
This is a repository copy of pWCET a Toolset for automatic Worst-Case Execution Time 
Analysis of Real-Time Embedded Programs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/158720/

Version: Published Version

Conference or Workshop Item:
Bernat, Guiem, Colin, A. and Petters, S.M. (2003) pWCET a Toolset for automatic Worst-
Case Execution Time Analysis of Real-Time Embedded Programs. In: UNSPECIFIED. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



pWCET: a Tool for Probabilistic Worst-Case

Execution Time Analysis of Real-Time Systems

Guillem Bernat, Antoine Colin, Stefan Petters
Real-Time Systems Research Group
University of York. England, UK
Techical Report YCS-2003-353

{bernat,acolin,petters}@cs.york.ac.uk

January, 2003

Abstract

This paper describes the tool support for a framework for performing
probabilistic worst-case execution time (WCET) analysis for embedded
real-time systems. The tool is based on a combination of measurement
and static analysis, all in a probabilistic framework. Measurement is used
to determine execution traces and static analysis to construct the worst
path and effectively providing an upper bound on the worst-case execution
time of a program. The paper illustrates the theoretical framework and
the components of the tool together with a case study.

1 Introduction

There are two main approaches for the determination of the worst-case exe-
cution time of a real-time program. Static analysis and measurement. Static
analysis relies on a timing model of the hardware and attempts to determine
an upper bound on the longest path of the program. Techniques include tree-
based approaches [10, 4], or path based approaches [8, 12, 13]. Efforts on WCET
analysis are on determining the effect of advanced processor features like cache,
branch prediction and pipelines and their interactions [9, 6, 5, 7], However, these
approaches are very complex as the processors themselves become more difficult
to predict. An alternative approach to static analysis is by measurement. In
this approach the code is run under exhaustive test conditions and the longest
execution time recorded.

Both approaches have their advantages and disadvantages. Static analysis
provides a safe upper bound guaranteeing that the worst case is never underes-
timated. This is adequate for simple programs running on simple 8 bit CPUs,
however for more complex programs which are data dependent and for advanced
CPU’s with acceleration features like cache, pipelines, branch prediction buffers

1



and out of order execution the analysis is extremely difficult to perform and
results in unacceptable levels of pessimism. An additional criticism of the ap-
proach is that it is based on an abstraction of the processor and may fail to
capture effects that occur in the real system. Measurement approaches do ob-
serve the real system and therefore are able to account for these phenomena,
however they may fail to capture the worst case as the set of test cases that
may lead to the worst case may be very difficult to determine. In addition, a
safety margin is usually included in the analysis, however there is no scientific
process by which such safety factors can be determined.

In addition, traditional static approaches to WCET are too focused on ob-
taining an absolute upper bound on the execution time of the program. This
may be unnecessary pessimistic if the probability of such event happening is
extremely small. In probabilistic hard real-time systems the aim is to provide
estimates that the probability of missing a deadline is of the same order of mag-
nitude that other dependability estimates. For instance, probabilities smaller
than 10−12 of missing a deadline should be provided. For such estimates to
be made, it is first required to determine the probability distribution of the
execution time of individual tasks.

This paper presents the pWCET framework, a theory and its tool support for
probabilistic WCET analysis of real-time embedded programs. pWCET com-
bines the best features of both measurement and analysis and allows to draw
the benefits from both approaches. The framework is based on determining the
execution times of individual blocks by observing the real-system (instead of re-
lying on a processor model) but combining the worst case effects observed locally
using static analysis techniques. In this way, no timing model of the processor
is needed because the timing information is determined by measurement. There
have been some initial approaches for probabilistic timing analysis of systems,
[3, 2, 11] use extreme value statistics to model the tail of the distributions.

A different approach is the one presented by the same authors in [1]. This
paper presents the general overview of the theory but its main purpose is the
description of the tool support. The paper illustrates these concepts with a case
study at the end of the paper. The following section provides an introduction
of the theory of probabilistic WCET analysis and the description of the tool,
its components and features is deferred to section 3.

2 Probabilistic WCET analysis

The aim of probabilistic WCET analysis is to determine the probability dis-
tribution of the worst-case execution time of a particular code fragment. The
problem is formulated (and solved) in terms of a syntax tree representation of
the program and a probabilistic timing schema.

