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METHODOLOGY ARTICLE Open Access

Revealing hidden information in
osteoblast’s mechanotransduction through
analysis of time patterns of critical events
Gianluca Ascolani1,2, Timothy M. Skerry1, Damien Lacroix2,3, Enrico Dall’Ara1,2 and Aban Shuaib1,2*

Abstract

Background: Mechanotransduction in bone cells plays a pivotal role in osteoblast differentiation and bone

remodelling. Mechanotransduction provides the link between modulation of the extracellular matrix by mechanical

load and intracellular activity. By controlling the balance between the intracellular and extracellular domains,

mechanotransduction determines the optimum functionality of skeletal dynamics. Failure of this relationship was

suggested to contribute to bone-related diseases such as osteoporosis.

Results: A hybrid mechanical and agent-based model (Mech-ABM), simulating mechanotransduction in a single

osteoblast under external mechanical perturbations, was utilised to simulate and examine modulation of the

activation dynamics of molecules within mechanotransduction on the cellular response to mechanical stimulation.

The number of molecules and their fluctuations have been analysed in terms of recurrences of critical events. A

numerical approach has been developed to invert subordination processes and to extract the direction processes

from the molecular signals in order to derive the distribution of recurring events. These predict that there are large

fluctuations enclosing information hidden in the noise which is beyond the dynamic variations of molecular

baselines. Moreover, studying the system under different mechanical load regimes and altered dynamics of

feedback loops, illustrate that the waiting time distributions of each molecule are a signature of the system’s state.

Conclusions: The behaviours of the molecular waiting times change with the changing of mechanical load

regimes and altered dynamics of feedback loops, presenting the same variation of patterns for similar interacting

molecules and identifying specific alterations for key molecules in mechanotransduction. This methodology could

be used to provide a new tool to identify potent molecular candidates to modulate mechanotransduction, hence

accelerate drug discovery towards therapeutic targets for bone mass upregulation.

Keywords: Osteoblast mechanotransduction, Molecular network, Fluctuations, Subordination theory, Directing

process, Waiting time distribution

Background
Osteoporosis is a skeletal disease, characterised by in-

creased probability of bone fractures, that costs the NHS

1.8 billion per year, with a projected increase in cost

rising to over £2.2 billion per year in 2025 [1]. The

disease is a product of perturbed bone remodelling (BR)

process leading to aberrant bone architecture, subopti-

mal extracellular matrix (ECM) properties and reduction

in bone mass [2, 3]. Consequently reduction in bone

strength is observed leading to an increased fracture risk

in connection with falls in domestic circumstances. BR

is driven by the activity of osteocytes (OCy), osteoblasts

(OB) and osteoclasts (OC) in response to mechanical

and biochemical stimulation. OCs are involved in bone

resorption, while OBs drive bone formation and were

shown to sense mechanical stimulation [4]. Nonetheless

it is widely believed that OCys are the primary mechano-

sensors in bone, integrating bio-mechanical signals in

their microenvironment to orchestrate bone resorption

and formation within the BR process. This requires

transduction of extracellular signals to coordinated
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cellular responses; ultimately modulating the ECM’s ma-

terial properties. Though the mechanisms governing BR

has been under examination for at least 50 years, how-

ever, the intricate interplay between its components at

the molecular and cellular level is not well understood

[2, 3, 5–7]. Hence, improved understanding of the mech-

anisms to transduce mechanical stimuli (mechanotrans-

duction) into cellular activities is fundamental to better

comprehend the development of osteoporosis and the

effect of related treatments [8–10].

Deformation or strain caused by mechanical loading

propagates through bone structure, is detected by OBs,

and primarily OCy which are embedded within the bone,

via mechanoreceptors such as integrins [11–14]. After

mechanosensation the mechanical signal is transformed

into cellular responses via the process of mechanotrans-

duction. Integrins are pivotal for OB activation and ex-

pression of osteogenic ECM proteins, driving osteogenic

differentiation [2, 3, 15, 16]. Stretching and compression

of non-homogeneous tissue locally depends on the

mechanical properties of the ECM milieu, which arise

due to ECM’s protein composition, and consequently

affects OCys and their mechanotransduction. There-

fore, it is believed that mechanotransduction of the

different populations of OBs and OCys drives the

orchestration between BR and the process of bone

adaptation over time [17].

Mechanotransduction has been investigated with

experimental [8, 18, 19] and computational [20–24]

approaches; but many aspects of this interaction in bone

cells have not yet been explored. This is due to the

experimental limitation in modelling physiological mo-

lecular events in live cells and the lack of accurate

experimental techniques to validate the computational

models that could predict such events [25]. Most

in vitro data are obtained using stretched cells in mono-

layer cultures, these may have different ECM relation-

ships to living bone, while measurements based on

traction force microscopy are affected by low spatial

resolution and constraints in the orientation of applied

forces [26]. Conversely, in silico molecular kinetics

models using molecular dynamics (MD), ordinary differ-

ential equations (ODEs) and partial differential equations

(PDEs) are limited to a simulated time which is in the

order of 100 ns [27, 28]. Moreover, continuous approaches

lack the possibility to consider discrete and highly hetero-

geneous systems that can form local recurrent structures

among the molecules [29–31].

