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Distributed event-triggered control

of transport-reaction systems

Anton Selivanov, Emilia Fridman

School of Electrical Engineering, Tel Aviv University, Israel
(e-mails: antonselivanov@gmail.com, emilia@eng.tau.ac.il).

Abstract: We show that decentralized event-trigger can significantly reduce amount of
transmitted measurements in network-based control of parabolic systems governed by a
semilinear n-dimensional 1D diffusion PDEs. All measurements are sampled in time and space,
quantized by a logarithmic quantizer, and are subject to time-varying network-induced delays.

Keywords: partial differential equations; event-triggered control; networked control systems.

1. INTRODUCTION

Networked control systems is a very hot topic due to great
advantages they bring, such as low cost, reduced weight,
simple installation/maintenance, long distance control,
etc. In this paper we study the stability of semilinear
parabolic systems under network-based control, which
are potentially of a great interest in a long distance
estimation/control of chemical reactors (see Smagina and
Sheintuch (2006)) or air polluted areas (see, e.g., Koda
and Seinfeld (1978); Court et al. (2012)). In such systems
it is natural to assume that only point measurements
are available, i.e. several sensors measure the output in
certain space points. In Fridman and Blighovsky (2012) an
estimate of the time-sampling that preserves the stability
of a diffusion equation under point measurements has
been obtained. However, these conditions for some systems
may lead to a small sampling interval resulting in a high
workload of the communication network.

In this paper we show that the workload can be signif-
icantly reduced by means of decentralized event-trigger.
The key idea is to transmit only the measurement whose
deviation from the previously sent one is greater than a
weighted norm of the current measurement. This approach
proved its efficiency in finite-dimensional networked con-
trol systems Tabuada (2007); Wang and Lemmon (2011);
Mazo and Tabuada (2011); Yue et al. (2013); Peng and
Yang (2013). In Hu and Yue (2012); Garcia and Antsaklis
(2013) event-triggered control of finite-dimensional sys-
tems with quantized measurements has been studied. In
Garcia and Antsaklis (2013) a model-based approach has
been applied to network-based control. In Hu and Yue
(2012) the system similar to the one we consider has been
studied but with finite-dimensional plant.

1.1 Notations

The fact that P ∈ R
n×n is symmetric positive-definite is

denoted by P > 0, symbol ∗ stands for the symmetric
terms of a matrix. The symbol N0 stands for a set of

⋆ This work is supported by Russian Science Foundation (grant 14-
29-00142).

nonnegative integers, C1 denotes a set of smooth functions,
H1(0, l) is Sobolev space of absolutely continuous functions
z : [0, l] → R

n with the square integrable zx. Other
notations are standard.

1.2 Useful inequalities

Lemma 1. (Halanay’s inequality, Halanay (1966)). If 0 <
δ1 < δ and V : [t0 − τM ,∞) → [0,∞) is absolutely
continuous function such that

V̇ (t) ≤ −δV (t) + δ1 sup
−τM≤ θ≤ 0

V (t+ θ), t ≥ t0,

then

V (t) ≤ e−α(t−t0) sup
−τM≤ θ≤ 0

V (t0 + θ), t ≥ t0,

where α > 0 is a unique positive solution of

α = δ − δ1e
ατM . (1)

Lemma 2. (Wirtinger’s inequality, Hardy et al. (1952)). If
f ∈ H1(0, l) is a scalar function such that f(0) = 0 or
f(l) = 0 then

∫ l

0

f2(ξ) dξ ≤
4l2

π2

∫ l

0

[

df

dξ

]2

dξ.

2. PROBLEM STATEMENT

We consider the system schematically presented in Fig. 1.
Below we describe each block.

