

This is a repository copy of *Reconstructing Tonian seawater* 87Sr/86Sr using calcite *microspar*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158710/

Version: Accepted Version

Article:

Zhou, Y, Pogge von Strandmann, PAE, Zhu, M et al. (5 more authors) (2020) Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar. Geology. ISSN 0091-7613

https://doi.org/10.1130/G46756.1

This item is protected by copyright. This is an author produced version of an article, published in Geology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1 Reconstructing Tonian seawater ⁸⁷Sr/⁸⁶Sr using calcite

- 2 microspar
- 3 Ying Zhou¹, Philip A.E. Pogge von Strandmann¹, Maoyan Zhu^{2,3}, Hongfei Ling⁴,
- 4 Christina Manning⁵, Da Li⁴, Tianchen He⁶, and Graham A. Shields¹
- ⁵ ¹London Geochemistry and Isotope Centre, Institute of Earth and Planetary Sciences,
- 6 *University College London and Birkbeck, University of London, Gower Street, London*
- 7 WC1E 6BT, UK [[These two affiliations appear to be separate, with separate London
- 8 addresses (the address given here is for UCL). Are they concurrent affiliations for
- 9 Zhou, Pogge von Strandmann, and Shields, or is one a "Current address" for
- 10 either/both authors?]]
- ¹¹ ²State Key Laboratory of Palaeobiology and Stratigraphy and Center for Excellence in
- 12 Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese
- 13 Academy of Sciences, Nanjing 210008, China
- ³College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,
- 15 Beijing 100049, China
- ⁴School of Earth Sciences, Nanjing University, Nanjing 210023, China
- ⁵Department of Earth Sciences, Royal Holloway, University of London, Egham TW20
- 18 *0EX, UK*
- ⁶School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

20 ABSTRACT

- 21 The Tonian Period followed a long interval of relative stasis and led into the
- 22 climatic extremes and biological radiations of multicellular life during the Cryogenian

23	and Ediacaran Periods, respectively. However, despite its pivotal situation, it remains
24	relatively understudied, in large part due to the lack of robust age constraints. A
25	combination of fossil evidence, radiometric ages, and isotopic constraints reveal that
26	carbonate strata on the North China craton were deposited between ca. 980 and ca. 920
27	Ma, thereby filling a gap in marine archives. Here we present ⁸⁷ Sr/ ⁸⁶ Sr data from selected
28	calcite microspar cements, which filled early diagenetic "molar tooth" cracks, along with
29	data from demonstrably well-preserved bulk carbonate samples. These new data show
30	that seawater 87 Sr/ 87 Sr rose in stages from ~0.7052 at ca. 980 Ma to ~0.7063 by ca. 920
31	Ma, after which a return to low values coincided with the eruption of the Dashigou large
32	igneous province across the North China craton. We also present a new Neoproterozoic
33	seawater ⁸⁷ Sr/ ⁸⁶ Sr curve, which reveals that the general trend toward higher ⁸⁷ Sr/ ⁸⁷ Sr
34	during the Tonian Period was checked repeatedly by the input of less-radiogenic
35	strontium from a series of eruptive events, both coincident with and prior to the main
36	breakup of Rodinia. The weathering of Tonian volcanic provinces has been linked to
37	higher carbon burial, glaciation, and oxygenation due to the high phosphorus content of
38	flood basalts. Here we show that the weathering of major volcanic provinces affected
39	material fluxes and ocean chemistry much earlier than previously envisaged.

40 **INTRODUCTION**

The strontium isotopic composition of seawater is homogeneous around the globe within analytical precision (McArthur, 1994; Kuznetsov et al., 2012) and varies over time in response to the balance between two distinct sources of strontium: (1) less-radiogenic Sr that enters the oceans via Sr exchange between seawater and ocean lithosphere, and (2) isotopically variable, but generally more-radiogenic, riverine Sr derived from the

