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Abstract—We consider a large-scale LTI system with multiple
local communication networks connecting sensors, controllers,
and actuators. The local networks operate asynchronously and
independently of one another. The main novelty is that the
decentralized controllers are subject to saturation. Our objec-
tive is to achieve a regional exponential stability providing a
decentralized bound on the domain of attraction for each plant.
We introduce a sampled-data event-triggering mechanism from
sensors to controllers to reduce the amount of transmitted signals.
Using the time-delay approach to networked control systems and
appropriate Lyapunov-Krasovskii functionals, we derive linear
matrix inequalities that allow to find the decentralized bounds
on the domains of attraction for each plant. Numerical example of
coupled cart-pendulums illustrates the efficiency of the method.

I. INTRODUCTION

Networked Control Systems (NCSs) are systems with spa-

tially distributed sensors, actuators, and controllers that ex-

change data over a communication channel [1]. It is important

to provide a stability and performance certificate that takes into

account the network imperfections (such as variable sampling

intervals, variable communication delays, etc.). Three main

approaches have been used to study NCSs: a discrete-time [2],

hybrid [3], and time-delay system approaches [4], [5], [6].

It is common place in industry that the total plant to be

controlled consists of a large number of interacting subsystems

[7]. Usually the control of the plant is designed in a decentral-

ized manner with local control stations allocated to individual

subsystems. In networked control of large-scale systems it

is more efficient to use local controllers and local networks

instead of the global ones. This leads to large-scale NCSs

with independent and asynchronous local networks.

Decentralized networked control of large-scale intercon-

nected systems with local independent networks was studied

in the framework of hybrid systems [8], [9], [10], where vari-

able sampling or/and small communication delays (meaning

that they are smaller than transmission intervals) were taken

into account. In [10] decentralized dynamic event-triggering

mechanism was introduced to reduce the workload of the com-

munication networks. To manage with large communication
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delays (that may be larger than the sampling intervals) in the

presence of scheduling protocols from sensors to actuators,

the time-delay approach to continuous-time decentralized NCS

was suggested in [11] in the continuous-time and in [12] in

the discrete-time setup.

For practical application of control laws, actuator saturations

should be taken into account. This often leads to local results,

where it is important to find a bound on the domain of

attraction starting from which solutions of the closed-loop sys-

tem asymptotically converge to zero. For large-scale systems

with decentralized control laws, a decentralized bound on the

domain of attraction for each plant should be an essential part

of the design procedure. Such decentralized bounds have not

been considered in the existing literature yet.

In the present paper, for a large-scale LTI system with

multiple local communication networks (connecting sensors,

controllers, and actuators) that operate asynchronously and

independently of one another, we consider decentralized con-

trollers that are subject to actuator saturation. Our objective

is to achieve a regional exponential stability providing a

decentralized bound on the domain of attraction for each plant.

We introduce a sampled-data event-triggering mechanism from

sensors to controllers to reduce the amount of transmitted

signals. Using the time-delay approach to networked control

systems and appropriate Lyapunov-Krasovskii functionals, we

derive linear matrix inequalities that allow to find decentralized

bounds on the domains of attraction for each plant. Numerical

example of coupled cart-pendulums illustrates the efficiency

of the method.

For simplicity (in order to avoid the bounds on the initial

time interval [13] in the case of actuator saturation), we do not

consider communication delays. Without actuator saturation,

event-triggered decentralized control presented in this paper

can be easily extended to the case of large communication

delays by using standard Lyapunov-Krasovskii functionals for

systems with time-varying delays [4].

Notations: N0 = {0} ∪ N, P > 0 means that P ∈ R
n×n is

symmetric and positive definite, the symmetric elements are

denoted by ∗. For Kj ∈ R
mj×lj , K

(i)
j denotes the ith row.

For 0 < ū ∈ R, we define sat(u, ū) = sign(u)min(|u|, ū).
Given ūj = (ū1j , . . . , ūmj)

T , we denote sat(uj , ūj) =
(sat(u1j , ū1j), . . . , sat(umj , ūmj))

T .

Lemma 1 (Wirtinger inequality [14]): Let a, b, α ∈ R,



Fig. 1. Schematic representation of the jth subsystem

0 ≤ W ∈ R
n×n, and f : [a, b] → R

n be an absolutely

continuous function with a square integrable first derivative

such that f(a) = 0 or f(b) = 0. Then

∫ b

a
e2αtfT (t)Wf(t) dt

≤ e2|α|(b−a) 4(b−a)2

π2

∫ b

a
e2αtḟT (t)Wḟ(t) dt.