To address these issues, in this study a hybrid

mechanical-agent based model (Mech-ABM) was used

[32] and a numerical technique for analysis of intra-

cellular events was developed to examine combined bio-

mechanical stimulations. The advantage of using an

ABM consists in generating a complex dynamics based

on simple rules for the physical interactions that would

not be easily obtainable in a continuous representation

of the system and would be experimentally difficult to

control [33, 34]. ABMs are suitable to mimic 3D cellular

systems where the dynamics of the signalling and the oc-

currence of intercellular events can be tracked at the

molecular scale. Furthermore, ABMs of various interact-

ing molecules are capable of reproducing local hetero-

geneity with respect to the number of molecular species,

although at larger spatial scale the system appears

homogeneous. In our model the heterogeneity of

molecular populations responding to directional and

time modulated stimuli can be considered [35, 36].

The possibility of having a specific subpopulation of

such molecules equal to zero, which is not a global be-

haviour of the system, cannot be reproduced well with

molecular differential equation or with gross grained

compartmentalization of the space. Indeed, the scarcity

of specific populations implies that specific reactions are

excluded. The interaction range gives the unit of meas-

ure that defines what is local in such models. The chal-

lenge with ABMs is that the smaller the range, the larger

the computational cost to identify which molecules

interact. Stochastic activation of agents given by their

internal clocks add another source of indetermination to

which reactions are available for an agent at a specific

time and place. This is highlighted with the utilisation of

Mech-ABM to examine the link between integrin mech-

anical properties, mechanotransduction and cell-ECM

interaction. The model forecasted that heterogeneity of

integrin population is influential in modulating cellular

response to mechanical excitation and the emergence of

molecular mechanical memory [32]. The aim of this

study was to use the Mech-ABM of the OB to study

the effect of external mechanical stimuli on the local

molecular events within this cell.

Specifically, the ABM simulated intracellular

mechanotransduction dynamics emerging due to sim-

ultaneous modulation of mechanical excitation, the

latter was simulated via the mechanical model. The

modulations of mechanotransduction pathways due to

these mechanical events were examined. This was

achieved by analysing the presence of time structure

specific to the mechanotransduction network and the

analysis of fluctuations produced in the stochastic

representation of the non-ergodic ABM system in

terms of recurrences. This approach allowed for cut-

ting out fluctuations sequentially at different specific

time scales and analyse the results also for a system

in an out-of-equilibrium condition perturbed by

external mechanical signals sensed by the integrins on

the membrane of the OB.

We acknowledge that some assumptions made

within the model will impose a level of constraint on
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how the data is interpreted, for instance that an OB

is a spherical cell and that all intracellular molecules

involved are homogenously distributed within the cyto-

plasm and the nucleus. Another limitation is that our data

is illustrating the dynamics of a single OB, while bone

formation at a spatial location within bone is driven by a

collection of OBs. Nonetheless, projecting the complex

system of multi variable agents to the single time compo-

nents does not reduce the system to a trivial process. The

spatial component remains essential, and so the model

predicts that within the noise of mechanotransduction

there is hidden information characteristic to each class of

molecule and of the process dynamics.

Implementation

We used Mech-ABM to mimic the dynamics in the

mechanotransduction pathway of a single OB during the

deposition of ECM factors under external mechanical

perturbations [32]. Each agent represents a specific mol-

ecule, which has a relevant role in the process of ECM

formation and is included in the mechanotransduction

network (see Fig. 1a). The agents move following a

Fig. 1 Mechanotransduction molecular network. Schematic representation of all the molecular species simulated in the ABM (white boxes). The

arrows show the interactions. Multiple black arrows entering in a white boxes describes mass action reactions, while red arrows coming out (or

arrowheads) means dissociation of molecular complexes or energetic relaxation of the molecule. Orange lines separate osteoblast compartments.

In the coloured boxes, the network modules are enclosed. (a) Complete diagram with the external stimuli (cyan), the energetic MAPK mod. (pink),

the transcription mod. (blue), the translation mod. (green) and the ECM proteins (red). (b) Part of the diagram showing only the simulation

dependent delays and the respective molecules. Interactions depicted in black have fixed parameters
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constrained Brownian motion in one of three geomet-

rical compartments - the cell nucleus, the cytoplasm,

and the extracellular region surrounding the cell (orange

borders in Fig. 1a). When the distance between two

agents is shorter than the interaction range (Rinter), a set

of rules depending on the internal state of the agents are

applied to each agent involved in the interaction. Simi-

larly, single agents can trigger rules due to their internal

clock, state or information exchanged. The actions

resulting from the application of rules triggered by an

agent may involve:

1. The changing of its own state,

2. Self-destruction and degradation,

3. The production of information causing:

a. Other existing agents to change their states,

b. The creation of new agents, or

c. Triggering other actions (e.g. becoming static).

In terms of agents, the reactions between two

molecules generating a molecular complex are of

two types (Supplementary Fig. S1). The first requires

the change of state of one agent; the second involves

the change of the state of both agents. Reactions

referring to a transfer of a molecular messenger are

obtained by the change of the states of the agents

involved. Dissociations to two or more molecules of

complexes regulated by activation cycles switch

(ACS) and molecular persistence in a given state

have two ways. One way is the change of state of

the original agents leading to appearance of a different

states and the full dissociation/break-up of the complex.

The other consists of state change of some agents forming

the complex, thus only the molecules with changed state

dissociate/break-away from the complex and consequently

the complex does not fully dissociate.

Among the molecules simulated there are proteins

(e.g. integrins), ribosomes, mRNA (messenger RNA) and

vesicles. For the sake of simplicity, other elements like

amino acids, sophisticated organelles (e.g. Golgi appar-

atus), molecules and complexes not included in Fig. 1a

were excluded. The rules used in the proposed model

are based on the affinity of the molecules, presented in

said figure, that were derived from chemical reactions

[24, 37, 38]. The updating scheme adopted in the model

[39] requires that, at each iteration, all the molecules are

aggregated and checked for possible rules to be applied.

