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We derive adaptive time-delayed feedback controllers that stabilize fixed points and periodic orbits. First, we

develop an adaptive controller for stabilization of a steady state by applying the speed-gradient method to an

appropriate goal function and prove global asymptotic stability of the resulting system. For an example we show

that the advantage of the adaptive controller over the nonadaptive one is in a smaller controller gain. Second, we

propose adaptive time-delayed algorithms for stabilization of periodic orbits. Their efficiency is confirmed by

local stability analysis. Numerical examples demonstrate the applicability of the proposed controllers.

DOI: 10.1103/PhysRevE.91.012906 PACS number(s): 82.40.Bj, 87.19.lr

I. INTRODUCTION

In recent times the stabilization of unstable periodic orbits

and chaotic systems has received considerable interest in

applied nonlinear science [1]. Starting with the work of Ott,

Grebogi, and Yorke [2] a variety of methods have been devel-

oped in order to stabilize unstable periodic orbits embedded in

a chaotic attractor. A particularly simple and efficient scheme

is the time-delayed feedback control suggested by Pyragas [3].

The idea of this method is to apply a linear feedback u(t) ∈ R
n

of the form

u(t) = k[x(t) − x(t − τ )], (1)

where x(t) ∈ R
n is the state of the system, τ is the period

of the periodic orbit being stabilized, and k is the feedback

gain. The advantage of this approach is that it requires only

the knowledge of the period τ and an appropriate value of the

control gain k, i.e., the periodic orbit itself need not be known.

Some theoretical stability conditions for the Pyragas method

have been obtained by the authors of Refs. [4–9]. These results

are based on the analysis of the Floquet exponents of the system

linearized near the unstable periodic orbit of interest.

The feedback law given by Eq. (1) can also be used to stabi-

lize fixed points of dynamical systems. As it has been shown in

Ref. [10] time-delayed feedback control (1) with appropriate

values of k and τ can stabilize the steady state of a linear

two-dimensional system. Stabilizing unstable fixed points by

means of time-delayed feedback control has been the subject of

several theoretical and experimental studies: Rosenblum and

Pikovsky discussed the stabilization of unstable fixed points

in neural systems [11]. Experimental realizations include the

control of electrochemical systems [12,13] and lasers [14–16].

Thus, both the stabilization of periodic orbits as well as of

fixed points requires the knowledge of appropriate values of

k and τ . To find these stabilizing values of k and τ adaptive

approaches are useful. In Ref. [17] the delay time to control

an unstable periodic orbit was obtained by a gradient method

and stability was investigated by calculating the Lyapunov

*Corresponding author: antonselivanov@gmail.com

exponents of the linearized system. In Ref. [18] the speed-

gradient method (see Ref. [19]) was applied to a simple goal

function, and an adaptive algorithm that finds an appropriate

value of k was derived. By numerical simulations and a local

stability analysis it was shown that this algorithm ensures local

stability of the system. Another adaptive algorithm was applied

to cluster synchronization in delay-coupled networks [20,21].

The contribution of this work is the following. First, we

show that by choosing an appropriate goal function and

applying the speed-gradient method one obtains a tuning

algorithm for the control gain k that ensures global asymptotic

stability of the origin of the closed-loop system. The only

necessary condition for the algorithm is that an appropriate

value of k exists. Second, we propose adaptive algorithms that

stabilize periodic orbits in linear systems.

II. SPEED-GRADIENT METHOD

In this section we briefly review an adaptive control scheme

called the speed-gradient method [19]. Consider the general

nonlinear dynamical system

ẋ = F (x,k,t), (2)

with a state vector x ∈ R
n, control parameters k ∈ R

m, and a

nonlinear function F . Define a control goal,

lim
t→∞

Q(x(t),t) = 0, (3)

where Q(x,t) � 0 is a smooth scalar goal function.

In order to design a control algorithm the scalar function

Q̇ = ω(x,k,t) is calculated, that is, the speed (rate) at which

Q(x(t),t) is changing along trajectories of Eq. (2):

ω(x,k,t) =
∂Q(x,t)

∂t
+ [∇xQ(x,t)]T F (x,k,t).

