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Abstract

Singleatom impurities and other atorrécale defects can significantijterthe local vibrational
responseof solidsand ultimately their macroscopic propertiéssing high+esoluton electron
energyloss spectroscopy in the electron microscope, we show that a single SobstitGi
impurity in graphene induces a characterjdbcalized modification of the vibrational response.
Extensiveab intio calculations reveal the measdrgpectroscopisignature arises from defect
induced pseudtocalized phonon modese. resonant statagsulting from the hybridization of
the defect modes and the bulk continyumhose energies can be directly matchedhe
experimentsThis realizzs the promise of vibrational spectroscopy in #lectron microscap
with single atom sensitivityoffering wide-reachingimplications across the fields of physics,
chemistry and materials science.

One Sentence Summary. We measure thdocalized vibrational signature of asingle Si atom
impurity in graphenen the electron microscope.
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Main Text

Changesn the normal mode frequencies of dynamical systems arising from the presence of

impurities have been studied as far back as theckEdtury, esultingin the set of classical
theoremsow referred to atheRayleigh Theoremél, 2). However, the rmdern theory of defect
modes in crystalsvas establisheth the 1940swith the pioneeng work of Lifschitz (3). A
wealth of studiesfollowed, mainly based on optal spectroscopie$d), which identifiedtwo
types of norrivial defectinduced mode&nown aslocalized and resonant modd®esonant
modes are alsaalled quasi- or pseuddocalized modesbecausge despite being spatially
extendedthey involve a largamplitude vibration of the impurititself. In turn, defect modes
can controimaterids’ propertiessuch aslectic andheat transporor moregenerally processes
thatare affectedby the scattering of electrons or phonofisis can be exploited for instance to
suppress heat propagation in thermoelectdc using rattler modes (5), to tune the
superconductivity in 2limensional films(6) or the optoelectronic properties of conducting
polymers 7). Although the existence of ra aomically localized spectroscopic signature of
singleatom defects has long been discug&aonventional vibrationaspectroscoestypically
averageanformation over much larger lengthscales.

Vibrational eletron energy loss spectroscopy (EELS) in the scanning transmission electron

microscope (STEM)as recently emerged as a powerful means mbbing the vibrational
response of materials at a spatial resolution superior to ekparimental techniqsg9, 10).
Tip-enhancedRaman spectroscopy (TER$)1) or inelastic electron tunneling spectroscopy
(IETS) (12, 13) provide high spatial and energy resolution alternaivieut they arestrictly
limited to surfaceexperimentsand thereforepresent challengefor a range ofapplications.
Vibrational STEMEELS on the other hanthkes advantage of versatile prdbeming optics to
offer groundbreaking capabilitiesnanometesscale thermometry(14), mapping of bulkand
surfacephononpolariton modes 15), establishmg phonon dispersion diagrams from nano
objects(16), site-specific isotopic lab&hg in molecular aggregat€47). These rportshighlight
the complementarity of STEMELS with conventional vibrational spectrosceppwhose energy
resolution remainsinmatchedHowever, he ultimate promise of vibrational STEEELS is to
reach the single atom or molecular level, in the same way that modern microsnapé=d
electronic structure analysi$8), plasmonig(19) and U\opticalresponse fingerprinting2(Q), or
energydispersive Xray spectroscop{2l) from single atomsAtomically resolved phonomaps
of bulk systemsre preliminary steps in this directi@®).

Here we use STEMEELS to neasure thdocalizedvibrational signature oé& single trivalent
substitutional Si atom isingledayer graphengSi@Gi). Fromab iniio simulations we attribute
the measuredatomicscale spectroscopresponse to scattering by psetdcalizedvibrational
modesarising froma resonance betweéme Si mpurity-specific modes and the bulk continuum.

FigurelA illustrates howelectron beam deflectoeseadjusted to displace EEL spectrometer
entrance aperturiey 69mrad or a 8.87 A* momentumtransfej with respect to théright field
(BF) disg so that these no longer overldfurther etails of the experimental geometry are



10

15

20

25

30

35

provided in the Supplementary MateriglBM), fig. SL Compared to a conventionah-axis
geometry where the EELS apertisecentered on the BF disc, thoéf-axis or darkfield EELS
geometrysignificantly suppresses thelative contribution®f electrons having undergone elastic
and delocalizedphononscattering favoring insteachighly localizedimpact phononscattering
(23). This approacimakes it possibléo recrd atomic resolution phonon scattering mapsm-
thick flakes of hexagonal boron nitrid@2) or of singletayer graphendfig. S2in the SM),
where the oHaxis geometry is kegincethe onaxis EELS phonon response of graphene
vanishingly small24). Note that the large beam convergeneeessary foan atomiesize probe
results inspectral integrabn over a range of momentutransfer in the sample plango achieve

a signalto-noise ratio sufficientfor resolving the phonon loss spectrum fine dtriiee the
electron beam is scanned repeatedly over a small window tightly defined around theyiofpurit
interestwhile the spectrum intensity is accumulatézb).