These interactions that drive the model dynamics are

either: 1) binary binding of molecules based on one

molecule querying all the available molecules in the

sphere with radius Rinter and then requesting the

interaction with the nearest one; 2) state transition,

stabilisation and complex dissociation activated at the

expiration of an internal timer set to a random time

sampled from a probability function Ψ(t), when the

complex changes state and decreased of 1 unit of

time at each iteration.

The chemical dissociation of a complex molecule into

two components occurring in the absence of other inter-

actions with the surrounding environment due to lack of

physical knowledge is described as a Poisson decay

process. It follows that the times of occurrence of dis-

sociation events are uniformly distributed. Even though

Ψ(t) does not give any prior knowledge of the dissoci-

ation events, it is still possible to choose the average and

support of the waiting time (WTD) distribution based

on experimental evidence [40, 41].

In the simulated Mech-ABM, among various signals,

we generated the accumulated number of agents

partitioned by their state variables mapping to their

equivalent biological attributes, thus represented distin-

guishable molecular subpopulations (e.g. active/inactive

and bound/unbound).

Stochastic processes were integrated within the Mech-

ABM, whereby stochastic updates of every agent’s global

and local variable over time; specifically the ACS vari-

able, were introduced [39]. Hence, simulated molecules

are present in at least two complementary isoforms: ac-

tive and inactive. In macroscopic steady state conditions,

when one isoform produces a smooth signal close to

zero axis interrupted by positive spikes, the other gener-

ates a negative fluctuation around a positive nominative

value. Indeed, the process becomes immediately much

more complex when there are not only active and in-

active states, but also interactions with other molecular

species [5, 7]. Comparing multiple simulations, it can be

seen that spikes between different repetitions are not

synchronized, and the time intervals between spikes of

the same signal are not constant. These fluctuations,

which are typical of random processes, can be difficult

to associate with specific reactions in presence of a het-

erogeneous population of agents undergoing different

interactions. Nonetheless, formation of patterns and

information of the complexity of a non-ergodic system

can be extracted.

Signal transformation

The agents generated by the ABM contain time-

dependent information relative to their position, velocity,

compartment of origion, molecular activation states,

bound state and an internal clock. If each agent has n
variables, and there are S agents, then the state of the

system can be represented in a n × S dimensional phase

space. In order to reduce the dimensionality of the sys-

tems phase space, in this study we neglected all the in-

formation relative to the position and velocity of the

agents and we considered only the molecular activation

state, the bound state and, when biologically relevant,
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the intracellular compartment. These quantities are cat-

egorical so we can label them with discrete indices. The

signals analysed are the sum of molecules with the same

labelling. If each of these quantities are state variables

they have values yi(t), where i is the index for the spe-

cific state variable and y is the value dependent on the

time t. Given the stochastic origin of the simulations,

the resulting time series are fluctuating signals, which

can be decomposed in two components: the trend, Yi(t),
and the fluctuations around the trend, (t). We intro-

duced a method to process the signal in order to obtain

a positive defined time series of the noisy component by

using the time average, a filter that removes the random

fluctuations faster than a time lapse ∆T:

yi tð Þ ¼ ÂΔT yi tð Þ →
ΔT→∞

Y i tð Þ;

where the over bar represents the time averaged signal

and the operator is the moving average operator:

ÂT ¼
1

ΔT

Z tþΔT

t
�ð Þdt0:

This approach allowed us to cut out fluctuations

sequentially at different specific time scales and

analyse the results also for a system in an out-of-

equilibrium condition perturbed by external mechan-

ical signals sensed by the integrins on the membrane

of the OB.

The periodic stepwise external perturbation changes

the equilibrium state according to the frequency. For fast

variations compared with the response of the molecules,

the system remains out of equilibrium for the whole

simulation while the molecules try to reach the equilib-

rium condition. The average of the signal, being non-

constant in time, is one of the reasons why the system is

not ergodic. Therefore, the trend from each signal was

removed in order to obtain the fluctuations around the

trend.

Subordination theory and detection of events

In this work, we propose a numerical method to dis-

entangle random processes, called subordinated pro-

cesses [42], into their respective parent process and

directing process in order to analyse the latter in

terms of patterns of recurrence of events [43]. A sub-

ordinate process, mathematically defined in [43–46],

can be created by first generating a leading process, which

can be can be deterministic or derived from a random dis-

tribution X, so that a trajectory x has values x(t*i) at

discrete positive times t*i with t* − t*i - 1 =∆t* > 0 ∀ i ∈ N.

If we rescale the time such that ∆t* = 1 unit of time, then

t*i = i and the parent process is described by x(t*i) = x(i)

where the steps x(t*) − x(t*i - 1) are derived from X. Then
in a similar way a directing process T is generated from a

random distribution with positive support such that

τi defines a monotonically increasing function. tðt�i Þ

¼
Pi

j¼0T j The subordinated function is defined as

the trajectory x(t). Generally t* is called the natural time

and t is called the physical time, which is the macroscopic

and experimentally observable time. The approach pre-

sented necessitated detection of critical events in the

system under analysis. The system within the Mech-ABM

is inherently fluctuating, leading to variation in the quan-

tity of molecules at a given time. In order to detect the

events for a molecule i, first, the time series, yi, was filtered
with a moving average over a time lapse τ1 on each state

variable, such that yi
I(t) = Âτ1 yi(t). Then the operator Âτ2

was applied, once more, to the variation of each molecular

specie i from its estimated mean ∆yi
I(t) = yi

I(t) − yi(t); the
result of which is yi

II(t) = Âτ2 ∆yi
I(t), where the intervals of

time are constrained by τ1 > τ2. The first moving average

has been used to de-trend the time series from the signal

(intended as the component with slower dynamics). The

subsequent second moving average has been applied to

determine the amplitude σi(t) of the second moment of

the non-local noise fluctuations yi
I(t) central with respect

to yi
II(t). The term non-local is intended as non-local in

time, and it includes all the times belonging to [t − τ2/2,
t + τ2/2] for each time t.