Then we tune k according to

k̇ = −Ŵ∇kω(x,k,t), (4)

where Ŵ = ŴT > 0 is a positive definite gain matrix. The

algorithm (4) is called the speed-gradient algorithm since

it suggests to change k proportionally to the gradient of the

speed of change of Q. There exist different analytic conditions
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guaranteeing that the control goal (3) can be achieved in the

system given by Eqs. (2) and (4) (see Refs. [22,23] for details).

The main condition is the existence of a constant value of the

parameter k∗ ensuring attainability of the goal in the system

dx/dt = F (x,k∗,t).
The idea of this algorithm is the following. The term

−∇kω(x,k,t) points in the direction in which the value of

Q̇ decreases with the highest speed. Therefore, if one forces

the control signal to “follow” this direction, the value of Q̇

will decrease and finally be negative. If Q̇ < 0 then Q will

decrease and, eventually, tend to zero.

III. STABILIZATION OF A STEADY STATE

In this section we consider the linear system

ẋ(t) = Ax(t) + u(t), (5)

where x = (x1, . . . ,xn)T ∈ R
n, A ∈ R

n×n, and u ∈ R
n is a

control term. We derive an adaptive form of the time-delayed

feedback control that ensures global asymptotical stability of

the closed-loop system.

A. Adaptive controller synthesis

Suppose there exists k∗ ∈ R such that the feedback control

term

u(t) = −k∗[x(t) − x(t − τ )] (6)

makes the closed-loop system of Eqs. (5) and (6) globally

asymptotically stable. Denote xt (θ ) = x(t + θ ), where θ ∈
[−τ,0]. It can be proven (see Ref. [24], Theorem 5.19) that if

system (5) with control (6) is globally asymptotically stable

then there exists the matrix

P = P T ∈ R
n×n,

where superscript T denotes transposed, and continuous

matrix functions

Q(ξ ), R(ξ,η) = RT (η,ξ ), S(ξ ) = ST (ξ ) ∈ R
n×n,

such that the functional

V0(xt (·)) = xT (t)Px(t) + 2xT (t)

∫ t

t−τ

Q(ξ − t)x(ξ ) dξ

+
∫ t

t−τ

∫ t

t−τ

xT (ξ )R(ξ − t,η − t)x(η) dηdξ

+
∫ t

t−τ

xT (ξ )S(ξ )x(ξ ) dξ (7)

satisfies

α1|x(t)|2 � V0(xt (·)) � α2‖xt (·)‖2
C, (8)

V̇0(xt (·),k∗) � −ε|x(t)|2 (9)

for some ε > 0. Here ‖xt (·)‖C = maxθ∈[−τ,0] |x(t + θ )|. Equa-

tions (8) and (9) mean that Eq. (7) is a Lyapunov-Krasovskii

functional for the system given by Eqs. (5) and (6).

Now consider the control term

u(t) = −k(t)[x(t) − x(t − τ )]. (10)

To derive an adaptive algorithm for k(t) ∈ R we apply the

speed-gradient method with a goal function given by Eq. (7):

∇kV̇0 = −2[x(t) − x(t − τ )]T

×
{

Px(t) +
∫ t

t−τ

Q(ξ − t)x(ξ ) dξ

}

.

This yields the following adaptive controller:

u(t) = −k(t)[x(t) − x(t − τ )],

k̇(t) = γ [x(t) − x(t − τ )]T (11)

×
{

Px(t) +
∫ t

t−τ

Q(ξ − t)x(ξ ) dξ

}

,

with some scalar gain coefficient γ > 0.

B. Global stability analysis

Theorem 1. Suppose there exists k∗ such that the system

given by Eqs. (5) and (6) is globally asymptotically stable.

Then any solution of the system given by Eqs. (5) and (11)

satisfies

lim
t→∞

|x(t)| = 0

and k(t) is a bounded function.

Proof. Consider

V (xt (·),k) = V0(xt (·)) + Vk(k), (12)

where

Vk(k) = γ −1(k − k∗)2,

with k∗ from Eq. (6). Then

V̇ (xt (·),k(t)) = V̇0(xt (·),k(t)) + V̇k(k(t)) = V̇0(xt (·),k∗)

+ 2γ −1[k∗ − k(t)][x(t) − x(t − τ )]T

×
{

Px(t) +
∫ t

t−τ

Q(ξ − t)x(ξ ) dξ

}

+ V̇k(k(t))

= V̇0(xt (·),k∗) � −ε‖x(t)‖2.

