of the power-law method is more than
4 orders of magnitude better than the two other methods.
The linear method only reaches this accuracy for N = 512
and the piecewise-constant for N = 2048.

It is pertinent to understand where these differences in
the fractional error between the methods come from. In prin-
ciple all methods should describe the distribution equally
well as, for example, the piecewise-linear method should re-

ifar <a<a
s (1)
otherwise.

1/2]
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Figure 2. Initial boxcar distribution (solid black) with N =
128 evolved by applying a sputtering rate of a = —2.4 X
10~7cm Gyr—! for 5Gyr using the piecewise-constant (red),
piecewise-linear (green) and power-law method (blue) and com-
pared to the analytic distribution (black dotted).

duce to the piecewise-constant method (see Sect. 2.1). Fur-
thermore, for the power-law method, the power-law index
is set to a = 0 for N = 2048 as the root-finding algorithm
breaks down (see Sect. 2.1). This implies that it also re-
duces to the piecewise-constant method, yet it produces a
result that is nearly two orders of magnitude better than the
piecewise-constant method. The only difference is the treat-
ment of the distribution edges. As the distribution evolves
due to sputtering, it moves across bins, but does not neces-
sarily continue to cover an entire bin at the distribution lim-
its. However, the piecewise-constant method dictates that
the grains are uniformly distributed in a bin and, likewise,
the linear method uses slope-limiting to distribute the grains
across the entire bin. This causes the edge of the discrete dis-
tribution to be smeared out at its edges (see Fig. 2). Only
the power-law method follows the distribution edges and
takes them into account when determining the distribution
function in the bin. Modifying the piecewise-constant and
linear methods to follow the distribution limits, as in the
power-law method, leads to an improved accuracy, with the
relative errors in the mass below 10~ for all bin sizes. Note
that the treatment of the distribution edges in the power-
law method also produces the variations seen in the relative
error as a function of the bin number.

3.2 Sputtering of a MRN distribution

While the boxcar distribution of the previous section shows
that it is important to carefully treat the edges of the dis-
tribution, it is not representative of realistic grain-size dis-
tributions. In the ISM the size distribution for silicate and
carbon grains is given by a power-law (see Eq. 1 Mathis
et al. 1977). Therefore, in this test, the three methods are
tested on their ability to follow the evolution of a power-law
distribution affected by sputtering.

We initialise each bin between [@min,@max] wWith the
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Figure 3. Fractional error of the numerical grain mass as func-
tions of number of bins, N, for an initial MRN distribution
affected by sputtering. The squares show the results for the
power-law (blue) and the modified piecewise-linear (green) and
piecewise-constant (red) methods.

number and mass density calculated using 875?) =qa 3",
We assume the same amin, Gmax, Sputtering rateland evo-
lution time as in the previous section. While we already
minimise the errors occurring at the distribution edges by
completely filling the full grain-size range, we further use the
modified piecewise-constant and linear methods as described
in the previous section (that is, we track the distribution lim-
its). As a result, the distribution is not affected by the issues
arising when the edge of the distribution falls within a bin,
as in the boxcar test, and all the differences are due to the
ability of each method to describe the underlying grain-size
distribution.

Figure 3 shows the fractional error in the total grain
mass at the final time for the different methods. While, for
the boxcar distribution, the modified piecewise-constant and
linear methods have relative errors of the order 107° for
all bin sizes, this is no longer true. Especially, the mod-
ified piecewise-constant method shows a linear behaviour
in the fractional error with large errors at small bin num-
bers, i.e. > 10% for N < 32. The modified piecewise-linear
method is significantly better but still performs poorly at
small bin numbers, i.e. N < 16. Only the power-law method
consistently produces errors smaller than 1072 for all bin
sizes. However, note that, for large values of N, the mod-
ified piecewise-linear method is better than the power-law
method as the latter reduces to the modified piecewise-
constant method when the bin size becomes small (see
Sect. 2.1).