2.1 Plant: diffusion PDE

We consider diffusion equation

zt(x, t) = ∆Dz(x, t)− βzx(x, t) +Az(x, t)

+ φ(z(x, t), x, t) +Bu(x, t), x ∈ [0, l], t ≥ 0
(2)

with the state z(x, t) = [z1(x, t), . . . , zn(x, t)]T ∈ R
n,

control input u ∈ R
r, constant matrices A ∈ R

n×n,
B ∈ R

n×r, and a matrix of convection coefficients β =
diag {β1, . . . , βn} ∈ R

n×n. The diffusion term is given by

∆Dz(x, t) =

[

∂

∂x
(d1(x)z

1
x(x, t)), . . . ,

∂

∂x
(dn(x)z

n
x (x, t))

]T



Fig. 1. System representation

with di(x) ∈ C1 such that 0 < d0i ≤ di(x) for x ∈ [0, l],
i = 1, . . . , n. Following Bar Am and Fridman (2014) we
assume that the function φ ∈ C1 satisfies

φT (z(x, t), x, t)φ(z(x, t), x, t) ≤ zT (x, t)Qz(x, t) (3)

with a positive definite Q ∈ R
n×n.

We consider (2) under the Dirichlet

z(0, t) = z(l, t) = 0, (4)

Neumann
zx(0, t) = zx(l, t) = 0, (5)

or mixed boundary conditions

zx(0, t) = Γz(0, t), z(l, t) = 0 (6)

with Γ = diag {γ1, . . . , γn} ≥ 0.

The open-loop system (2) under the above boundary
conditions may become unstable for large enough φ (see,
e.g., Curtain and Zwart (1995)).

2.2 Sampled measurements with event-trigger

Divide the spatial domain into N subdomains

0 = x0 < x1 < . . . < xN = l, xj − xj−1 = ∆j ≤ ∆.

We assume that there are N sensors with time samplings

0 = s0 < s1 < . . . , sk+1 − sk ≤ h,

lim
k→∞

sk = ∞, k ∈ N0.

The j-th sensor measures the value of Cz(x, t) in the

middle of the sampling interval x̄j =
xj−1+xj

2 at time
instants sk, that is, the measurements are

yj,k = Cz(x̄j , sk), (7)

where C ∈ R
m×n.

To reduce the workload of the communication network
each sensor uses a triggering rule to decide whether to
send the newly sampled measurement or not. Denote by
ŷj,k the last sent measurement by the sensor j at time
instant sk. Similar to Tabuada (2007); Yue et al. (2013)
the newly sampled measurement yj,k is not transmitted if
the following relation holds

(ŷj,k−1 − yj,k)
T
Ω(ŷj,k−1 − yj,k) ≤ ε yTj,kΩyj,k, (8)

where ε > 0, Ω ∈ R
m×m is a positive definite matrix.

Therefore,

ŷj,k =

{

ŷj,k−1, if (8) is valid,

yj,k, if (8) is not valid,
(9)

where j = 1, . . . , N , k ∈ N0, ŷj,−1 = 0.

Fig. 2. Logarithmic quantizer

2.3 Logarithmic quantizer

Let us choose some ρ ∈ (0, 1), u0 > 0 and define

v0 =
1 + ρ

2ρ
u0, δq =

1− ρ

1 + ρ
.

Following Elia and Mitter (2001) we introduce a logarith-
mic quantizer with a density ρ as a mapping q : R → U =
{±ρiu0 | i ∈ Z} ∪ {0}

q(y) =







ρiu0, ρi+1v0 < y ≤ ρiv0,
0, y = 0,

−q(−y), y < 0.

For a vector y = (y1, . . . , ym)T ∈ R
m we define q(y) =

(q1(y
1), . . . , qm(ym))T , where qi are scalar logarithmic

quantizers with densities ρi.

Logarithmic quantizer implements a simple idea: to stabi-
lize the system one should reduce quantization error near
the origin by increasing the density of quantization levels,
while far from the origin quantization levels can be sparse
(see Fig. 2).

2.4 Networked controller

We assume that the measurements from all sensors are sent
synchronously at time instants sk. The quantized mea-
surements from the j-th sampling interval are transmitted
to the controller through a communication network and,
therefore, are subject to time-varying bounded delays τsck .
Linear feedback signals are transmitted through a com-
munication network to a ZOH with time delays τ cak . Thus,
the updating time of the ZOH is tk = sk + τk, where the
overall network induced delay τk = τ sck + τ cak is assumed
to be such that tk ≤ tk+1. We set

u(x, t) ≡ 0, x ∈ [xj−1, xj), t < t0.