The time series ∆yi
I(t) fluctuates around zero. The

Hilbert transform, defined as the integral operator

Η̂ ¼ PV

Z

∞

−∞

�ð Þ
dτ

π t−τð Þ
;

has been used on the de-trended signals to derive the

symmetric envelope of the de-trended signal, yenv(t) =
│Ĥ yi

I(t)│, from which it has been subsequently

detracted. The result, yIII(t) = yI(t) − yenv(t), is a posi-

tive defined time series with enhanced prominent

peaks and dumped valleys close to the zero axis,

Fig. 2. For each component yi
III of the signal, the

peaks are detected as events ℰ, if the signal minus

one standard deviation of the fluctuations drops after

each peak, pn(t), below the corresponding preceding

peak value:

ℰ ¼ pn t1ð Þ; ∃t2 j yi
III t2ð Þ−σ i t2ð Þ < yi

III t1ð Þ
� �

:

The component yi
III has regions of small values; the

beginning and ending of those regions are detected as

events if the subtraction of one standard deviation of

the fluctuations to the signal drops below or increases

above the zero. The WTDs between peaks or the

time extent of peaks are considered. To avoid
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artefacts related to fixed bin size and to be able to

compare distributions obtained with different numer-

ical parameters (in general having different binning

sizes), we use a Kernel Density Estimator (KDE)

defined as:

KDE tð Þ ¼
1

w

Z tþw

t
K t−τð Þ �ð Þdτ

such that

Z

∞

−∞

K tð Þdt ¼ 1;

w is the support of the operator:

Signal post-processing

The directing process, defined as one component of

the subordinated signal and here numerically ob-

tained by detection of critical events, provides infor-

mation on the recurrences of large fluctuations of

the number of molecules rapidly reaching or depart-

ing from a given node of the network, Fig. 2. The

WTD of the directing process depends on the

chosen parameters so it is representative of the spe-

cific dynamics of the model. Due to the stochasticity

within the model and the applied mechanical stimu-

lation the critical events would be gamma distrib-

uted, and characterize by multimodality.

The integral distribution is first derived by weighing

each signal interim period (SIP) τ between two consecu-

tive events, y1
III(t) and y2

III(t + τ), with the amplitude of

the fluctuation y1
III(t). The area τ × y1

III(t) is a measure

of the minimum cumulated time that molecules in a

given state i, which have been involved in the same crit-

ical event, are going to spend in any state different from

i. We can see it as the cumulated dispersion time of

molecules sharing the same kinematics by departing

from the same node of the network.

The non-normalized distribution gave the amount of

the total number of molecules with the same averaged

dispersion time found inside the entire duration of the

sampled signal. All the signals have been de-trended and

positively defined. The WTD, ψ(τ) is the probability

density obtained by normalizing the integral distribution to 1.

Fig. 2 Subordinated process. On the top graph, the amount of molecules for the complex MEK + ERK in function of the time t is shown. This

curve represents the subordinated signal x(t). The trend of the signal, derived by time average, and the envelope, derived by Hilbert transform,

are used to detect the critical events. In the bottom graph, the signal interim period (SIP) τi between two consecutive critical events are shown in

function of the physical time ti
* = i. The curve t(ti

*), given by the sum of all the SIP τ up to the ith event, is a realization of the directing process. In

the same graph, the curve x(ti
*), given by the sum of all the steps ∆x up to the ith event, is a realization of the principal process. For convenience,

in the bottom graph, the fluctuations around the trend are shown. In the curve x(ti
*), regions with high number of events resemble a stretched

form of the subordinated signal while regions with few events manifest shrunk portions of the subordinated signal
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Simulations and sensitivity analysis

In order to verify the repeatability of the results, for each

set of parameters, we repeated 10 independent simulations.

For each simulation, we computed the distributions, and

we used the 10 independent results to derive the corre-

sponding punctual confidence interval, (notice that the top

and bottom of confidence intervals around the WTDs are

not probability functions). Due to the lack of knowledge of

the WTDs’ dependency on any parameter, mathematically

speaking, the computation of a variation of the distribution

ψ is unfeasible by applying an infinitesimal affine trans-

formation depending on a small variation of the parameters

[47]. Consequently, the only possible approach consisted in

running the stochastic simulations for each set of parame-

ters analysed. This computationally expensive choice was

validated by the change in modality of the WTDs shown in

the results. Indeed, the model was simulated for sufficiently

large variations of the parameters such that visible varia-

tions of the WTDs shape were obtained.

Given the large amount of data simulated and re-

sults generated, analyses were restricted to integrins,

RUNX2, and the RAF-MEK-ERK module (Fig. 1b).

These proteins and their interactions are of interest

due to their role in propagating mechanical forces

from plasma membrane to the nucleus of the OB;

their direct involvement in mediating osteogenesis

and the regulation of BR [48–50]. The results pre-

sented here are focused on the observations associ-

ated with the RAF-MEK-ERK module.