Thus,

V̇ (xt (·),k(t)) � −ε|x(t)|2. (13)

Since V (t) = V (xt (·),k(t)) is a non-negative decreasing

function, there exists a finite limit for V (t): limt→∞ V (t) < ∞.

From the inequality (13) it follows that ε
∫ ∞
τ

|x(s)|2 ds �

V (τ ) − limt→∞ V (t) < ∞. By applying Barbalat’s lemma

[25, p. 323] we conclude the following:

lim
t→∞

|x(t)| = 0. (14)

Boundedness of k(t) follows from the boundedness of V (t). �

Remark 1. In order to construct the adaptive controller (11)

one needs to find P and Q such that Eq. (7) satisfies Eqs. (8)

and (9). This can be done with the help of the discretized

Lyapunov functional approach (see Ref. [24]).

Remark 2. Note that both Eqs. (6) and (11) contain x(t − τ ).

Therefore, these controllers can only be applied for t > τ . In

other words, we suppose that u(t) = 0 for t ∈ [0,τ ).

012906-2
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C. Numerical example

Consider system (5) with

A =
(

λ ω

−ω λ

)

. (15)

As it has been shown in Ref. [10] the system given by Eqs. (5)

and (6) with A given by Eq. (15) and λ = 0.5, ω = π , and τ =
1 is globally asymptotically stable for k∗ = 0.3. Thus, there

should exist a Lyapunov-Krasovskii functional (7) that satisfies

Eqs. (8) and (9). With the help of the discretized Lyapunov

functional approach (see Ref. [24]) we find appropriate values

of P and Q(ξ ):

P = I, Q(ξ ) =−ξQ0 + (1 + ξ )Q1, ∀ξ ∈ [−1,0], (16)

where

Q0 =
(

−1 −0.5

0.5 −1

)

, Q1 =
(

0.5 0

0 0.5

)

.

It follows from Theorem III B that any solution of the

system given by Eqs. (5) and (11) with A given by Eq. (15) and

P and Q(ξ ) given by Eq. (16) is such that limt→∞ ‖x(t)‖ = 0

and k(t) is a bounded function.

Figure 1 shows a time series of the stabilization of the origin.

The blue solid and the green dashed lines refer to x1(t) and

x2(t), respectively. The evolution of k(t) is depicted in Fig. 2.

Note that any nonlinear system close to a fixed point can

be reduced to the linear system given by Eq. (5). Thus, we

expect our results to be applicable in a variety of different

systems where time-delayed feedback control is used to

stabilize unstable steady states (fixed points). In the case of

a two-variable system the focus is the only type of fixed point

which can be stabilized by time-delayed feedback control

of the form given by Eq. (6), which fails for saddle points

and unstable nodes [10]. Thus, Eq. (15) represents the most

general case, as the linear stability equation of any two-variable

nonlinear system close to an unstable focus can be linearly

transformed to the linear system given by Eqs. (5) and (15).

The Van der Pol oscillator [26], which is a common model

for nonlinear oscillations occurring in a variety of physical

systems, e.g., nonlinear electronic circuits, can be used to

FIG. 1. (Color online) Solutions x1(t) (blue solid line) and x2(t)

(green dashed line) of the closed-loop system of Eqs. (5) and (11),

with A given by Eq. (15) and P and Q given by Eq. (16). The

parameters are λ = 0.5, ω = π , τ = 1, and γ = 1. The initial

conditions are x1(0) = 10, x2(0) = −7, and k(τ ) = 0.

FIG. 2. (Color online) Evolution of k(t) for the system from

Fig. 1. The limit value is limt→∞ k ≈ 2.4.

demonstrate this. The Van der Pol equation

ẏ1 = y2,

ẏ2 = −y1 − ε
(

y2
1 − 1

)

y2,

where ε is the bifurcation parameter, has a fixed point (y1,y2) =
(0,0) of unstable focus type for 0 < ε < 2. Hence, the linear

stability equation can be reduced to the linear normal form in

Eqs. (5) and (15), with ω =
√

4−ε2

2
and λ = ε

2
, by using the

linear transformation
(

y1

y2

)

= J

(

x1

x2

)

, J =
(

ω λ

0 1

)

.