A syntax tree is a representation of a program. It is a tree where the leafs
are basic blocks (sequences of instructions that have no control flow instructions
except possibly at the end) and inner nodes that correspond to syntactic compo-
sition of blocks: Sequential composition, conditional composition and iterative

2



composition.
A timing schema is a set of rules that allow to determine the execution time

of a program segment as a function of the execution time of its components.
Each rule of the timing schema is associated to a type of node in the tree. For
instance a trivial timing schema for static WCET analysis is as follows:

• W (A)= integer if A is a basic block.

• W (A;B;) = W (A) + W (B). Sequence of blocks.

• W (if E then A else B end if) = W (E) + max(W (A),W (B)). Conditional.

• W (for E loop A end loop;) = W (E)+n(W (A)+W (E)). Loop, where n is
the maximum number of iterations of the loop.

The aim of the pWCET approach is to provide an equivalent timing schema
where integers are replaced by probability distributions and operations on inte-
gers are replaced by operations on random variables.

The problem of probabilistic WCET analysis is therefore:

1. To construct a syntax tree representation of the program. For illustrative
purposes we consider basic blocks as the smallest execution unit, however
there is no reason why other units (larger or smaller) could be used for
the purpose,

2. to determine probability distributions of the individual executions of the
blocks and their dependency,

3. to determine a probabilistic algebra to manipulate probability distribu-
tions,

4. to determine which and when to combine the probability distributions of
the individual building blocks to derive the probability distributions of the
nodes in the tree,

5. to present and visualise the results to the user.

In the rest of the section we concentrate on items 2 and 3 about the proba-
bilistic issues, the rest of the items are discussed in the following section.

In order to provide a probabilistic timing schema we need to define equivalent
operators to the sum and max for random variables. The most important fact
is what assumptions about the dependence between blocks can be made.

2.1 Sequential execution Z = X + Y

The statistical formulation of the problem is as follows. Let X,Y be random
variables that describe the execution time of a program segment. Let F (x) =
P [X ≤ x], G(y) = P [Y ≤ y] be their distribution functions. Consider that

3



situation in which X and Y are the random variables of two code segments A and
B that are executed in sequence: A;B;. Lets denote Z the random variable that
describes the execution time of the sequence. The question is to determine what
is the probability distribution of Z. Clearly Z can be formulated in statistical
terms as Z = X + Y , and therefore we are interested in computing H(z) =
P [X + Y ≤ z].

2.1.1 Dependency

One of the major issues for pWCET analysis is the determination of the depen-
dency between X and Y . This dependence can be:

• X and Y are (assumed to be) independent,

• the joint distribution of X and Y is known and therefore the precise de-
pendence between X and Y is also known,

• the dependency between X and Y is not known (the general case) and it
can not be assumed that they are independent.

The hypothesis of independence is commonly assumed in other probabilistic
analysis frameworks, however, in the framework of probabilistic WCET analysis
this hypothesis is in the general case wrong. As reported in [1] making the hy-
pothesis of independence may lead to severe underestimations of the probability
of the worst case, overestimations of various orders of magnitude are possible.
This is the case, for example, when the condition that makes one block to run
for the worst case is the same that forces the other one for the worst case too.

The joint distribution captures precisely the exact dependence between X

and Y . However, capturing such dependence by measurement is very difficult,
not only for the computational complexity but also because of the nature of
the process. Determining distributions of individual blocks is a difficult task
because of the rare occurrence of extreme events, observing combinations of
rare events in joint distributions makes the problem much harder.

In any case, there are situations where the joint distribution is not available
because it can not be computed and therefore some assumption of the worst
dependence between X and Y should be made. The situation when two random
variables are positively correlated is called “comonotonicity”. This means that
both can be expressed as a non-decreasing function of another random variable
U (X = f1(U) and Y = f2(U)) meaning that the values of X are large when the
values of Y are large too and as a consequence the probability of the extreme
is not the product of probabilities (but the minimum of them).