The generic ABM platform FLAME (Flexible Large-

scale Agent Modelling Environment) was used to

simulate intercellular mechanotransduction and mech-

anical loading [35, 36, 51, 52]. The simulations start

with 8890 agents (Table 1) evolving with a unit time

step corresponding to 1 s for a period of 9 · 104 s

(approximatively 24 h). The initial condition for the

position and velocity of the agents has been chosen at

random from a uniform distribution. The mechanical

load used to perturb the system is mimicked by a

periodic square wave function defined by its magni-

tude M and oscillation period P, while the phase is

set to zero, and the minimal magnitude is equal to

100 μPa, see Table 2.

The proportions of agents belonging to specific mo-

lecular species, at time equal to 0, are constant

among all the simulations performed, and their re-

spective values are shown in Table 1. The values of

the parameters for the baseline simulations are shown

in Table 2.

The simulations were run at the SHeffield Advanced

Research Computer cluster (SHARC) on machines with

2 x Intel Xeon E5–2630 CPUs and 64GB of RAM. Each

simulation required 8GB of RAM, 96 h of execution time

and approximatively 500GB of hard disk space.

Table 1 Number of molecules at time t = 0
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The effect on the fluctuations of the molecular popula-

tions were investigated by changing the magnitude M
and oscillation period P of the external perturbation and

the ACS of the molecular times T
•→ •

(•→ • represents

the initial and final transition states) for: TRAFact +MEKd→

MEKact, TMEKact → MEKd, TMEKact + ERKd → ERKact, TMEKact +

ERKd → MEKact, TERKact → ERKd, TERKact + RUNX2d → ERKact

(Fig. 1(b)).

All combinations for NM = 2 values of the per-

turbations magnitude, NP = 3 values of the pertur-

bations period, and NT = 5 values for each of the 6

dissociation/ACS times has been analysed, and the

Table 2 Parameters’ names, symbols and values
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explored parameter values were reported in

Table 3. Each simulation has been repeated 10

times for a total of 1800 simulations. Analyses and

additional results derived by the simulations are

stored in Google Drive (https://drive.google.com/

drive/folders/1Q0HFuvmv6NTxpBXfKQerR93I-4_

t9LAu?usp=sharing).

Phenomenological model and constraints

In Mech-ABM the number of simulated intercellular

molecules is much smaller than in the real biological

system, due to the large resources, in terms of mem-

ory and computational costs, required for simulating

ABMs in magnitude ≥109 of agents. This represents

an upper limit in the number of agents which can

be simulated. Another limit is given by spurious be-

haviours introduced by finite size and finite volume

effects [53] representing an inferior boundary condi-

tion for the number of agents in the model. In our

case, we have an average increasing number of

agents during the simulation, which limited us in the

initial maximum number of molecules. Nevertheless,

the model does not explicitly include any finite vol-

ume exclusion among molecules. Furthermore, the

proportions of some molecules such as integrins in a

specific state on the cell membrane are strongly

driven by the external perturbation independently

from the total number of integrins simulated. This

phenomenological aspect overrides many finite size

effects. Consequently, we assert that we can rescale

the concentrations of the molecules and maintain

the same averaged dynamic of the system by rescal-

ing the interaction range Rinter of the molecules ac-

cordingly [36, 53].

Results
Waiting time distributions and spectrograms

Dissociation times/ activation cycle

As MEK and RAF interact, Raf-MEK complex forms,

MEK is activated by phosphorylation, the Raf-MEK

complex dissociates, and consequently activated MEK

propagates mechanotransduction. Therefore, activation

dynamics of the Raf-MEK complex governed by posi-

tive and negative feedback loops dictate the complex

dissociation. Hence activation-deactivation cycles are used

interchangeably here. This was also observed for other

complexes such as MEK-ERK. Figure 3 shows that the

fluctuations of the complex RAF-MEK presents two

distinct dynamics depending on the dissociation time. For

dissociation time TRAFact +MEKd → MEKact of approximately

10 s, and varied mechanical oscillatory periods, the WTD is

a bimodal distribution with modes around the recurrence

times τ1 = 4 s and τ2 = 9 s, Fig. 3c. The distribution ψ(τ1) is

approximately 15% larger than in τ2. When TRAFact +

MEKd → MEKact is increased from 90 s to 1320 s, the fluctua-

tions dynamics changed; the peak at τ1 was reduced signifi-

cantly and the distribution has only one relevant maximum

at τ = 9 s. At TRAFact +MEKd → MEKact = 1320 s the inte-

grated distributions and the WTD show that a large portion

of the Signal Interim Period (SIP) fluctuations are close to

the mode and the occurrence of critical events is more

regular. For TRAFact +MEKd → MEKact = 10 s, we also see the

number of molecules with the same dispersion time is

below 200 for any delays and any period (P) of the

mechanical stimulation, while it is larger than 400 at τ2 for

dissociation times TRAFact +MEKd → MEKact > 10 s.

Reducing the values of ACS causes an increase of

molecular interactions and a corresponding effect on

the number of fluctuations in the signals. Such a

phenomenon can be seen in non-normalized histo-

grams of bounded molecular complexes like RAF +

MEK, Fig. 4a and Fig. 5a. Instead, free molecules

show a direct relation between the size of the fluctua-

tions and the dissociation/deactivation value, Fig. 4b-c

and Fig. 5b-c. Nevertheless, we have observed that

the tendency of higher amount of events for smaller

value of ACS (T
•→ •

< 1320 s) does not always hold;

see Fig. 6 a-c. In such cases, after the initial increase

of the number of events, there is saturation. Decreasing

ASC (T
•→ •

< 1320 s) further cause a variation in the

dynamics, and the quantity of critical events becomes

Table 3 Parameters ranges: Names, symbols, unit of measures and list of values simulated. Bold quantities represent the baseline

values. Where no baseline is present, then all possible combinations has been considered. Each set of parameters has been

independently repeated 10 times
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Fig. 3 (See legend on next page.)
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directly proportional to the value of the relaxation/dis-

sociation time.