Now we consider the Van der Pol equation with time-delayed

feedback control u = (u1,u2)T :

ẏ1 = y2 + u1,
(17)

ẏ2 = −y1 − ε
(

y2
1 − 1

)

y2 + u2.

For ε = 0.2 and τ = π
ω

≈ 3.16 using the discretized Lyapunov

functional approach we find that

P = I,

Q(ξ ) =

{

(

− 2ξ

τ
− 1

)

Q0 +
(

2 + 2ξ

τ

)

Q1, ξ ∈
[

−τ,− τ
2

)

,

− 2ξ

τ
Q1 +

(

1 + 2ξ

τ

)

Q2, ξ ∈
[

− τ
2
,0

]

,

(18)

FIG. 3. (Color online) Norms of five different solutions y(t) of

the closed-loop system given by Eqs. (17), (18), and (19) with

randomly chosen initial conditions [y1(0),y2(0)]T ∈ [−2,2] × [−2,2]

and k(τ ) = 0. The parameters are ε = 0.2, τ = π

ω
≈ 3.16, and γ = 1.
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FIG. 4. (Color online) Evolution of adaptation gain k(t) for five

different initial conditions as given in Fig. 3.

where

Q0 ≈
(

−0.11 −0.12

0.12 −0.11

)

, Q1 ≈
(

0.01 −0.15

0.15 0.01

)

,

Q2 ≈
(

0.26 −0.03

0.03 0.26

)

.

Since x(t) = J−1y(t), from Eq. (11) we obtain

u(t) = −k(t)[y(t) − y(t − τ )],

k̇(t) = γ [y(t) − y(t − τ )]T
{

(J−1)T PJ−1y(t)

+
∫ t

t−τ

(J−1)T Q(ξ − t)J−1y(ξ ) dξ

}

. (19)

The results of numerical simulations for the system given

by Eqs. (17), (18), and (19) for five randomly chosen initial

conditions [y1(0),y2(0)]T ∈ [−2,2] × [−2,2] and k(τ ) = 0

are presented in Figs. 3 and 4. In Fig. 3 one can see that

the norm of the system state y(t) = [y1(t),y2(t)]T converges

to zero, i.e., asymptotical stability is achieved for all initial

conditions. From Fig. 4 it can be seen that the adaptation gain

tends to a constant value.

D. Uncertain systems

In order to construct the adaptive controller (11) for the

system (5) appropriate values for the matrix P and the matrix

FIG. 5. (Color online) (k-λ) plane: blue shaded region, region of

stability of (non-adaptive) time-delayed feedback control [10]; k∗,

critical coupling strength above which the system is stable for all λ ∈
[0,1]; and k = 0.153, value reached by adaptive control according to

Eq. (11).

FIG. 6. (Color online) Evolution of k(t) (blue solid line) for the

system given by Eqs. (5) and (11) with A given by Eq. (15). Value

k∗ = 0.5 (red dashed line). λ = 0.1. Other parameters are as given in

Fig. 1. The initial conditions are x(0) = 2, y(0) = 0, and k(τ ) = 0.

function Q(ξ ) have to be calculated. To find these values

the discretized Lyapunov functional approach is used which

requires the knowledge of all system parameters. On the other

hand one could argue that if all system parameters were

known it would be possible to construct a static feedback

of the form (6). It turns out that sometimes it is possible to

find appropriate values of P and Q(ξ ) for an entire class of

uncertain systems. In this case the advantage of the adaptive

approach compared to a nonadaptive one is in a smaller

controller gain.

In order to demonstrate this point we consider the case when

the system matrix A has an uncertain parameter λ ∈ [0,1].

Then k∗ ∈ [0.5,3.22] stabilizes the system given by Eqs. (5)

and (6) for any value of λ ∈ [0,1] (see Ref. [10]). In Fig. 5 the

blue shaded region marks the stability region of time-delayed

feedback control without adaptive tuning of k. The red-dotted

line k∗ = 0.5 denotes the lower boundary of the interval

[0.5,3.22]. For these values of k∗, with the help of the

discretized Lyapunov functional approach, it is possible to

find P and Q(ξ ) such that Eq. (7) is a Lyapunov-Krasovskii

functional for the system given by Eqs. (5) and (6). Taking

these values of P and Q(ξ ) and substituting them into

Eq. (11) we derive an adaptive controller that, according

to Theorem III B, ensures global asymptotic stability of the

system given by Eqs. (5) and (11) with respect to x(t) for

any value of λ ∈ [0,1]. The limit value of the control gain

is k(t) = 0.153, which is obviously much smaller than 0.5.