Then the overall dynamics of the closed-loop system for
x ∈ [xj−1, xj) can be presented in the form

zt(x, t) = ∆Dz(x, t)− βzx(x, t) +Az(x, t)

+ φ(z(x, t), x, t), t ∈ [0, t0),

zt(x, t) = ∆Dz(x, t)− βzx(x, t) +Az(x, t)

+ φ(z(x, t), x, t)−BKq(ŷj,k), t ∈ [tk, tk+1),
(10)



where K ∈ R
r×m, k ∈ N0.

The existence of a continuable for t ≥ 0 strong solution
to the system (10) under the boundary conditions (4),
(5), or (6) can be proved by arguments of Fridman and
Bar Am (2013) for any z(·, 0) ∈ H1(0, l) satisfying the
corresponding boundary conditions.

3. EVENT-TRIGGERED STABILIZATION UNDER
POINT MEASUREMENTS

Denote by ẑ(x̄j , sk) the state that corresponds to ŷj,k, that
is, ŷj,k = Cẑ(x̄j , sk). Define the following quantities

vj,k = q(ŷj,k)− Cẑ(x̄j , sk),

ej,k = ẑ(x̄j , sk)− z(x̄j , sk),

σk(x) = z(x̄j , sk)− z(x, sk), x ∈ [xj−1, xj).

(11)

Here j = 1, . . . , N , k ∈ N0. Note that the quantity ej,k is
defined following Liu et al. (2012). These quantities can be
interpreted as errors due to quantization, triggering, and
space sampling, respectively. Denote the overall measure-
ments delay by

τ(t) = t− sk, t ∈ [tk, tk+1).

Then
sup
t≥t0

τ(t) ≤ h+ sup
k

τk , τM .

Using these notations we rewrite the quantized measure-
ments as

q(ŷj,k) = vj,k + Cej,k + Cσk(x) + Cz(x, t− τ(t)). (12)

Then the closed-loop system (10) can be rewritten in the
following form

zt(x, t) =∆Dz(x, t)− βzx(x, t) +Az(x, t)

+ φ(z(x, t), x, t)−BKCz(x, t− τ(t))

−BK [vj,k + Cej,k + Cσk(x)] ,

x ∈ [xj−1, xj), t ∈ [tk, tk+1),

j = 1, . . . , N, k ∈ N0.

(13)

To study the stability of (13) in the absence of event-
trigger, measurements sampling, and quantization (vj,k =
0, ej,k = σk(x) ≡ 0) one can use an n-dimensional exten-
sion of Lyapunov-Krasovskii functional from Fridman and
Orlov (2009):

V (t) = V1(t) + V2(t) + VS(t) + VR(t) + VB(t), (14)

where

V1(t) =

∫ l

0

zT (x, t)P1z(x, t) dx,

V2(t) =
n
∑

i=1

∫ l

0

pi3di(x)(z
i
x(x, t))

2 dx,

VS(t) =

∫ l

0

∫ t

t−τM

eδ(s−t)zT (x, s)Sz(x, s) ds dx,

VR(t) =

τM

∫ l

0

∫ 0

−τM

∫ t

t+θ

eδ(s−t)zTs (x, s)Rzs(x, s) ds dθ dx,

VB(t) = b
n
∑

i=1

pi3di(0)γi(z
i(0, t))2

with P1 > 0, pi3 > 0, S > 0, R > 0, b = 0 for
(4), (5) and b = 1 for (6). In Fridman and Blighovsky

(2012) spatially sampled measurements have been con-
sidered (vj,k = 0, ej,k = 0, σk(x) ̸≡ 0), where Ha-
lanay’s inequality (Lemma 1) has been applied to “com-
pensate” the term σk(x) in the derivative of Lyapunov-
Krasovskii functional (14). In this paper to compensate
the cross terms with vj,k and ej,k we apply S-procedure
(see, e.g., Yakubovic (1977)) to appropriate quadratic
forms. Namely, we note that each component of vj,k =
(v1j,k, . . . , v

m
j,k)

T satisfies the sector inequality (see Fig. 2

and, e.g., Fu and Xie (2005); Zhou et al. (2010))

0 ≤ λi
q

(

δiq ŷ
i
j,k − vij,k

) (

vij,k + δiq ŷ
i
j,k

)

, (15)

with λi
q ≥ 0, δiq = (1−ρi)/(1+ρi). Furthermore, triggering

condition (8), (9) is equivalent to

0 ≤ ε[z(x, t− τ(t)) + σk(x)]
TCTΩC×

[z(x, t− τ(t)) + σk(x)]− eTj,k(t)C
TΩCej,k(t).