The determination of H(z) as the cumulative distribution of Z = X +Y can
be therefore performed as follows:

If X and Y are independent (or the assumption that they are independent
is feasible) then H can be computed by performing the standard convolution
between F and G:

4



H(z) =

∫

x

F (x)G(z − x)dx

If the joint distribution between X and Y is known and given by J(x, y) =
P [X ≤ x, Y ≤ y], then the distribution H can be computed as follows:

H(z) =

∫

x+y=z

j(x, y)

where j(x, y) is the joint probability density function of J(x, y).
Finally, if the dependence between X and Y is not known, we assume that

the random variables are comonotonic. The distribution in this case is given by:

H(z) =

∫

x+y=z

∂2 min(F (x), G(y))

∂x∂y

It may be the case that even the comonotonic case is not the adequate
hypothesis to make about the dependency between the random variables. In
such a case a general bound on the distribution of H(z) should be provided
that determines a limiting distribution for Z given any possible dependency.
This is one of our current lines of research and a paper describing this analysis
is under preparation.

The same results can be extended for an arbitrary sequence of blocks (or
random variables): Z = X1 + X2 + · · · + Xn. For details see [1].

2.2 Conditional execution Z = max(X,Y )

The above discussion has shown how the distribution of the sequence of blocks
can be computed probabilistically. The other main construct in the syntax
tree is the conditional execution. In that case the formulation of the problem
is very similar. Let X, Y and T be random variables that correspond to the
expression, true and false parts of a conditional execution of E, A and B of
a program segment of the form if E then A; else B; end if;. Let Z denote the
distribution of the sequence. Z can be described as Z = E +max(X,Y ). Where
max(X,Y ) is the distribution of the maximum of two random variables. The
distribution H(z) is given by:

H(z) =

∫

max(x,y)=z

∂2 min((F (x), G(y))

∂x∂y

The same approach can handle other types of constructs including other
types of conditionals,including case statements.

2.3 Iteration

The operation for loop constructs is a combination of conditional and sequential
composition. The only requirement is the identification of the maximum number
of iterations of a loop, denoted by n. Then, if X, Y are the random variables

5



that correspond to the expression guard of a loop and the body of a loop of the
form for E loop B then, the distribution of the sequence Z is given by

Z = E +

n

︷ ︸︸ ︷

(E + B) + · · · + (E + B)

Other types of loops can be analysed in a similar way. The only requirement
is the ability to determine maximum number of iterations of loops. Calls to
other subprograms are handled by considering the call as a basic block and
using the distribution of the execution time of the subprogram.

As the distributions of individual blocks do not follow standard distributions
a numeric approach is the only effective solution.

2.4 Determining probability distributions

The second issue to address is to determine the actual distributions of the ex-
ecution times of individual units. We use a measurement approach in which
the program to be analysed is run under a large number of tests scenarios and
the execution time recorded from which the probability is determined. This is
a frequentist determination of probability. Other approaches are possible, more
in the line of reliability analysis, the distribution could capture the distribution
of the execution time on a “per incident” basis instead on a “per run” basis.
In this case, the distribution of execution time is determined under particular
situations (incidents) only. For example, at the critical instant or when a mode
change is requested. This makes it easier to reason on probabilities of missing
a deadline on a “per incident” way rather than a “per hour” measure. The
method and tool described is transparent to both types of distributions, the
only implication is the interpretation of the results.

It is generally easy to determine the distribution of a particular piece of
code, however joint distributions are a much harder problem. The most difficult
problem is that the number of experiments to perform needed to determine the
probabilities grows quadratically. Besides, there are blocks in the tree for which
it is not possible to determine the joint distribution because of lack of data or
because the elements are not in the same level in the tree.

3 pWCET

A theory is of little use if it can not be put into practice. We have implemented
the above framework into a complete toolset for probabilistic WCET analysis
that covers the whole process. From automatic code analysis and syntax tree
construction, to trace generation and evaluation to an efficient probabilistic
calculation engine.

The pWCET toolset has the following features:

• Portable: There is a minimal dependence on the processor architecture.
The structure of the program is extracted from the object code represen-

6



System

Instrumentation

Instrumented
System

Structure
Analysis

Extended Syntax
Tree

Timing Prog.
Generator

Timing program

Timing progr.
execution

Analysis

Trace Generation

Traces

Prob. Distributions

Gui

Figure 1: Overview of the pWCET toolset

tation which requires minimal changes to a parser for different architec-
tures. The determination of timing information is done by trace analysis
and therefore a timing model of the processor is not required.