The discrete distribution function for the evolved MRN
distribution is shown in Fig. 4 for N = 8 and 128. From
the figure it is clear that the power-law method describes
the power-law distribution very well. The modified linear
method does capture the analytic solution well at the small
grain radii, but less so at the large radii where it needs to
apply slope limiting. However, the modified linear method
is always better than the modified piecewise-constant one
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Figure 4. MRN distribution evolved by applying a sputtering
rate of @ = —2.4 x 10~ 7cm Gyr—! for 5Gyr using the modi-
fied piecewise-constant (red) and piecewise-linear (green) meth-
ods and the power-law method (blue) and compared to the an-
alytic distribution (black dotted) for N = 8 (top) and N = 128
(bottom) bins.

when describing a power-law distribution and, as N in-
creases, the modified piecewise-linear method converges to
the power-law method. Eventually, the modified piecewise-
constant method will also converge but only at much larger
values of N. This is expected as a power-law distribution,
such as in Eq. 4, can be approximated to second order as

agiila) ‘ = Aiaaai — aiAiagaFl(a - ao), (28)

where ap is a grain size in the interval [a;,ait1]. The
piecewise-linear and piecewise-constant discretisations are
expressed similarly and, thus, eventually converge as the bin
size decreases. Note that the convergence is quicker for shal-
lower power-laws.

Although all methods are able to conserve the total
grain mass and reproduce the final distribution to a high
degree for N = 128 (see Figs. 3 and 4), it is also useful to
evaluate the distribution function at specific grain radii. For
processes such as sputtering, as the grains shrink, the num-
ber of grains does not change. Figure 5 shows the grain num-
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Figure 5. Evolution of the number density as function of time
for grains with a initial radius of 0.01pm (dotted) and 0.5 pm
(solid) for the modified piecewise-constant (red) and piecewise-
linear (green) methods and the power-law (blue) distributions
with NV = 128. The number densities are normalised to the ana-
lytic values.

ber normalised to their initial value for grains with an initial
grain radius of 0.01 or 0.5um for the three methods over a
time range of 5Gyr. While the power-law method maintains
a constant grain number for both grain radii, both the mod-
ified piecewise-constant and linear methods show errors of
the order of 10-15%. These errors do not remain constant
but vary significantly over time with large discontinuities
when the grains move from one bin to another. Note that
the 0.01pm grains move through many more bins than the
0.5um ones before they reach amin and are removed from the
model around 3.8Gyr. Thus, the power-law model does not
only preserve global properties of the distribution, but also
the inter-bin characteristics, unlike the modified piecewise-
constant and linear methods.

3.3 Grain Shattering

The previous tests dealt with grain sputtering, a process
which conserves the total number of grains in the distri-
bution whilst the total mass of grains in the distribution
changes. Here we look at grain shattering, in which the to-
tal mass of grains is conserved but the number of grains is
altered significantly due to the production of many small
fragments. When two grains of differing sizes, and different
velocities, collide at a relative velocity exceeding a thresh-
old value, some portion of the grains are fragmented. These
smaller fragments can themselves be treated as spherical
grains that follow a power-law grain-size distribution.

Here we carry out the same shattering test as in McK18.
Only the collision between large grains (> 0.1pum) causes
fragmentation, with both grains completely destroyed, and,
for simplicity, the fragments are distributed across the full
size range of [amin, Gmax), Where amin = 0.001pm and amax =
1pm, following a size-distribution o< a~3-3. Note that, as
fragments can be larger than the fragmenting grains, this
model does not consider only shattering but also some degree
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Figure 6. Distribution of grains due to shattering after 150
Myr for the piecewise-linear method (green) and the power-law
method. The dashed blue line uses the default method with an
approximated mass deposited in a bin, while the dotted red line
uses the exact method using an exact mass calculation. The quasi-
analytic solution is given by the black solid line and the initial
condition by the dotted line.

of grain growth. The collision velocity between the grains is
set to 3 kms™!. With these assumptions we have