Mechanical perturbations

The functional form of the external perturbation is a

periodic square wave which is completely characterized

by the amplitude M and the period P, while the phase is

set to zero, and the minimal magnitude is equal to 100

arbitrary unit (au), see Table 2. In the range of values of

P investigated, two were much shorter than the total

duration of each epoch, and in one case the period was

set so that the stimulation applied was constant for the

entire simulation. The external force activated mechano-

transduction cascade and the dynamic of the system

which, otherwise, would remain trapped in its initial

condition. For all the analysed epochs and the simulated

periods, the results indicated that the perturbation

function as a switch. When the perturbation goes to its

minimum, integrin activation approaches zero, and

eventually other molecules in the pathway follow this

trend. For all the molecules which are downstream in

comparison to the integrins, the larger their network

distance is, the larger their delays are in following the

dynamics of the external perturbation (Fig. 1a).

The passage of the mechanical loads from high to low

and vice versa is of the order of 1 time unit (1 s), and the

duration P of each regime is at least 1000 s long (see

Table 2 and Table 3). Indeed, all the WTDs analysed

have a support shorter than all P considered, and in

Figs. 3, 4, 5 and 6, the recurrence of events does not

require a time larger than 100 s.

The paucity and sparsity of the events characterized by

the high/low transitions of the external perturbation do

have a minor effect on the SIP τ between molecular

events, even in cases where the dynamics of large quan-

tities of molecules synchronize with the external signal.

On the contrary, during the time period P, molecules

have the chance to form compounds or dissociate

multiple times, and these events, induced by the faster

molecular dynamics, account for most of the statistics

shown in the WTDs.

The increase of the magnitude M of the perturbation

resulted in an increase of the number of molecules activated

which can be clearly observed from the variations in the

non-normalized histograms, but this does not always corres-

pond to a significant change in the distributions of the SIP.

Increasing the period P implies larger lapse of time in

which the mechanotransduction is switched on. Conse-

quently, a larger number of events are expected. If the

dynamics of the system does not change during the

oscillations of the perturbation, then the area under

the histograms increases with the increase of P, while

the WTDs do not change.

Ageing

The integral distribution and the WTD are quantities

computed over a time period are named the epoch, and

are much larger than the support of the represented dis-

tributions but smaller than the total length of the

simulation. Because the system is in a non-equilibrium

condition, we cannot state that the WTD does not

depend on the epoch so the WTD can be rewritten as

ψt(τ) where t is the initial time of the epoch of fixed

extension used for the computation. Larger epochs

reduce the lack of statistics and noise, while smaller

epochs allow us to compute ψt(τ) by choosing the

age t from a larger range of available values. We

tested different epoch sizes, and we compromised for a

period of 10,000 s.

Ageing is characteristic of all the interacting agents,

even though it is not so easy to estimate the effects of

the passage of time in the histograms and WTDs, due to

large confidence intervals and noise therein. Indeed, for

some parameters and molecules, both the histograms

and WTDs show alternate upsurge and decline patterns,

and irregular cyclical variations. Even if the system is

maintained in an out of equilibrium condition, the

dynamics of the system responds and adapts accordingly

to a mechanical perturbation.

Ageing is a direct consequence of the initial condi-

tions; nevertheless, given that the system is regularly far

from the equilibrium, ageing is prevalently due to a vari-

ation of regimes in the dynamics of the system. There-

fore, the state of the system at t = 0 should not be seen

as a static initial condition, but as if the system reached

such a state due to a specific long standing dynamics.

Indeed, we have simulated a case where the cell had

been stimulated with two consecutive trains of oscil-

lating perturbations with different frequencies. The

resulting histograms show there was no ageing at the

end of the first perturbation and that ageing appeared

during the second regime.

(See figure on previous page.)

Fig. 3 MEK bound RAF. Independently from the frequencies of the tested perturbations, the variation of TRAFact + MEKd→MEKact leaves the MAPK

sub module of the network unchanged exception for the MEK interacting with RAF which is highly sensitive to the parameter. Indeed, the

distribution of recurrence of events for active MEK bounded to RAF is bimodal in τ = {4, 9} s. For small value of TRAFact + MEKd→MEKact ∼ 10 s the

distribution is mainly centred around τ = 4 s and it represents the main mode, while for larger value of TRAFact + MEKd→MEKact the distribution’s

main mode is at τ = 9 s. (a) T = 1000 s; (b) T = 200,000 s; (c) TRAFact +MEKd→MEKact = 10 s; and (d) TRAFact +MEKd→ MEKact = 1320 s
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Fig. 4 MEK + ERK, ERK and RUNX2. Distributions for different values TERKact→ ERKd under a periodic perturbation with P = 1000 s and M = 10,000

μPa. TERKact→ ERKd produces larger effects on the next nearest neighbour of the network like unphosphorylated RUNX2 and unphosphorylated

ERK. Variations in the distributions and in the non-normalized histogram of MEK bounded to ERK. No effects are visible on the distribution of

active ERK dissociated from MEK. Amplitudes or number of fluctuations of ERK dissociated MEK increase with the increase of TERKact→ ERKd, while

they show an inverse relation for MEK bound to ERK decrease
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Fig. 5 MEK-ERK, ERK and RUNX2. Distributions for different values of TERKact→ ERKd under a periodic perturbation with P = 200,000 s and M =

10,000 P a. The distributions are similar to those obtained with higher frequency stimulation. The histograms show larger or more frequent

fluctuations of unphosphorylated RUNX2 and MEK bound ERK
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Fig. 6 ERK-MEK complex. The distributions of SIP for the ERK +MEK complex WTDs are bimodal. The modes are at T equal to 4 s and 15 s. When