• Fully flexible timing program generation: The generation process is user
programmable and therefore allows different types of timing programs to
be produced. The tool is able to generate both static (integer) timing
programs, probabilistic programs and symbolic programs. In this paper
we describe the probabilistic framework only.

• Generic: The source of the data for tracing analysis can be provided in
different ways. For experimental purposes the trace can be generated using
a processor simulator or by directly measuring the execution of the code
on the target platform.

• Automatic loop analysis: maximum number of iterations of loops are de-
duced automatically from trace analysis.

The general process of the analysis and tool components is described in
Figure 1.

The stages of the analysis are as follows:

• Structure analysis: the program is analysed and a syntax tree representa-
tion of the program is generated.

• Instrumentation: insertion of calls of a trace logging mechanism into the
program.

• Trace generation: this step produces execution traces which capture the
execution times of individual blocks for different runs of the program.

7



• Trace analysis: traces are parsed and distributions of individual blocks
produced. Also joint distributions are captured and loop analysis deter-
mined.

• Timing program generation: a traversal of the tree generates a program
that will compute the WCET of the program.

• Timing program execution: calculation of the WCET.

• Analysis of results: graphical user interface for browsing the program
under analysis and the visualisation of the probability distributions.

The following subsections review each of these stages and the tool support
in detail.

3.1 Instrumentation and trace generation

The aim of the instrumentation stage is to enable obtaining execution traces. An
execution trace is a list of pairs (instruction,timestamp) that describe the time
at which a particular instruction in the program was executed for a particular
run. From this execution trace the path that the program followed as well as
the different timing of the block is determined.

There are two modes of analysis, using a cycle accurate processor simulator
or by directly executing the program on the target architecture. If using a cycle
accurate simulator, the program does not need to be instrumented as the trace
is produced by the simulator. The structural analysis determines which are the
starting and ending addresses of each block of code and by parsing a log of the
execution trace produced by the simulator it is able to produce the execution
traces.

If the traces are determined by direct observation of the program then a
mechanism to determine execution traces has to be embedded into the program
and support by the OS included. This is done by manually or automatically
inserting instrumentation calls into the source code, or by automatically adding
the instrumentation code into the already compiled assembly code. The execu-
tion of the code results in a set of observed execution traces. The traces need
to be extracted from the target hardware. These traces can then be processed
by the pWCET tool (at the time of writing, the automatic program instrumen-
tation is not yet functional).

The current demonstration version uses the simplescalar processor simulator
to generate the traces, however the tool also accepts traces generated externally.
The simplescalar is a MIPS cycle accurate simulator 1. The MIPS processor
has two levels of cache (second level is an integrated cache) as well as branch
target buffers and out-of-order execution. Simplescalar allows the configuration
of several processor configurations like changing cache size and arrangement,
memory latencies, branch target prediction sizes and algorithms, etc. This is
very useful to evaluate the impact of such features on the WCET of a program.

1http://www.simplescalar.com

8



3.2 Structure analysis

The structural analysis reads the non-stripped object code of the program(s)
under analysis and builds a control flow graph. The program is first disassembled
and the assembly code analysed. By manipulating the code at assembly level,
transformations of the code included by the compiler are captured. The control
flow graph is then converted into a syntax tree, called the extended syntax
tree (XST). It may be the case that there are irreducible constructs (usually
generated by the compiler), in this situation the analysis assumes that the whole
section of the code is a block. Portability of the whole approach to a different
machine architecture requires the rewriting of the lexical and syntactic analyser
of assembler code which is a small task. By analysing the code at the object
code level, there are no dependencies on the programming language used or only
minimal.

The XST is stored as an XML file, structured as a set of trees which are
made up of five types of nodes: (a) basic blocks, (b) sequences, (c) conditional
code (d)loops and (e) calls. A tree is build for each subprogram, and therefore
the XST of a program is made up of a series of such trees, the first one being
the main program. The structure analysis also adds into the XST information
for each node regarding which sections in the code it corresponds to, as well as
annotations present in the source code.