Figure 6 shows the evolution of k(t) and the smallest static

gain k∗ = 0.5.

IV. STABILIZATION OF A PERIODIC ORBIT

In this section we address the problem of adaptive stabi-

lization of a periodic orbit of a linear system. Consider the

system

d

dt

[

x(t)

y(t)

]

=
[

λ ω

−ω λ

][

x(t)

y(t)

]

− k(t)

[

x(t) − x(t − τ )

y(t) − y(t − τ )

]

,

(20)

012906-4
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with λ > 0. We recall that for a constant feedback gain k(t) = k

the linear time-delayed system (20) has a periodic orbit if and

only if at least one of its eigenvalues has a zero real part

and the real parts of all other eigenvalues are smaller than

zero. Moreover, as it has been shown in Ref. [10], in this

particular case the fixed point x = y = 0 is an unstable focus

for k < k∗ = λ
2
, a stable focus for k∗ < k < k̄, and a center

for k∗ = λ
2
. Nevertheless, a periodic orbit of the system (20)

with a constant k(t) = k will never be asymptotically stable

since a linear system cannot have a limit cycle. However,

implementation of an adaptive tuning algorithm for k(t) makes

the closed-loop system nonlinear and admits the existence of

a limit cycle.

We propose the following adaptive law:

k(t) = γ [x2(t) + y2(t)], (21)

with γ > 0. Note that the algorithm (21) has the so-called

finite form; that is, it determines the value of k(t), not

k̇(t) as above. This algorithm introduces a nonlinearity in

the system equation that transforms it into a limit cycle

oscillator.

Next we perform a local asymptotic stability analysis for a

periodic solution of the system given by Eqs. (20) and (21).

Linearization near the periodic orbit

x∗(t) =

√

λ

2γ
cos(−ωt + θ0), y∗(t) =

√

λ

2γ
sin(−ωt + θ0)

(22)

and the ansatz (δr,δθ )T = e�tq yield a characteristic equation:
(

−
λ

2
(3 + e−�τ ) − �

) (

λ

2
(1 − e−�τ ) − �

)

= 0, (23)

where � is the Floquet exponent. Note that Eq. (23) does not

depend on γ > 0. The solution of Eq. (23) with the maximum

real part of � (red dashed line) and the corresponding

imaginary part (blue solid line) is depicted in Fig. 7. For

λ ∈ (0,2) the maximum real part of � is negative; therefore

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

Λ

λ

Re Λ
Im Λ

FIG. 7. (Color online) Maximum real part (red dashed line) and

corresponding imaginary part (blue solid line) of Floquet exponent �

obtained by numerically solving Eq. (23). Parameters are as given in

Fig. 1.

FIG. 8. (Color online) Phase portrait of the system given by

Eqs. (20) and (21) for t � τ . Blue solid lines are the trajectories for ten

different initial conditions chosen randomly from [−1,1] × [−1,1].

The red dashed line corresponds to the periodic solution [x∗(t),y∗(t)]

given by Eq. (22). Parameters are as given in Fig. 1.

the system (20) with the control (21) is asymptotically stable.

Figure 8 shows a phase portrait. Blue solid lines show the

trajectories for different initial conditions; the red dashed line

depicts the limit cycle. It can be seen that all trajectories

FIG. 9. (Color online) (a) Evolution of k(t) (blue solid line) for

ten different initial conditions chosen randomly from [−1,1] ×
[−1,1]; the value k∗ = λ

2
(red dashed line). Parameters are as given

in Fig. 1. (b) Zoom of panel (a).

012906-5
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approach the limit cycle as can be expected from the linear

stability analysis. Figure 9(a) presents the evolution of k(t) as

a blue solid line. Clearly, k(t) tends to k∗ = λ
2

(red dashed line)

for which the fixed point of system (20) with constant k is a

center. Figure 9(b) is a zoom of Fig. 9(a).