Figure 1B shows adarkfield EEL spectrum from a single Si atom impurity in graphene (“Si”,
red) alongsidethat acquired from a comparably sized regiorpastine graphene (“C”, blue)
located a mere fewtomsaway from the Si impurityThe relative positions of the two scanned
regions are indicated by red (Si) and blue (C) boxes on hlgh-angle annuladarkfield
(HAADF) image infig. 1C. A closeup of the probed Si ator(fig. 1D) and the corresponding
fine structure of the i, sionization edge (figS3C) confirmthatthe brightercontrastSi atom is
trivalently substituted ito the graphene latticdsymmetricannular-@rk-field movies(aADF,
thus denoted due to the @fkis geometrywererecordedduring spectrum acquisition taonitor
possible beaminduced structure modificatios, while ensuring the probed atom remained
centeredwithin the scanned region. Averaged aADF movies are slamisets infig. 1B, with
individual frames shown in the SM.

The Si and C spectra iilg. 1B are normalizedo the maximum of theirespectivezero-loss
peaks ZLPs). As a resultthe tails of theZLPs closely overlapimmediately before the first
observable loss featureallowing for a straightforward visual comparison of relative changes in
energy loss due to inelastic scattering by phonang.change in spectrum intensity above the
coinciding ZLP tails should be representative of differences in relative phscattering
probability. The fine structure in the phonon energgnge of the two recorded spectra is
strikingly different. While the Cspectrum is casistent with that of noxoped bulk
grapheneZ4), the Si spectrum comprispionon loss features different energies

Figure 1E showsn greater detailhe phonon loss region of tispectra. The C spectrum exhibits
two distinct loss peakat85meV (685cm™) and 170meV (1371cm™). Following Ref (24), we
assigrnthese peaks to scattering by transverse (T) and longitudinal (L), acousticq@t)aal (O)
modesin grapheng respectively(the graphene phonon dispersion diagram is presdnte
referencen fig. S10) Spectral contributions of owif-plane phonon modeare expected to be
negligible as thencidentelectron beam is normal to the graphene plamepite of stemming
from a position only a fevatomsaway, the Si spectrum shows a remarkably different phonon
fine structure comprisinga prominent loss peakt about 5 meV (443cm™) and weaker
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structures at 125 antb0meV (1008 and 1208m™). To enhance thédifferences between the
specta, we subtracted the ftom the Si spectrunthe “differencespectrum’is shown infig. 1E-

F. This proces$as the additional benefit effectively subtractinghe elastic scatteringLP tail
(making the reasonable assumptitimt the tail contribution, before any expected loss
contribution, is similar between spectrajthout possible errors associated witommon
background removal technigyess discussed in the SM (fi§4) The differencecan thus be
interpreted as relaive change in phonon scattering probability inducedh®presence othe
single Si atom impurity. Virtually identical resulga SM) were obtainedrom complementary
measurements carried out in a different area of the saffifpdse experimental resulesad to the
remarkable conclusiothat the single Si atom impuriiyn graphenepossesses a characteristic
vibrational signature localized at the atomic scale.

To gain insighs into the physics associated withese resultswe have calculatedithin the
framework of density functional theoFT) (26) the vibrational spectrum of large 96x96
supercell of graphene containing one substitutional Si,atemgperiodic boundary conditions
The structure of the defecdnd computational detailsre presented in th8M. As discussed
therein, the important features observed in the vibrational EEL spectra of graphesedaty be
interpreted in terms dhe phonon density of states (DOS) of the bulk. The local behavior of the
DOS can be quantified by the projected phonon DOS (PPDOS) definex‘(as =
Y. le¥? 8(w — w,), wherex denotesa specific atomw, and e, are the phonon angular
frequency and normalizgmblarization,and the sum is carried over all the phonon medgfsthe
supercell. $icein our experimerg the momentum transfer occurs predominantly in the plane
perpendicular to the electron beam trajectory, onlycttponentof the phonon polarization
parallel to the graphene plaaee relevantA tentativecomparison to thexperimental difference
spectrumis then provided by combining tHRFDOS projected on thé&i atomnS!, onits three
carbon neighborsn®?, and the bulkphonon DOS per atommP®'*: fi(w) = [nSi(w) +
3n“(w) — 4 nPuk(w)]/4. This differential PPDOS reflects the eyperimental spectrum
averagingover the scanning window, whicis expected to includeontributions from the
impurity’s neighboringC atoms The resultingdifferential PFDOS is shown infig. 1F, after
broadening tomatch theexperimental resolution: it predicts athe main features of the
experimental difference spectrum, including: a single peak-FmeV (443cm?), two
overlapping peaks at 12BeV (1008cm™) and 150meV (1209cm™), and “dips” centered
around 10GneV (807cm™) and 180meV (1452cm™).