ONf 0.7(a2 + a3) _3.
Taq (@) = gy (29)
resulting in
—2.3 —2.3
gk _ 07 3 3 a; — 0
Nfrag,i - ﬁ (<a’ >] + <a >k) arori;x _ a?r;'{n ’ (30)
and
0.7 0.7
- a?”, — a’
Milag s = ((M); + (M)k) ﬁ (31)

where (m) = 4mp,/3(a®). Note that the latter expression is
the same as in McK18 (their Eq. 63) and, to compare results,
we will use the same expression. However, as the fragmenta-
tion distribution, Eq. 29 has a simple analytic expression, it
is possible to derive more accurate, exact versions for Egs. 20
and 25. We will not give those expressions here, but we will
use those to produce quasi-analytic solutions (using N = 256
bins) and to evaluate the approximations made in Ng;j& ; and
m?r’sg’ ;- To differentiate between the two power-law methods
we will refer to the former as the default method and the
latter as the exact method. We use the same initial condi-
tions as in McK18, that is a log-normal distribution rep-
resented by a piecewise discrete distribution over N = 8
bins and assume that only the largest grains contribute to
the shattering as vrel(as,a;) = 3 kms™! if a; > 0.1pgm and
a; > 0.1pym and is equal to zero otherwise. Figure 6 shows
the grain distribution due to shattering for a time of 150
Myr. At this time a reasonable amount of large grains have
been shattered so that, while the initial distribution is only
slightly modified at the large radii end of the distribution,
the small grains follow the =33 distribution resulting from
the fragmentation. The piecewise-linear method of McK18

describes this distribution reasonably well, especially if we
evaluate the distribution at the geometric midpoint of the
bins. Furthermore, quantitatively, the piecewise-linear rou-
tine produces a relative error in the total number density
of about 10% and conserves the total mass density exactly.
However, a closer inspection of the distribution shows that
the distribution is not adequately described, particularly at
the bin edges. This is due to the slope limiting which needed
to be performed at the small grain sizes (< 0.1pm) in or-
der to ensure positivity of the distribution (while conserving
mass). At the same time we see that the distribution of the
large grains remains uniform within the bin (that is, a zero
slope). This is because, in the method of McK18, the aver-
age grain size does not change if a bin loses mass, but only
when it gains mass. While it is not a significant problem
for this specific test where shattering is treated alone, re-
producing the distribution shape becomes important when
number-conserving grain processes are also considered.

The power-law method does describe the grain distri-
bution across the full range of grain sizes more accurately
with only minor deviations from the analytic solution at the
large grain sizes. The exact method performs slightly bet-
ter than the default one in reproducing the analytic distri-
bution. Both methods have a relative error below machine
precision for the mass density and below 2% for the number
density. Although the exact method does describe the dis-
tribution better than the approximate method, the errors
are similar as a discrete distribution with N = 8 cannot
adequately model the break in the analytic distribution at
a = 0.1pm. This break does not coincide with a bin edge,
but instead falls in the middle of a bin. The benefits of the
exact method become clear if we check the relative error
in number density in each bin. The total number density is
dominated by a single bin with the smallest grain radius,
thus errors at the larger grain radii are not quantified by
the relative error in the total grain number density. In the
bin with the largest radii the relative error is below 0.1%
for the exact method, 8% for the approximate method and
reaches 25% for the linear method. The accuracy at which
the exact power-law method can reproduce the distribution
in a bin reflects in improved performance at longer evolu-
tion times. Running the shattering test for a longer time,
for example up to t = 1Gyr, the relative error in the total
number density increases to ~ 10% for the default method,
but only to &~ 5% for the exact method. Thus, it is crucial
that the shattering integrals include as much information as
possible to minimise the effect of error on the redistribution
of fragments across the grain sizes, especially if modelling
both mass and number-conserving processes.

3.4 Combined grain sputtering and shattering

Whilst Sects. 3.2 and 3.3 show that the power-law method
performs well for number-conserving processes and mass-
conserving processes individually, these processes often arise
in combination. Therefore, we study here the combined effect
of sputtering and shattering of grains on an initial MRN
distribution.