3.3 Trace analysis

The trace analysis computes the distribution functions of each node in the tree
from the execution traces. It uses information in the XST to determine the set
of addresses that mark the start and end of each block and parses each trace
accumulating the result over multiple traces. The result of the analysis is a set
of execution time profiles (or ETP for short) which correspond to the discrete
probability density function of individual blocks.

For selected pairs of nodes, the trace analysis is also able to determine the
joint distribution function of pairs of nodes. The list of pairs of nodes to analyse
is indicated before the analysis starts in a configuration file. The result of
the analysis is a set of joint execution time profiles (or JEP for sort) which
correspond to the discrete joint probability density function of pairs of blocks.

This is a computationally very expensive process. There may be available
large number of execution traces, each one holding information of potentially
long executions of the program. For example, if an execution trace records in
average one every 10 instructions, then a program that runs for 1 second on
a 10 MHz machine may generate up to 106 sampling points per second. Tests
involving several hours of computation should be expected. In order to address
the computational complexity the process of trace generation and analysis has
been parallelised and the current implementation is able to generate the traces
in a local mode (single node) or on a distributed mode using a Beowulf cluster.
A special program running on a node of the cluster is responsible to distribute
the work to the different nodes and merge the results after the computation has

9



been performed.
A second component of the trace analysis is loop identification. The infor-

mation of which blocks form a loop and the nested loop structure is extracted
from the syntax tree. From this information, a loop trace can also be generated.
A loop trace is an indication of the index counters of each loop hit for a partic-
ular run of the program. From this loop trace, the maximum loop iteration for
each loop is extracted.

3.4 Timing program generator

pWCET has a powerful mechanism for computing the WCET of programs. This
is based on separating the timing analysis into a program generation part and
an execution part. This enables different types of analysis to be implemented
using the same framework by providing different timing program generators.

The timing program generator traverses the tree in postorder and applies
the timing schema rules to each node in the tree. The result of such procedure
is a set of commands on how to compute the timing program for the given tree.

The user can direct the way the analysis is performed and which rules are
applied by directly manipulating the tree and modifying the rule associated to
each node. For example, one common assumption is to rewrite non-rectangular
loops to indicate precisely the exact number of iterations of a block, not the
(possibly) pessimistic estimate obtained by the loop analysis.

We have experimented with different formats. We currently are able to
generate timing programs as Ada programs, matlab scripts and ml programs.

Matlab scripts are very helpful because it allows for fast prototyping and
experimentation with different operators, however in general the computation
is very slow compared to a custom build solution.

The timing program reads the distributions of its sons and computes the
distribution for each node in the tree. We have implemented all probabilistic
algebra very efficiently exploiting the properties of the sparse data structure
used to capture probability distributions. As an illustration, a convolution of
a discrete distribution in Matlab can take as long as 10 times longer than the
Ada version for small data sets. For large distributions the difference grows
quadratically.

3.5 Analysis of results

The different parts of the tool can be used as either scripts or through a graphical
user interface depicted in Figure 2. The set of steps to perform is indicated as
a toolbar at the top of the screen. The log of the output of the different phases
is recorded in the log screen. Commands can also be typed in directly at the
command prompt at the bottom.

The user first selects the main file of the program to analyse, secondly the
program is compiled for the MIPS architecture with the necessary libraries.
After compilation the program needs to be analysed. The user may select which

10



Figure 2: pWCET main window.

functions to include in the analysis. The function selection dialog can be seen
in the figure too.

After code analysis traces should be generated. By selecting the simulate
option the simplescalar simulator is invoked to run the program. Each run is
invoked with a different run number which allows to set up a seed for random
number generation, for instance. The parameters that determine the configu-
ration of the simulator can be changed in the pWCET configuration file. This
enables the evaluation of the effect that particular processor features have on
the execution time of the program. The trace generation also performs the trace
analysis by merging the results with previous processed traces.