Thephysical origin of these speditf@atures candunderstood by consideritige individual in-
plane PPDOS employed to construtite differential PPDOSi and those of carbon atonas
increasing ditance away from the Siimpurity: fig. 2A. The SiPPDOS isdominatedby an
intensepeakat % meV, matchingcloselythe lowenergyexperimental feature seém fig. 1E.
This peak idollowed by a broad band with weaker structures at 105, 127 I&%meV (847,
1024 and 1256m%).
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The absence of intense feawn® the bulk graphenedDOS at 55meV implies that the
corresponding modeshouldpossess degree of localizatianndeed by inspecting théFPDOS

of neighboring carbon atoms in fig, it is evident thatvhereas the firstwo carbonneighbor
shelk coordinating the impurity still dispjatraces of te 55meV peakjts contributionis weak
and thePPDOS of subsequenteighborsrapidly tend to the bulk signatyrevhich is fully

retrievedafter 6 shellsCorrespondingtomically resolveexperimentabpectran fig. 2C, from

a full spectrum image ovexquivalent carbon neighbor positioffsy. S8), exhibit an identical
trend: theEELS signakeproduces the main features observed intipganePPDOS

It is instructive toconsider acalculation performedon asmaller 13-atom fragment of &
symmetry centered on the impurityg. S9), decoupled from the supercell by artificially setting
the interatomic force constants linking the fragment to the rest A3@k86 supercellto zero.
The fragment displays twmodeswith E symmetryat 52 and 124neV (419 and 100@m™)
involving large inplane displacementsf the Sj in-phase (mode A) or outf-phase (mode B)
with the neighboring carbon atomfig. 3. The resonances in the fi8i@Grsydem, simulated
by the 9&96 supercell,can thus be interpreted as a hybridization of these local impuates
with the vibrational continuum of the graphene bulk.

The associatectomic displacementsncluding those arising frorthe inplane vibration of the
silicon atom donot decay far from the defec¢he full systenpresentsa delocalizedcontinuum
a concept gantified with the inverse pactpation ratio analysis shown in tHeM. However,
these delocalized phonons mogessess arenhanced componeatomically localizedon the
impurity: the power of EELSs the technique’sability to probethis quasitocalization thus
reveaing the paradoxical nature of defantuced resonant modds.is alsoremarkable that the
experimentallymeasured~30meV (242cm™) full-width at halfmaximum (FWHM) of the
impurity peakat ~55meV (fig. 1F) matches closely thmtrinsic theorypredictedwidth of the
guasi-resonant modég. 3A. The experimentatnergy resolutions thereforenot limiting and
the EEL spectraapture faithfully the fine structure of tlse@Grsystens vibrational response.

Localizedandresonant modes arising from point defdtésebeen widelydiscussed8). The
former are characterized by frequendyag out of the continuum of the unperturbed crystal
and atomic amplitudes dying ofésterthanexponentially with increasing distance fraime

defect(27). By contrast, the latter occur at frequencies lying within the allowed bands of the

host. Thé recognition was delayed by thgdeculiar characteristics whdne the vibrational
amplitude does not vanish far from the defectending insteadover the entire crystg28).

Furthermore experimental observations of these effdwasethus farbeenlimited to indirect
fingerprints, often at the macroscopic scdlelgmannet al. (13) usedSPMIETS to detecta

local energy-dependemcrease irphononDOSon a Ag (111) surfaceyhich they attributed to
a substitutional Cu atonBut the surface nature of these experiments and the lankrefdirect
visualization means precluded anambiguous interpretation.

In cortrast the abilitydemonstrated hen® measuralirectly at the atomic scale the localized
component of the vibrational signature adiagle impurity atom within a solidnd to match the
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observedspectralfine structure to theoretically predictedodes truly realizes the potential of
phonon spectroscopy in the STEMingleatom defect sensitivity combined with isotope
selectivity(17) ard the ability to operate at cryogenic temperat2% marks STEMEELS as a
potentially unique technique for molecular chemistry, enabling experiments wheiegke
functionalizing isotope is fingerprinted at the atomic scale through its vibratmmature.The
approachshould beapplicable to thregimensional structures, although challenges will arise
from the complexity of the computational work necessary to inform these exptsime
Nevertheless hie path to further tantalizing applications in ddtate science openp whereby
the electron beam of the STEBIusedbothto assemble functional devices atom by a{G®)
and toprobespectroscopicallyhe resulting latticelynamics and their coupling with other quasi
particles
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