In this test we will model the dust grain evolution as
it occurs within a C-type shock front moving through a
medium of ng = 10° cm ™ with a dust-to-gas ratio of 0.01.
In this situation the dynamics of the grains is determined by

020z 11Mdy €0 uo Jasn spaaT Jo AusisAiun Aq §9Z€ 1 8S/97geRIS/SRIUW/SE0 L 0 | /I0P/10BI1SE-3]dILIB-00UBAPE/SRIUW /W02 dNo dIwapeae//:sdiy Woll papEojuMO(]



F — Initial
104 F —— Linear
F —— Power-law
---- Converged

Eoool L ol L d bl L L | |
107 106 10® 10
acm]

Figure 7. Final distribution after sputtering and shattering are
applied in combination for a time of 10%s with the sputtering
rate —10712 cm s~ for the piecewise-linear (green) and power-
law (blue) methods (N = 8). The initial MRN distribution is
also shown as well as the converged solution (dashed magenta,
N = 256).

the balance of Lorentz forces and collisions forces with neu-
tral particles. This results in an effective velocity difference
between small grains that are coupled to the magnetic field
and move with ions and electrons and the large grains mov-
ing with speeds close to that of the neutrals. Guillet et al.
(2007) show that the grain radius at which this transition
occurs is between ~ 7.5x 107% and 2.5 x 10™° cm depending
on the density of the gas. Here we assume a discontinuous
transition at

3
a1 = min (Z“‘ax) '~ 117 x 10 Tem, (32)
where amin and amax are the same distribution limits as
used in all previous tests, and that the velocity difference is
15 kms™'. (Note that the transition is always on a bin edge.)
Hence, only the small grains, a < a¢, will experience non-
thermal sputtering due to neutral species, while shattering
is due to collisions of small grains with large grains. For
simplicity, we apply the same shattering procedure as in the
previous section, that is both grains completely shatter and
the fragments are distributed across the full range of grain
sizes. Using Eq. 15 we can estimate the rate at which the
grain radius decreases, i.e. we find %’ ~ —1071% ecm s L.
We evolve the distribution for 10%s. As there is no analytic
solution for this problem, we assess the results using the
converged solution for the distribution function as the bin
number increases. We find that both the linear and power-
law methods converge to the same solution.

Figure 7 shows the grain distribution for the piecewise-
linear and the power-law methods using N = 8 bins. Com-
paring the results with the initial MRN distribution we find
that sputtering changes the slope of the distribution towards
the small grains while shattering changes it for the large
grains, an effect previously noted by e.g. Bocchio et al. (2014,
2016); Kirchschlager et al. (2019). Both the power-law and
piecewise-linear methods are close to the converged distri-
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Figure 8. Same as Fig. 7 but with a sputtering rate of
—10~ cm s~ (top) and —10713 cm s~ (bottom).

bution function, although the linear method is affected by
slope limiting to ensure positivity of the distribution func-
tion. Slope limiting conserves mass, but not numbers, and
this is reflected in the error relative to the converged distri-
bution function. The linear method has a relative error in
the total mass of only 2% but it is 7% in the total numbers.
In comparison, the relative errors for the power-law method
are below 1% even for N = 8 bins. However, the piecewise-
linear method does converge quickly and achieves the same
accuracy with N = 32 bins.

The results of this test depend on the relative strength
of the sputtering and the shattering. Therefore, as the lin-
ear and power-law methods perform differently for number-
conserving and mass-conserving processes, we also perform
the test with a sputtering rate an order of magnitude larger
and smaller. Figure 8 shows the grain distributions for these
two additional models. For the higher sputtering rate, we
find that the evolution of the distribution is dominated by
sputtering. The sputtering removes more small grains from
the distribution compared to the model with the default
rate. Hence, less projectiles are available to shatter the large
grains and, consequently, the distribution function at large
grain radii does not evolve as much. Both the piecewise-
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linear and power-law methods with N = 8 bins are close
to the converged solution with the relative error in the to-
tal mass about 2% for the linear method and 0.1% for the
power-law method. However, the error in the the total num-
bers is up to 20% for the linear method while it is less than
1% for the power-law method. The linear method achieves
the same performance as the power-law method for N = 64
bins. For the lower sputtering rate, the evolution is mainly
due to shattering as the number of large grains drops sig-
nificantly. Sputtering does not remove many grains at the
small radii so more projectile grains can collide with the
large grains and shatter them. Again both methods repro-
duce the converged distribution very well, and this also is
revealed in the relative errors. The relative error in the to-
tal grain number for the linear method (which is always the
largest error) is only 3%.