II. SYSTEM DESCRIPTION

We consider M interconnected systems described by

(Fig. 1)

ẋj(t) = Ajxj(t) +Bjuj(t) +

M
∑

i=1
i 6=j

Fijxi(t),

yj(t) = Cjxj(t), j = 1, . . . ,M,

(1)

where xj ∈ R
nj are the states, uj ∈ R

mj are the control

inputs, and yj ∈ R
lj are the measurements. For each j =

1, . . . ,M , we assume that

∃Kj ∈ R
mj×lj : Aj +BjKjCj is Hurwitz. (2)

That is, uj = Kjyj stabilizes the system ẋj = Ajxj +Bjuj .

We assume that only sampled in time measurement yj(tk,j)
are transmitted to the controller, where 0 = t0,j < t1,j < · · ·
are the sampling instants of the jth subsystem subject to

lim
k
tk,j = ∞, tk+1,j − tk,j ≤ hj

for k ∈ N0, j = 1, . . . ,M . To reduce the amount of

transmitted measurement, we incorporate an event-triggering

mechanism [15], [16]. The idea is to transmit only those

measurements yj(tk,j) whose relative change is larger than

some threshold, namely,

ŷk,j =

{

yj(tk,j), (4) is true,

ŷk−1,j , (4) is false,
(3)

where ŷk,j are the transmitted measurements and the event-

triggering rule is given by

[yj(tk,j)− ŷk−1,j ]
TΩj [yj(tk,j)− ŷk−1,j ]

≥ σ2
j y

T
j (tk,j)Ωjyj(tk,j) (4)

with 0 < Ωj ∈ R
lj×lj and 0 ≤ σj ∈ R.

In the next section, we derive the stability conditions for

the system (1) under the saturated event-triggered control

uj(t) = sat (Kj ŷk,j , ūj) , t ∈ [tk,j , tk+1,j), (5)

where ūj ∈ R
mj are the saturation levels.

III. REGIONAL STABILIZATION UNDER SATURATION

The control signals (5) can be presented as

uj(t) = Kjyj(t)−Kjvj(t)−Kjek,j−ψk,j , t ∈ [tk,j , tk+1,j),

where k ∈ N0, j = 1, . . . ,M , and the errors vj(t), ek,j , ψk,j

are given by

vj(t) = yj(t)− yj(tk,j), t ∈ [tk,j , tk+1,j),
ek,j = yj(tk,j)− ŷk,j ,

ψk,j = Kj ŷk,j − sat(Kj ŷk,j , ūj).
(6)

Then the closed-loop system (1), (5) takes the form

ẋj(t) = (Aj +BjKjCj)xj(t)−BjKjvj(t)

−BjKjek,j −Bjψk,j +

M
∑

i=1
i 6=j

Fijxi(t). (7)

The “nominal” systems ẋj = (Aj + BjKjCj)xj are stable

by (2). The remaining terms are treated as disturbances. To

compensate the errors due to sampling vj(t), we consider the

functional

V (t) =
M
∑

j=1

Vj(t), Vj(t) = V P
j (t) + VW

j (t), (8)

where

V P
j (t) = xTj (t)Pjxj(t),

VW
j (t) = h2je

2αhj

∫ t

tk,j

e−2α(t−s)ẏTj (s)Wj ẏj(s)ds,

−
π2

4

∫ t

tk,j

e−2α(t−s)vTj (s)Wjvj(s)ds, t ∈ [tk,j , tk+1,j)

with positive definite Pj ∈ R
nj×nj and Wj ∈ R

lj×lj . The

piecewise continuous in time terms VW
j are taken following

[17], [14]. Note that the Wirtinger inequality (Lemma 1)

guarantees VW
j ≥ 0. Moreover, the functionals Vj(t) do not

grow at the jumps since VW
j (tk,j) = 0, whereas V P

j (t) is

continuous in time. Therefore

Vj(t)− Vj(t
−) ≤ 0, t ≥ 0. (9)

The event-triggering errors ek,j will be compensated using

0 ≤ σ2
j (yj(t)− vj(t))

TΩj(yj(t)− vj(t))− eTk,jΩjek,j , (10)

which follows from (3), (4).

The errors due to saturation ψk,j will be compensated using

the following lemma.

Lemma 2 (Generalized sector condition [18]): Define

Sj=
{

ŷk,j ∈R
lj

∣

∣

∣
|(K

(i)
j −G

(i)
j )ŷk,j | ≤ ūij , i = 1, . . . ,mj

}

(11)



with some Gj ∈ R
mj×lj . If ŷk,j ∈ Sj then

ψT
k,jSj [Gj ŷk,j − ψk,j ] ≥ 0 (12)

for any positive definite diagonal matrix Sj ∈ R
mj×mj .