After the code is analysed and traces generated the XST can be browsed
using the code browser, shown in Figure 3. The browser allows to select which
function to display. It displays a tree of the selected function. Different types of
nodes are indicated by different colors. Each node has information of the type,
source line and rule for the timing program generator. The same figure shows
the screen that allows the modification of the evaluation rule for a loop node.
Several operations can be performed for each node, displaying the source code
corresponding to the node, the textual representation of the execution profiles,
as well as the graphic plot of the distribution of probability of the node. The
graph can show both measured and computed distributions.

The final stage is to launch the timing program generation and calculation.

11



Figure 3: XST Browser showing information window of a node, some graphs
and textual output.

12



The program performs the postorder tree traversal, extracts the rule for per-
forming the WCET calculation from the node attributes section and generates
the corresponding program to perform the calculation. The program is then
executed by invoking the calculation engine.

After the timing program has been generated and executed, the computed
distributions can be viewed with the XST browser. For example when plotting
the profiles, both measured and computed profiles are displayed. Examples of
such visualisation are shown in the next section.

4 Evaluation

In this section we illustrate the operation of the tool with an example. The
program is an implementation of a message processing system. It takes packets
from array ptr and decodes them. The type of message and the sign of the
data part is encoded in the header. Depending on the different configurations
he message is either stored in array tab1 or tab2. A fragment of the program
is shown below (for full listing of the program together with other example
programs see the pwcet web page).

void test() {

int i,j,p,index;

char header;

char * ptr = (char*)data_stream;

int * tab_result = tab1;

int * tab_error = tab2;

char * ptr2;

char * ptr3;

for(i=0;i<N;i++) {

header = *ptr;

index = header & 0x3f;

if (header & 0x80) {

tab_result[index] =tab_result[index]+1;

tab_result[index+1]=tab_result[index+1]+1;

tab_result[index] =tab_result[index+1]-1;

tab_result[index+1]=tab_result[index]+1;

// jump to the next element

ptr=ptr+5;

}

else {

index = header & 0x3f;

if (header & 0x40) {

// is positive

tab_result[index]=-tab_result[index];

}

else {

// is negative

13



tab_result[index]=+tab_result[index];

}

// jump to the next element

ptr+=2;

}

}

}

The Syntax tree of the fragment of code is shown in Figure 3. Node 54
is the head of the loop. The figure also shows the fragment of the code that
corresponds to node 54 as well as the editing window where the expression to
calculate the node can be modified by the user. This description is automatically
generated.

The simulation generated 1000 traces. The following is a fragment of one of
such traces that shows first three iterations of the loop. Note that the trace only
shows execution of basic blocks (not of inner nodes in the tree), the analysis part
is then responsible to derive the execution of these other nodes. The format is
(timestamp node number)*. The timestamp is the cycle number in which the
first instruction of the basic block is fetched. For example, in the first iteration
node 66 runs for 83 cycles (34943-34860), however in the second iteration it runs
for only 13 cycles (and for the rest of iterations in the loop). This is a common
behaviour due to cache effects.

34399 53 34490 55 34519 57 34631 60 34692 63 34832 64 34860 66

34943 72 34974 55 34978 57 34995 60 35008 62 35098 64 35103 66

35116 72 35123 55 35127 57 35144 60 35157 63 35179 64 35183 66

35196 72 ...

The loop analysis determines that in the worst case loop 54 iterates 31 times
(this number is the number of times the header is hit). This is indicated with
the following maxiter rule:

$maxiter54 #= {31}

The timing program generated by the tool is shown below. This is an au-
tomatically generated ml program. Each node corresponds to an ml function
that invokes in its computation recursively the functions that evaluate the sons
of the node. The operation of the node is then performed, saved and control
returned to the callee. The Following fragment shows the calculation of node 67.
Nodes 69, and 71 are basic blocks and its distribution is read from the measured
data. Node 70 is a function call to swap tabs. Node 68 is the convolution of
the distributions of node 69 and 70. Node 71 was never executed, and therefore
is empty. Node 67 is the maximum (probabilistically) of 68 and 71.