TMEKact + ERKd→ ERKact = 8 s, the mode at T = 15 s shifts to 17 s. The non-normalized histograms on the left column show that the total number of

events is at the minimum when TMEKact + ERKd→ ERKact has the maximum value simulated equal to 1320s. The number of critical events increases

when TMEKact + ERKd→ ERKact decreases and reaches a critical value after which the dissociation time is directly proportional to the number of events
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Discussion
The study illustrated that within the noise of

mechanotransduction lies important information

relating to the dynamics of the process. This was

observed with alteration of mechanical stimuli, and

modification of ERK pathway feedback loops. The

study also identified innovative molecular targets,

thus new therapeutic approaches to develop for

osteoporosis. These involve the mimicry of mechan-

ical stimulation, at the mechanotransduction level,

by interfering with the interactions and activation

states of the Raf-MEK-ERK signalling module. This

was feasible using an analysis via WTD method

which detected eloquent information from the noise

of mechanotransduction.

Implication of simultaneous modulation of mechanical

load and mechanotransduction

The dynamics of various molecules involved in an OB’s

mechanotransduction has been addressed in the Mech-

ABM. Whereby the mechanical stimulation was modu-

lated in terms of magnitude and period of activation (P),

i.e. load frequency; while with respect to mechanotrans-

duction, adjustments were by altering activation-

deactivation cycles (i.e. feedback loops). Preliminary

analyses on the resulting signals showed the external

mechanical perturbation functions as a switch, but did

not suggest any further synchronization on time scales

smaller than the time period of the external mechanical

loads. The magnitudes of activated molecules increased

with respect to the value of mechanical load applied at

the tissue level, specifically proteins such as phosphory-

lated ERK (pERK), in line with physiological observa-

tions [54, 55]. The magnitudes of molecules in time were

driven by a slower dynamics frequently interrupted by

asynchronous large fluctuations. The reported observa-

tions particularly with respect to the magnitude and oscil-

latory trend of pERK, are similar to what Grabowski et al.

demonstrated with respect to pERK pulsating activity [56].

Their work showed that pERK activation pattern is linked

to the stimuli’s mode, though in their study the stimuli

was epidermal growth factor (EGF) not mechanical. None-

theless, Grabowski examination of the influence of differ-

ent feedback loops illustrated that SIP is a mechanism by

which cells can transmit information at high bit rates. This

mechanism is equivalent to neuronal information

processing. Considering that previously OB and OCy

interpretation of mechanical signal was linked to neuronal

response to excitatory events [57–59], the significant role

SIP play in OB’s mechanotransduction becomes clear, i.e.

the utilisation of SIP to code for, and store previous

mechanical information. It is worthy of note that though

mechanical load altered the magnitude and modality of

activated molecules, it did not significantly alter the

modalities in terms of WTDs. Changes in the WTDs were

significant due to the small local error estimated from the

distributions. Conversely, the frequency of applied load

had more significant impact on shifting mechanotrans-

duction dynamics, in terms of WTDs and their modalities

(seen more evidently in Fig. 5). This emergent behaviour

is also observed under physiological conditions where load

frequency has more impact on bone formation [60–62].

The WTD of Raf, MEK and ERK molecules presented

multimodality which highlights the presence of preferred

SIP in the occurrence of events. Changes in the activa-

tion and deactivation cycles between molecules in the

RAF-MRK-ERK module showed variations in WTDs of

molecules belonging both to the classes near one of the

perturbed edges and to other modules of the mechano-

transduction network. For example, when P = 1000 s,

the WTD of RAF bound to MEK was characterized by a

bimodal distribution for low values of active MEK dis-

sociation times, while it became unimodal at larger value

of the same parameter. This is of significance due to the

role of ERK module in mechanotransduction and the

emergence of molecular memory [63, 64]. Furthermore,

this is in line with Mitra et al. predictions that the oscil-

latory behaviour and SIP within the MAPK pathway

form a mechanism where the cell stores previous stimuli

as “short memory” [65]. Their observations were attri-

buted to the flux imbalance of proteins Raf-MEK-ERK

in their phosphorylation cycles, which is what Mech-

ABM simulated by modulation of mechanotransduction

activation cycles. Moreover, the concept of mechanical

molecular memory has been described and demon-

strated by Yang et al., however, their initial work only

demonstrated that at the level of the transcription factor

YAP/TAZ. Nonetheless the cascade linking mechanore-

ceptors, such as integrins, and YAP/TAZ has not yet

been fully characterised, though ERK activation was pre-

viously linked with modulation of ECM stiffness. Our

previous work with Mech-ABM further emphasises the

link between mechanoreceptors and emergence of mo-

lecular mechanical memory, through the activation dy-

namics of pERK [32]. This is promising considering that

recently Yang JM et al. demonstrated that ERK and its

cascade are pivotal in linking mechanical and chemical

signal via ERK oscillatory activation dynamics [55].

Our study forecasts that Raf-MEK-ERK module is

important for mechanical-information transfer, de-

coding it as SIP, and providing a signature for mode

of mechanotransduction.

Furthermore, via the Mech-ABM and the analysis

method, shifts in WTDs’ modalities were observed at the

level of gene expression events. These were reflected by

many of the mRNAs WTDs which were affected by age-

ing, a variation of the shape from a bimodal to trimodal

distribution, showing the emergence of a new preferred
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SIP of events manifestation. Variation in the modes im-

plies variations in the dispersion times between chained

events of the molecular network.