46	weathering of differentiated continental crust (Brass, 1976; Gaillardet et al., 2014;
47	McArthur et al., 2012). The isotopic composition of rivers can vary considerably
48	depending on the relative contribution from older, more-radiogenic terrains versus less-
49	radiogenic mantle-derived igneous rocks such as basalt. Strontium isotope stratigraphy
50	(SIS) can therefore help to constrain not only the ages of sedimentary successions but
51	also the relative influence of tectonic factors, such as seafloor spreading, emplacement of
52	juvenile volcanic provinces, and continental weathering rates, on ocean composition
53	(Veizer, 1989; McArthur, 1994). Although SIS is well established in Phanerozoic studies
54	because of the abundance of mineralogically stable biogenic materials such as low-Mg
55	calcite shells, its application to Proterozoic strata is still dependent upon variably
56	preserved bulk carbonate rock.
57	Despite inherent challenges, significant progress has been made toward
58	constructing a Neoproterozoic seawater ⁸⁷ Sr/ ⁸⁶ Sr curve using bulk carbonate samples
59	(Derry et al., 1992; Shields, 1999; Halverson et al., 2007; Kuznetsov et al., 2017), and
60	recently Cox et al. (2016) extended their compilation to 1050 Ma (see the GSA Data
61	Repository ¹ for more details). All previous studies documented a general increase in
62	seawater 87 Sr/ 86 Sr, from ~0.705–0.709, over the course of the Neoproterozoic. However,
63	details remain speculative because most published data suffer from poor age control, such
64	as Tonian data from Siberia and the Ural Mountains (e.g., Kuznetsov et al., 2006, 2017),
65	and/or are difficult to correlate globally (cf. Cox et al., 2016) due to lack of
66	biostratigraphic control and the non-uniqueness of carbon isotope trends (Melezhik et al.,
67	2015). Nevertheless, previous studies suggest that SIS has potential for both stratigraphic
68	correlation and environmental interpretation of Neoproterozoic events, provided that

69	well-preserved marine carbonate samples can be placed within the improving, global
70	stratigraphic framework.

71	This study improves Neoproterozoic SIS by specifically targeting demonstrably
72	well-preserved and age-constrained examples of calcite microspar cements (CMCs),
73	which fill early diagenetic cracks, commonly referred to as "molar tooth structure", and
74	other cavities. Our new data for the North China craton fill a gap in the record between
75	ca. 980 to ca. 920 Ma toward a new Sr isotope curve for Neoproterozoic seawater.
76	GEOLOGICAL BACKGROUND AND AGE MODEL
77	The North China craton has an Archean to Paleoproterozoic basement and
78	unmetamorphosed Mesoproterozoic to Neoproterozoic sedimentary cover that was
79	deposited in a shallow marine environment. The Huaibei region (Jiangsu, China), the
80	research area of the present study, is situated on the southern margin of this eastern North
81	China craton block (Fig. 1) and contains a thick succession of largely carbonate strata
82	that correlate with the Jinxian Group in the Dalian (Liaoning, China) area.
83	Detrital zircon and intrusive diabase zircon and baddeleyite U-Pb ages indicate an
84	early Neoproterozoic age for the Huaibei and Jinxian successions (Liu et al., 2006; Gao et
85	al., 2009; Yang et al., 2012; Wang et al., 2012). A Tonian age is also supported by age-
86	suggestive macrofossils (Dong et al., 2008; Xiao et al., 2014), age-diagnostic acritarchs
87	(Tang et al., 2013, 2015), and limited published carbon-isotope (Zang and Walter, 1992;
88	Yang et al., 2001; Zheng et al., 2004; Xiao et al., 2014) and Sr-isotope (Fairchild et al.,
89	2000; Yang et al., 2001; Xiao et al., 2014; Kuang et al., 2011) data. Dike swarms and
90	sills, intruded along the southeastern margin of the North China craton between ca. 920
91	and 900 Ma, provide a minimum age for the successions and are named the Dashigou-

92	CDS (Chulan-Dalian-Sariwon)[[correct?]] large igneous province (LIP) (Peng et al.,
93	2011). The similarity in intrusion ages across the North China craton (including the
94	Korean peninsula) implies that widespread crustal extension and related magmatism
95	occurred shortly after deposition had ceased at Jinxian and Huaibei, possibly due to pre-
96	magmatic regional uplift after ca. 0.92 Ga (Zhang et al., 2016; Zhu et al., 2019). Recent
97	detrital zircon (He et al., 2016[[He et al., 2016 is not in the reference list.]]; Wan et al.,
98	2019[[Wan et al., 2019 is not in the reference list.]]) and magmatic baddeleyite ages for
99	Jinxian (Fu et al., 2015; Wang et al., 2012) and Huaibei successions (Zhu et al., 2019)
100	constrain the maximum depositional age of uppermost carbonate successions to ca. 920
101	Ma (see the Data Repository). Based on all available geochronological data, deposition of
102	these carbonate strata ranged between ca. 980 Ma and ca. 920 Ma (see the Data