To compensate the terms Fijxi representing the intercon-

nections, we will use the following lemma, which extends the

results of [19]:

Lemma 3: For 0 < ǫ < α let Vj defined in (8) satisfy

V̇j(t) + 2αVj(t)−
∑

i 6=j

2ǫ

M − 1
Vi(t) ≤ 0,

t 6= tk,j , j = 1, . . . ,M, k = 0, 1, . . . (13)

Then V defined by (8) satisfies

V (t) ≤ e−2δtV (0), t ≥ 0, δ = α− ǫ. (14)

Moreover, if Vj(0) ≤ β for j = 1, . . . ,M with β > 0, then

Vj(t) < β
(

1 + ǫM
α(M−1)

)

, t ≥ 0. (15)

Proof 1: We have

V̇ + 2δV
(8)
=

∑M
j=1

[

V̇j + 2αVj −
2ǫ

M−1

∑

i 6=j Vi

] (13)

≤ 0.

The latter inequality together with (9) yields (14) implying

V (t) ≤ V (0).

If Vj(0) ≤ β then

∑

i 6=j Vi(t)
(8)

≤ V (t) ≤ V (0)
(8)

≤ Mβ. (16)

By the comparison principle,

Vj(t)
(13)

≤ e−2αtVj(0)+
2ǫ

M−1

∫ t

0

e−2α(t−s)





∑

i 6=j

Vi(s)



ds

(16)
< β +

ǫM

α(M − 1)
β.

Now we are in a position to formulate our main result.

Theorem 1: Consider the system (1) under the event-

triggered saturated control (5) with sampling periods hj ,

event-triggering thresholds σj , and saturation levels ūj , where

j = 1, . . . ,M . For given tuning parameters 0 < ǫ < α and

matrices Gj ∈ R
mj×lj let there exist positive definite matrices

Pj ∈ R
nj×nj , Wj ∈ R

lj×lj , Ωj ∈ R
lj×lj , positive definite

diagonal matrix Sj ∈ R
mj×mj , and scalars ρj > 0 such that

for j = 1, . . . ,M ,

Pj ≤ ρjI (17)

[

Pj CT
j

(

K
(i)
j −G

(i)
j

)T

ū−1
ij

∗ 1

]

≥ 0, i = 1, . . . ,mj ,

(18)
[

Pj Fj

∗ Ej

]

≤ 0, (19)

where

Fj = row















































PjFij

0
0
0
0

hje
αhjWjCjFij















































i=1,...,M
i 6=j

(20)

Ej =
−2ǫ

M − 1
diag {P1, . . . , Pj−1, Pj+1, . . . , PM} , (21)

and Pj are the symmetric matrices composed from

P11
j = Pj(Aj +BjKjCj) + (Aj +BjKjCj)

TPj + 2αPj ,

P12
j = P13

j = −PjBjKj ,

P14
j = −PjBj + (SjGjCj)

T ,

P15
j = σjC

T
j Ωj ,

P16
j = hje

αhj (Aj +BjKjCj)
TCT

j Wj ,

P22
j = −π2

4 Wj ,

P24
j = P34

j = −GT
j Sj ,

P25
j = −σjΩj ,

P26
j = P36

j = −hje
αhj (CjBjKj)

TWj ,

P33
j = −Ωj ,

P44
j = −2Sj ,

P46
j = −hje

αhj (CjBj)
TWj ,

P55
j = −Ωj ,

P66
j = −Wj .

Then, for the initial conditions satisfying

|xj(0)|
2 ≤ ρ−1

j

(

1 +
ǫM

α(M − 1)

)−1

, j = 1, . . . ,M, (22)

the system (1), (5) is exponentially stable with the decay rate

δ = α− ǫ.

Proof 2: We divide the proof into two parts. First, we show

that (13) holds for Vj defined in (8) if

ŷk,j ∈ Sj , k ∈ N0, j = 1, . . . ,M. (23)

Then, we show that (23) holds if xj(0) satisfies (22).

I. Proof of (13) under (23)

For V P
j and VW

j defined below (8), we have

V̇ P
j + 2αV P

j

(7)
= 2xTj Pj

[

(Aj +BjKjCj)xj −BjKjvj

−BjKjek,j −Bjψk,j +
∑M

i=1
i 6=j

Fijxi

]

+ 2αxTj Pjxj ,

V̇W
j + 2αVW

j = h2je
2αhj ẏTj Wj ẏj −

π2

4 v
T
j Wjvj .