(*--------- Node 69 -----------*) let w69 () =

let result = read "ETP69" in

write (result,"ETP69");

result;

14



;;

(*--------- Node 70 -----------*) let w70 () =

let result = (ext_call "swap_tabs") in

write (result,"ETP70");

result;

;;

(*--------- Node 68 -----------*) let w68 () =

let result = conv [(w69());(w70())] in

write (result,"ETP68");

result;

;;

(*--------- Node 71 -----------*) let w71 () =

let result = epzero () in

write (result,"ETP71");

result;

;;

(*--------- Node 67 -----------*) let w67 () =

let result = max ((w68())) ((w71())) in

write (result,"ETP67");

result;

;;

Figure 4 shows the result of the analysis compared to the end to end mea-
surement. The pWCET estimate is an upper bound on the WCET. The distance
between the two estimates comes from the fact that the input data does not cor-
respond to the worst possible sequence of data (this is just random messages).
The pWCET builds the equivalent of the worst set of input data and plots the
profile.

Generation of 1000 traces took 15 minutes on a Pentium 3 at 500 MHz,
the generation and evaluation of the timing program was performed in under a
minute. The complexity of the timing programs is not greatly affected by the
size of the traces.

5 Conclusion

This paper has outlined the theory for probabilistic timing analysis of real-time
programs and described the main components of its tool support. The main
features are: portability to analyse programs running on different processors
and platforms by processing execution traces obtained either by examining the
log of a cycle accurate processor simulator or by observing the real system;
flexibility: by allowing users to define the way the timing program is generated
and therefore enabling different types of analysis. A small case study illustrates
the formats of the files involved and the steps of the analysis.

15



Figure 4: pWCET analysis of node 54. M= Measured, C=Computed. overesti-
mation is due to lack of generating the worst possible input data.

16



References

[1] G. Bernat, A. Colin, and S. Petters. Wcet analysis of probabilistic hard
real-time systems. In RTSS, Real-Time Systems Symposium, Austin, TX,
USA, December 2002.

[2] Alan Burns and Stewart Edgar. Predicting computation time for advanced
processor architectures. In Proceedings of the 12th Euromicro Conference
on Real-Time Systems, Stockholm, Sweden, June 19–21 2000.

[3] Alan Burns and Stewart Edgar. Statistical analysis of WCET for schedul-
ing. In Proc. of the IEEE Real–Time Systems Symposium (RTSS’01), Lon-
don, United Kingdom, December 4–6 2001.

[4] Antoine Colin and Guillem Bernat. Scope-tree: a program representation
for symbolic worst-case execution time analysis. In Proceedings of the 14th
Euromicro Conference on Real-Time Systems, Vienna, Austria, June 19–21
2002.

[5] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a
processor with branch prediction. Journal of Realtime Systems, 18:249–274,
2000.

[6] Christian Ferdinand and Reinhard Wilhelm. On predicting data cache
behavior for real–time systems. In Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES’98), Montreal Canada, June 19–20 1998.

[7] Y. A. Liu and G. Gomez. Automatic accurate time–bound analysis for
high–level languages. In Frank Müller, Azer Bestravros, et al., editors,
Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Embedded Systems (LCTES’98), Lecture Notes in Computer
Science, pages 31–40, Montreal Canada, June 19–20 1998. ACM SIGPlAN,
Springer–Verlag.

[8] Thomas Lundqvist and Per Stenström. An integrated path and timing anal-
ysis method based on cycle-level symbolic execution. Journal of Realtime
Systems, 17(2/3):183–207, November 1999.

[9] Frank Müller. Timing analysis for instruction caches. Journal of Realtime
Systems, 18:217–247, 2000.

[10] C.Y. Park and A.P. Shaw. Experiments with a program timing tool
based on source–level timing schema. IEEE Transactions on Computers,
24(5):48–57, May 1991.

[11] Stefan M. Petters. Worst Case Execution Time Estimation for Advanced
Processor Architectures. PhD thesis, Institute of Real–Time Computer
Systems, Technische Universität München, Munich, Germany, 2002.

17



[12] F. Stappert, A. Ermedahl, and J. Engblohm. Efficient longest executable
path search for programs with complex flows and pipeline effects. In Inter-
national Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems (CASES 2001), pages 132–140, Atlanta, Giorgia, USA,
November 16–17 2001.

[13] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and
precise WCET prediction by spearated cache and path analysis. Journal
of Realtime Systems, 18:157–179, 2000.

18