This test shows that the power-law method maintains
its high level of accuracy for N = 8 bins even when com-
bining number-conserving and mass-conserving processes.
To achieve the same level with the piecewise-linear method
one needs to model the distribution with more bins, i.e.
N > 32. Additionally, as with the previous tests, the power-
law method is also able to produce the correct shape of the
final distribution with only N = 8 bins, something which
the linear method has been unable to achieve across all tests.
This further enforces the usefulness of the power-law method
for following the evolution of a grain-size distribution when
limited computational resources are required or necessary.

4 IMPLEMENTATION IN
HYDRODYNAMICAL CODES

Although the focus of this paper is on following the evo-
lution of a grain-size distribution due to grain processing,
our goal is to use this discrete power-law prescription in
hydrodynamical simulations. To incorporate the grain-size
distribution into, for example, a multifluid MHD code such
as the one of Van Loo et al. (2013) the equations for the
grain fluids need to be altered.

The starting point for this modification are the dynam-
ical equations for each individual (pressureless) grain fluid
which, in a weakly ionised plasma, are given by the continu-
ity equations and the reduced momentum equation
% + V- (nv) = S(a,t) + Sspust(a, t),

PV (pv) = (1) + Shyusa(a,),
ap(E+v x B) + ppnKgn(vn —v) =0,

(33)

where S(a, t) is the grain shattering loss term given by Eq. 19
for the number density, S’(a,t) the shattering loss term for
the mass density, Ssputt(a, t) and Séputt(a, t) the correspond-
ing terms for grain sputtering, & = Ze/m the charge-to-mass
ratio of the grains, E and B the electric field and magnetic
field of the medium, and p,, and v,, the neutral mass density
and velocity. Also, Ky, is the collision coefficient between
the grain and the neutrals given by (Draine 1986)

Ko _ 8 ra? 2kgT 1/2 14 I (v — v)2 1/2
T 3 mp+m \ mma 128k T ’

(34)

with T, the temperature of the neutral gas and m, the
mass of a neutral particle. Since we are modelling grains
in a weakly ionised plasma, the collision frequency between
grains and charged particles is negligible and we need only
consider grain-neutral collisions. As n and p in Eq. 33 are

effectively g—nda and m(a)a—nda7 we can find the governing
a

equations by integrating the above equations over the range
of radii for a given bin. For bin ¢, these then become

on; _

; +V. (TL'LV) =5+ Si,sputt,

Opi _

apt + V. (PzV) = S; + Sz{,sputt7 (35)

(Z)ien; B+ 9V x B) + nipnKg,(va — ¥) =0,

where S; and S are given by Eqs 20 and 25, S; sputt and
S{ysputt represent the sputtering losses in bin ¢ and (Z);e the
average grain charge. Furthermore,

., 8 25T, \"? 9 (ve — )2\ /?
K, = §7r<a2>i (Tf% ) (Hifzsmn) ) , (36)

is the mean specific collision coefficient between neutrals and
grains in bin 4.

Note that, in order to derive these expressions, the only
assumption we have made is that all grains within a bin have
the same velocity. This is similar to the premise made for the
collision frequency in the shattering process (see Sect. 2.2.2).
However, from the reduced momentum equation, it is clear
that the grain velocity depends on the grain radius through
the Hall parameter (the ratio of the gas-grain collision fre-
quency to the gyrofrequency) 8 = ZeB/mpnKgn x a”*. For
small Hall parameters, that is 8 < 0.1, the grains move with
the neutrals, while, for 8 > 2, they move with the electrons
and ions. Thus, there is only a small range of 3, or grain
radius, for which grains have a velocity in between and only
in the bin where this transition occurs can some error in the
dynamics be expected. In a subsequent paper studying grain
processing in C-type shocks, we will analyse this further.