(24)

Under the condition (23), Lemma 2 implies (12), which we

rewrite using (6) as

0 ≤ ψT
k,jSj [Gjyj −Gjvj −Gjek,j − ψk,j ] . (25)

Summing up the right-hand sides of (10), (24), and (25), we

obtain

V̇j(t) + 2αVj(t)−
∑M

i=1
i 6=j

2ǫ
M−1V

P
i (t) ≤ φTj

[

Pj Fj

∗ Ej

]

φj

+h2je
2αhj ẏTj Wj ẏj + σ2

j [yj − vj ]
T
Ωj [yj − vj ]

(26)



where

φj = col{xj , vj , ek,j , ψk,j , x1, · · · , xj−1, xj+1, · · · , xM},
(27)

Pj is obtained from Pj by removing the last two block-

columns and block-rows, Fj is obtained from Fj by removing

the last two block-rows. Substituting the expression (7) into

ẏj = Cj ẋj and using the Schur complement, we find that (19)

guarantees (13).

II. Proof of (23) under (22)

By the Schur complement, (18) implies

xTj C
T
j (K

(i)
j −G

(i)
j )T (K

(i)
j −G

(i)
j )Cjxj ≤ xTj Pjxj ū

2
j . (28)

Since xTj (t)Pjxj(t) ≤ Vj(t), if

Vj(t) ≤ 1, t ≥ 0, j = 1, . . . ,M (29)

then (28) implies yj(t) ∈ Sj for t ≥ 0, j = 1, . . . ,M and, in

particular, (23) is true. Thus, it suffices to prove (29). Let

β =
(

1 + ǫM
α(M−1)

)−1

Relation (29) holds for t = 0 since

Vj(0) = xTj (0)Pjxj(0)
(17)

≤ ρj |xj(0)|
2

(22)

≤ β < 1.

Let (29) be false for some t > 0. Since all Vj(t) can have

only negative jumps at tk,j and are continuous elsewhere, there

must be t∗ such that (29) holds on [0, t∗] for all j = 1, . . . ,M
and Vq(t∗) = 1 for some q ∈ {1, . . . ,M}. Then, on [0, t∗] we

have:

(29) ⇒ (28) ⇒ (23) ⇒ (13).

By Lemma 3,

Vq(t∗) < β
(

1 + ǫM
α(M−1)

)

= 1.

This contradicts the definition of t∗. Thus, (29) holds for t ≥ 0
implying (13). Lemma 3 guarantees V (t) ≤ e−2δtV (0) that

implies exponential stability of the system (1), (5).

IV. EXAMPLE: COUPLED CART-PENDULUMS

Consider two coupled inverted pendulums on carts [19], [20]

whose dynamics are given by (1) with

Aj =









0 1 0 0
2.9156 0 −0.0005 0

0 0 0 1
−1.6663 0 0.0002 0









, Bj =









0
−0.0042

0
0.0167









,

Cj = I4, F12 = F21 =









0 0 0 0
0.0011 0 0.0005 0

0 0 0 0
−0.0003 0 −0.0002 0









for j = 1, 2. The controllers are given by (5) with

K1 =
[

11396 7196.2 573.96 1199
]

,

K2 =
[

29241 18135 2875.3 3693.9
]

and the saturation levels ū1 = ū2 = 105. The conditions of

Theorem 1 are feasible for α = 0.5, ǫ = 0.05, Gj = 0.5 ·Kj ,

σ = 0, and h = 0.09, where ρ is a decision variable. This

implies that the sampled-data saturated controllers (5) (without

the event-triggering mechanism) stabilize the system (1) for

the initial conditions |x(0)| < 0.4467 (calculated using (22)).

Note that Gj = 0 lead to a smaller domain |x(0)| < 0.2759.

Sampled-data controllers (5) without the event-triggering

mechanism (σ = 0) require to transmit ⌊ 20
0.09⌋ + 1 = 223

signals during 20 seconds of simulations. The conditions of

Theorem 1 remain feasible for σ = 0.2, h = 0.05. For these

values, the event-triggered controllers (5) stabilize the system

(1) with the same decay rate requiring to transmit 116 signals.

This value was found performing numerical simulations for 20
randomly chosen initial conditions satisfying |x(0)| < 0.4467.

Thus, the event-triggering mechanism reduces the amount of

transmitted signals by almost 50%.

V. CONCLUSION

This paper introduced decentralized control in the pres-

ence of saturated actuators for large-scale systems with in-

dependent networks. The time-delay approach to sampled-

data control and event-triggered control led to efficient LMI-

based conditions for regional exponential stability. By using

plant-dependent Lyapunov-Krasovskii functionals, decentral-

ized bounds on the domain of attraction were derived. A nu-

merical example showed that the generalized sector condition

introduced in [18] allowed to enlarge the domain of attraction.
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A. R. Teel, “Stability analysis of nonlinear networked control systems
with asynchronous communication: A small-gain approach,” in 52nd

IEEE Conference on Decision and Control, Dec 2013, pp. 4631–4637.