Currently molecules such as PTH analogue (iPTH) are

used as a treatment for osteoporosis to trigger an

increase in bone mass. The current view, based on the

principle of mechano-regulation proposes that combin-

ing mechanical and biochemical treatment (via iPTH)

can achieve optimal bone formation. The PTH receptor

(PTHR) in OBs was demonstrated to recruit MEK-ERK

during its endocytosis, impacting OB activation overtime

via PTHR recruitment of β-arrestin scaffold proteins [66,

67]. In the presented study, the Raf-MEK-ERK module

was shown to act as gatekeepers for mechanotransduc-

tion when mechanical load is applied, which is a growing

view in bone mechanobiology [57, 63, 64, 68–72]. The

study also forecasted that modifying the module activa-

tion can significantly shift mechanotransduction and

overall state of the system. Hence we propose that the

design of small molecules interfering with the Raf-MEK-

ERK module activation, by perturbing their binding-

interaction will allow for a shift in mechanotransduction,

which can significantly amplify OB response to mechan-

ical stimulation. These could be achieved by interfering

with their interaction with scaffold proteins, such as β-

arrestins, to target PTHR signalling; or Paxillin and

GIT1 to affect focal adhesions signalling. Consequently,

osteoporotic patients will require very mild mechanical

activation, if any, via localised vibrating devices to induce

a therapeutic effect in combination with anabolic treat-

ment such as iPTH. This is plausible considering the

advances in developing small-molecule drugs interfering

with intracellular scaffold proteins, and their success in

clinical trials [73–75].

Analysis of mechanotransduction noise

In this presented work, the abrupt fluctuations departing

from the trend have been explored, analysed and pre-

sented as modalities in terms of magnitude of active

molecule and WTDs. This has allowed for extraction of

hidden information characteristic to each class of mol-

ecule, and overall mechanotransduction dynamics. Acti-

vation of intracellular mediators is reliant on availability

of molecules and their activation states [22]. The under-

lying mechanisms resemble a chained Feynmans blend-

ing single molecules into signals and fluctuations at the

meso/macroscopical scales. Thus finding the absolute

maxima within multiple activation phases or mechanical

triggers is not trivial. Consequently, a time average oper-

ator was applied as a filter to define significant mechan-

otransduction events, which was more appropriate in

comparison to a standard ensemble average [76]. There-

fore, there are no real means for the molecules with a fi-

nite interaction range to perceive a global average signal.

Hence, for a biological complex system, a time average

operator is more meaningful for comparing fluctuations

against the trend of the system. As the system demon-

strated an average molecular signal that is intermittent

in time it exhibited non-ergodicity. Thus, this necessi-

tated transformation of the filtered signal, where the

trend around the signal was removed to acquire fluctua-

tions around the trend. In many physical and biological

systems the variation of a signal is delayed by the

presence of internal structures and processes that are

not easily accessible to experimental observations [47].

Therefore, in these cases, the approach in the study dealt

with signals showing extra layers of complexity. There-

fore, the disentangling of the subordinated process is not

unique, and so the preferred approach was to address

the problem numerically by the identification of critical

events in the system under analysis. It is reasonable to

define critical events as the large and abrupt fluctuations

in each molecular species due to the stochasticity of the

events that the Mech-ABM captures. This is in contrast

to more traditional approaches, where noise has been

adopted as a measure to quantify the error around the

expected values of time dependent signals [76, 77].

Limitations

The model had generated plausible predictions regarding

the shift in the dynamic of cell response to mechanical

stimulation when the mechanical stimulus and intracel-

lular feedback loops were altered. We acknowledge that

some assumptions made within the model will impose a

level of constraint on how the data is interpreted, for in-

stance that an OB is a spherical cell and that all intracel-

lular molecules involved are homogeneously distributed

within the cytoplasm and the nucleus. Another note-

worthy limitation is that our data is illustrating the dy-

namics of a single OB, while bone formation at a spatial

location within bone is driven by a collection of OBs.

Additionally, what control BR process is the cell-cell

interaction between OBs, OCys and OC, which is out-

side the scope of the Mech-ABM. It will be interesting

to see if upscaling the presented findings to a population

of many OBs interacting with OCys and OCs will induce

a nudge effect that will ultimately enhance bone forma-

tion in different sites in bone tissue.

We also acknowledge that the model did not include

all cell signalling mechanisms which drive bone forma-

tion, particularly WNT signalling. However, given that

WNT and ERK pathway crosstalk, therefore our integra-

tion of a black-box approach to simulate ERK feedback

loops, introduces WNT influence on ERK to some

degree. Nonetheless, the effect of ERK signalling on

WNT could not be integrated as it is not part of the

mechanotransduction pathway. Yet, the Mech-ABM can

be extended to include these elements easily for future
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investigations to study the impact of WNT on mechano-

transduction and ultimately bone formation.

Conclusions
This study simulated modulation of mechanical load and

alterations in mechanotransduction feedback loops, on

cellular response to mechanical stimulation. The study

demonstrated that WTD of some molecule, particularly

within the ERK cascade, is a dynamic marker which can

be used as a signature for the system’s dynamics in nor-

mal and pathological conditions. Consequently hidden

information characteristic to each class of molecule, par-

ticularly of the ERK pathway, and of the process dynam-

ics were extracted. The presented method of analysis is a

suitable tool to identify discrete variations in mechano-

transduction dynamics attributed to the pathophysiology

of osteoporosis. Additionally, the analyses can be used in

the future to complement in vitro experiments tailored

to explore spatiotemporal effects of treatments on

mechanotransduction, and if they mimic bio- mechanical

stimuli.
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