(16)

Nonnegative quadratic forms (15) and (16) contain the
terms −λi

q(v
i
j,k)

2 ≤ 0 and −eTj,kC
TΩCej,k ≤ 0 that will

compensate the cross terms with vj,k and ej,k.

Now we are in position to formulate the stability condi-
tions.

Theorem 1. (i) Let there exist positive definite n× n ma-
trices P1, P3 = diag

{

p13, . . . , p
n
3

}

, R, S, m × m nonnega-

tive matrices Ω, Λq = diag
{

λ1
q, . . . , λ

m
q

}

, n × n matrices

P2 = diag
{

p12, . . . , p
n
2

}

, G, and scalars λφ ≥ 0, 0 < δ1 < δ
such that

Ξ ≤ 0,

[

R G
GT R

]

≥ 0, (17)

where

Ξ =

























Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 P2 Ξ17 Ξ18 Ξ19

∗ Ξ22 −P3β 0 Ξ25 P3 Ξ27 Ξ28 Ξ29

∗ ∗ Ξ33 0 0 0 0 0 0
∗ ∗ ∗ Ξ44 Ξ45 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 Ξ57 0 Ξ59

∗ ∗ ∗ ∗ ∗ −λφIn 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 Ξ79

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Λq 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99

























Ξ11 = S − e−δτMR+ P2A+ATP2 + λφQ+ δP1,

Ξ12 = P1 − P2 +ATP3, Ξ13 = 0, Ξ14 = e−δτMGT ,

Ξ15 = e−δτM (R−GT )− P2BKC,

Ξ17 = Ξ19 = −P2BKC, Ξ18 = −P2BK,

Ξ22 = τ2MR− 2P3, Ξ25 = Ξ27 = Ξ29 = −P3BKC,

Ξ28 = −P3BK, Ξ33 = D0(δP3 − 2P2),

Ξ44 = −e−δτM (S +R), Ξ45 = e−δτM (R−G),

Ξ55 = −2e−δτMR+ e−δτM [G+GT ] + CTΛq∆
2
qC

+ εCTΩC − δ1P1,

Ξ57 = CTΛq∆
2
qC + εCTΩC,

Ξ59 = Ξ79 = CTΛq∆
2
qC, Ξ99 = CTΛq∆

2
qC − CTΩC,

Ξ77 = CTΛq∆
2
qC + εCTΩC − δ1P3D0

π2

∆2
.

D0 = diag
{

d01, . . . , d
0
n

}

, ∆q = diag
{

δ1q , . . . , δ
m
q

}

, δiq = (1−
ρi)/(1+ρi). Then a unique strong solution to the Dirichlet
boundary value problem (4), (7), (8), (9), (10) initialized
with

z(·, 0) ∈ H1(0, l) : z(0, 0) = z(l, 0) = 0



for t ≥ t0 satisfies the inequality
∫ l

0

zT (x, t)P1z(x, t) dx+
n
∑

i=1

∫ l

0

pi3di(x)(z
i
x(x, t))

2 dx

≤ e−α(t−t0)

[
∫ l

0

zT (x, t)P1z(x, t) dx

+
n
∑

i=1

∫ l

0

pi3di(x)(z
i
x(x, t))

2 dx+b
n
∑

i=1

pi3di(0)γi(z
i(0, t))2

]

(18)

with b = 0, where α is a unique positive solution of (1).

(ii) If conditions of (i) are satisfied with Ξ13 = −P2β then
a unique strong solution to the Neumann boundary value
problem (5), (7), (8), (9), (10) initialized with

z(·, 0) ∈ H1(0, l) : zx(0, 0) = zx(l, 0) = 0

for t ≥ t0 satisfies (18) with b = 0, where α is a unique
positive solution of (1).

(iii) If in addition to the conditions of (i)

(δpi3 − 2pi2)di(0)γi + pi2βi ≤ 0, i = 1, . . . , n,

then a unique strong solution to the mixed boundary value
problem (6), (7), (8), (9), (10) initialized with

z(·, 0) ∈ H1(0, l) : zx(0, 0) = γz(0, 0), z(l, 0) = 0

for t ≥ t0 satisfies (18) with b = 1, where α is a unique
positive solution of (1).