A. Stabilization of a given periodic orbit

It follows from Eq. (22) that in order to stabilize a periodic

orbit of the system given by Eqs. (20) and (21) with a given

radius a one should choose γ = γ∗ = λ
2a2 . If the value of λ is

unknown the following adaptive algorithm can be applied to

stabilize an orbit of radius a:

k(t) = γ (t)[x2(t) + y2(t)],
(24)

γ̇ (t) = α[x2(t) + y2(t) − a2],

with some α > 0. The periodic orbit is then given by

x∗(t) = a cos(−ωt + θ0),

y∗(t) = a sin(−ωt + θ0), (25)

γ∗(t) =
λ

2a2
.

For numerical simulations we choose initial conditions ran-

domly from [−5,5] × [−5,5]. Figure 10 depicts the trajecto-

ries (blue solid line) for the different initial conditions and

the asymptotically stable limit cycle (red dashed line). A time

series of γ (t) (blue solid line) is shown in Fig. 11. The values

of γ (t) always tend to γ∗ = λ
2a2 ≈ 0.028 (red dashed line),

which is the fixed point value of γ as given by Eq. (25).

Next we analyze the local asymptotic stability of the

periodic solution of the system given by Eqs. (20) and (24).

Linearization near the periodic solution (25) and the ansatz

FIG. 10. (Color online) Phase portrait of the system given by

Eqs. (20) and (24) for t � τ . Blue solid lines are the trajectories forten

different initial conditions chosen randomly from [−5,5] × [−5,5].

The red dashed line corresponds to a cycle of radius a = 3. α = 0.01.

Other parameters are as given in Fig. 1.

FIG. 11. (Color online) Evolution of γ (t) (blue solid line) for the

system given by Eqs. (20) and (24). The red dashed line is the value

of γ∗ = λ

2a2 . Parameters and initial conditions are as given in Fig. 10.

(δr,δθ,δγ )T = e�tq yield the characteristic equation
(

λ

2
�(3 + e−�τ ) + �2 + 4αa4

)

×
(

λ

2
(1 − e−�τ ) − �

)

= 0, (26)

where � is the Floquet exponent. The maximum real part

(red dashed line) and the corresponding imaginary part (blue

solid line) of � are depicted in Fig. 12. As one can see the

maximum real part of � is negative for λ ∈ (0,2). Therefore the

solution [x∗(t),y∗(t),γ∗(t)]T of the closed-loop system given

by Eqs. (20) and (24) is asymptotically stable for λ from this

interval.

V. CONCLUSION

We have proposed three different adaptive controllers to

tune the feedback gain in time-delayed feedback control to

appropriate values. The first adaptive controller is based on the

speed-gradient method and a Lyapunov-Krasovskii functional
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FIG. 12. (Color online) Maximum real part (red dashed line) and

corresponding imaginary part (blue dashed line) of Floquet exponent

� obtained by numerically solving Eq. (26). α = 0.01 and a = 3.

Other parameters are as given in Fig. 1.
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of the system without adaptation. This adaptive control can be

applied in any linear system to stabilize the equilibrium in its

origin with the only requirement being that an appropriate

value of the feedback gain exists. Global stability of this

method is proven with an extended Lyapunov-Krasovskii

functional for the system with adaptation. By the example

of the normal form of an unstable focus [see Eq. (15)] it

is demonstrated that the advantage of the adaptive controller

over the nonadaptive one is in a smaller controller gain. Note

that the linear stability equation of any two-variable nonlinear

system close to an unstable focus can be reduced, by means of

a linear transformation, to the linear system given by Eqs. (5)

and (15). This allows for applying our method to a variety of

different nonlinear systems, which we have demonstrated with

the example of the Van der Pol oscillator [26].

The second and third adaptive controllers stabilize periodic

orbits of a linear system. The advantage of the third controller

compared to the second one is that the radius of the limit

orbit can be chosen even in cases where some system

parameters are unknown. Simulations and a local stability

analysis demonstrate the usefulness of both controllers.

Time-delayed feedback control is a widely used control

method. The adaptive controller presented here can even

widen its applicability because it allows for time-delayed

feedback control in cases where appropriate control or system

parameters are unknown.
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