To deal with the grain processing due to shattering and
sputtering in a hydrodynamical code, the routines described
in Sect. 2 are used. Shattering can be included as a source
function during the advection update, while we have the op-
tion to do the same for the sputtering or to operator split.
The latter is preferred as the method described in Sect. 2.2.1
already gives the updated grain distribution function. Opti-
mally, the operator split is done using Strang splitting with
half a time step before the advection update and half of a
time step after it.

5 DISCUSSION AND CONCLUSIONS

In this paper we present a numerical method to follow the
evolution of a dust grain-size distribution undergoing grain
processes which either conserve grain mass or grain numbers.
Guided by observations of typical ISM dust distributions,
our method uses a power-law prescription to specify the dis-
tribution within a bin. Using the number and mass density
of grains within a bin, the coefficient and index of the power
law can be uniquely determined. We also explicitly track
the grain size limits of the distribution. Furthermore, we de-
scribe the methods to evolve the discrete power-law distri-
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bution due to number-conserving or mass-conserving grain-
processes and illustrate this with grain sputtering and grain
shattering. The power-law method is complementary to the
methods employing either a discrete piecewise-constant or
piecewise-linear distribution (e.g. Mizuno et al. 1988; Jones
et al. 1996; McKinnon et al. 2018)

The tests performed here show that the power-
law method significantly outperforms both the piecewise-
constant and linear methods for following the evolution of
the distribution function, especially when the distribution
is covered by a small number of bins. The main reason is,
of course, that the discrete power-law method is naturally
suited for modelling a continuous power-law distribution as
often occurs in the ISM. The linear and the constant method
only provide a second order and a first order approximation
respectively. In part it is also because we follow the distri-
bution lower and upper limits and take them into account
when deriving the distribution properties. This is important
when considering number-conserving processes and the full
radius range of a bin is not filled. For these processes, both
the piecewise-constant and linear methods then diffuse the
distribution limits. By implementing the same technique as
in the power-law method, the relative errors can be reduced
in the other two.

The power-law method is more effective for treating
mass-conserving processes than the other methods, with
the best results occurring when more information of the
physical processes (in our case grain shattering) is included
when evaluating the integrals. All methods conserve mass
to machine precision accuracy, but the number density of
the grains is better reproduced with the power-law method.
While uncertainties are expected when modelling physi-
cal processes, it is best to avoid numerically induced ones.
As mass- and number-conserving processes are often mod-
elled together, the combined shattering and sputtering test
demonstrated that the power-law method will provide the
best results especially for small bin numbers (that is N = 8).
For larger bin numbers both the power-law and piecewise-
linear methods produce similar results.

The aim of this work is to provide an efficient numerical
method that describes the evolution of a dust grain distribu-
tion due to advection and grain physics accurately in large-
scale simulations. To avoid a large demand in numerical re-
sources, it is beneficial to cover the grain distribution with a
minimal number of bins. As our power-law method produces
very small errors even for N = 8, it is perfect to include this
approach in a numerical hydrodynamics code. One drawback
is that operations such as pow(), log() and sinh() are consid-
erably more CPU expensive than linear operations. This is
especially important when finding the root of Eq. 10. Using
standard algorithms, the power-law method using N = 8
is only as fast as the linear method with N = 128. How-
ever, one can use alternative algorithms and approximations
for these operations so that the CPU cost of the power-law
method is only 1.5 times that of the piecewise-linear method
for the same number of bins. Thus, the power-law method
not only provides a more accurate, but also viable, alter-
native to the piecewise-linear method. The implementation
of the grain-processing methods in a hydrodynamics code is
straightforward and only needs minimal alterations to the
equations for a single dust grain fluid. The main assumption
is a constant velocity for all the grains within a bin. In a
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weakly ionised plasma this assumption is likely not to be
restrictive. In a subsequent paper we will further investigate
this assumption when modelling C-type shocks with a full
dust grain distribution.

Although the focus has been on the evolution of dust
grain-size distributions, the application of this method is
not limited to dust alone. The power-law method can be
used to follow the evolution of any distribution function,
especially those which exhibit a power-law distribution. One
possible field of application is, for example, the energy loss
of a cosmic ray distribution due to synchrotron radiation or
inverse-Compton scattering.
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