Proof is an extension of the proof from Fridman and
Blighovsky (2012) that uses Wirtinger’s and Halanay’s
inequalities (Lemmas 1 and 2).

Remark 1. Here we assume that all sensors are synchro-
nized. If this is not the case then one should define different
measurement delays τj(t) for each space interval [xj−1, xj).
Then to use Halanay’s inequality one could consider

−Nδ1 sup
θ∈[−τM ,0]

V (t+ θ) ≤ −δ1

N
∑

j=1

V (t− τj(t))

≤ −δ1

N
∑

j=1

∫ xj

xj−1

zT (x, t− τj(t))P1z(x, t− τj(t)) dx

− δ1

N
∑

j=1

∫ xj

xj−1

n
∑

i=1

pi3d
0
i [z

i
x(x, t− τj(t))]

2 dx.

But this approach seems to be quite restrictive since the
terms

−

∫ xj

xj−1

zT (x, t− τk(t))P1z(x, t− τk(t))

−

∫ xj

xj−1

n
∑

i=1

pi3d
0
i [z

i
x(x, t− τk(t))]

2 dx ≤ 0

with j ̸= k are ignored.

Remark 2. Instead of the decentralized triggering rule (8)
one can think of a centralized event-trigger of the form

N
∑

j=1

(ŷj,k−1 − yj,k)
T
Ω(ŷj,k−1 − yj,k) ≤ ε

N
∑

j=1

yTj,kΩyj,k,

(19)
where all the measurements yj,k are transmitted to the
event-trigger and if (19) is violated all the measurements
are quantized and transmitted to the controllers. In the

T (sec.) 1 2 3 4 5 6

No event-trigger 112 223 334 445 556 667
Event-trigger (19) 70 139 209 278 348 417
Event-trigger (8) 70 137 202 264 330 408

Table 1. Average amount of sent measurements

case of uniform space samplings ∆j = ∆ the results
of Theorem 1 hold for (19). However, as the example
demonstrates, decentralized event-trigger mechanism (8)
(that is more realistic if the sensors are not close to each
other) is more effective.

4. EXAMPLE: CHEMICAL REACTOR

Consider the chemical reactor model from Smagina and
Sheintuch (2006) governed by (2) under the mixed bound-
ary conditions (6) with n = 2, r = m = 1, l = 10,
D0 = diag {0.01, 0.005}, β = diag {0.011, 1.1}, K = 1,
Γ = diag {6, 111}, Q = diag

{

10−4, 0
}

, u0 = 1, ρi = ρ =
0.9,

A =

[

0 0.01
−0.45 −0.2

]

, B =

[

1
1

]

, C = [1 0] , φ =

[

φ1(z
1)

0

]

.

This model accounts for an activator temperature z1 that
undergoes reaction, advection, and diffusion, and for a fast
inhibitor concentration z2, which may be advected by the
flow. The elements of β are convective velocities.

We divide [0, l] into N = 20 intervals, set δ = 2, δ1 = 0.9 δ
and consider uniform time samplings sk = kh, k ∈ N0.

For ε = 0 conditions of Theorem 1 (iii) are satisfied
with τM = τ0M = 0.009 (α ≈ 0.1968). If τsck = τ cak =
0 this implies that each sensor transmits [T/τM ] + 1
measurements on the time interval [0, T ]. For ε = 10−4

we find τM = τ εM = 0.0072 (α ≈ 0.1974). In Table 1
one can see the average amount of the sent measurements
by one sensor in case of the system without event-trigger
(ε = 0), with event-trigger (19), and with decentralized
event-trigger (8). Though τεM < τ0M , the amount of sent
measurements is reduced by approximately 40%. Note that
the decentralized event-trigger (8) has a slight advantage
over (19). Moreover, according to (1) the decay rate α gets
larger with decrease of τM . That is, the event-trigger allows
to reduce significantly the workload of a networked control
system while the decay rate is preserved.

5. CONCLUSIONS

We derived stability conditions for the networked diffusion
control by point measurements with decentralized event-
trigger and quantization. By an example we demonstrated
that event-trigger mechanism can significantly decrease
the network workload preserving decay rate of conver-
gence.
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