103 Repository).

104 METHODS

We collected 235 carbonate samples from the Huaibei Group. In order to evaluate
their suitability for Sr isotope stratigraphy, all samples underwent thorough diagenetic
screening using a combination of field- and laboratory-based observations. Samples were
initially vetted in the field, whereby limestone examples of early-lithified cavity-filling
CMC were favored. Samples were studied petrographically before targeted analysis of
microdrilled powder for their trace elemental, as well as stable carbon and oxygen, and
radiogenic Sr isotopic compositions.

112 Stable isotopes (δ^{13} C and δ^{18} O) were analyzed at two laboratories: the

- 113 Bloomsbury Environmental Isotope Facility at University College London (UCL, UK),
- 114 on a ThermoFinnigan Delta PLUS XP mass spectrometer attached to a ThermoScientific

115	Gas Bench II device; and the State Key Isotope Laboratory for Palaeobiology and
116	Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of
117	Sciences, on a Finnigan MAT-253 mass spectrometer fitted with a Kiel IV carbonate
118	device. Both laboratories have controlled temperatures of 22 °C \pm 1 °C and relative
119	humidity of $50\% \pm 5\%$.
120	The use of trace element ratios for diagenetic screening has been discussed in
121	many publications (McArthur, 1994; Kaufman and Knoll, 1995; Montañez et al., 1996;
122	Jacobsen and Kaufman, 1999; Brand, 2004; Brand et al., 2012), although there are no
123	agreed criteria (see Fig. DR3 in the Data Repository). For our study, no cutoff criteria
124	have been applied, but three simple principles were applied for elemental screening: (1)
125	low Mn/Sr mass ratio (in most cases ≤ 0.5); (2) high Sr concentration (in most cases ≥ 200
126	μ g/g); and (3) low Mg/Ca mass ratio (in most cases <0.01). Elemental analyses were
127	carried out at UCL, using both inductively coupled plasma (ICP)-optical emission
128	spectrometry (Varian 720-ES) and quadrupole ICP-mass spectrometry (Varian 820-MS).
129	For Sr isotope analyses, a sequential leaching technique based on Bailey et al. (2000) was
130	applied before extraction of Sr using cation-exchange columns. Analyses were carried out
131	at Royal Holloway, University of London (RHUL, UK), and also at Nanjing University
132	(NU, China) by the lead author. Samples were leached sequentially twice in dilute acetic
133	acid (0.13 M in RHUL; 0.05 M in NU). Standard ion chromatography was used on the
134	second leach (20%-70% of the total carbonate sample) to concentrate Sr and eliminate
135	Rb before analysis by thermal ionization mass spectrometry (Phoenix Isotopx at RHUL,
136	with isotopic standard SRM 987 mean $[[^{87}Sr/^{86}Sr = ?]]0.710240 \pm 8[[Should this have a]]$
137	decimal point and some number of zeroes before it, to indicate what decimal place

138	this refers to?]], 2 SD [standard deviations]; and Thermo Scientific Triton at NU, with
139	SRM 987 mean [[⁸⁷ Sr/ ⁸⁶ Sr = ?]]0.710244 $\pm \frac{3}{2}$ [[What decimal place is this?]], 2 SD).
140	RESULTS
141	Values of $\delta^{13}C_{carb}$ (carb—carbonate) and ${}^{87}Sr/{}^{86}Sr$ of Huaibei Group samples in
142	this study are presented in Figure 1. The data show that most Huaibei $\delta^{13}C_{carb}$ values lie
143	between ~0‰ and +5‰, averaging +2.6‰ (\pm 1.4‰), which is similar to previously
144	published early Tonian data from the southern Ural Mountains (Kuznetsov et al., 2006;
145	2017). Lowermost bulk and CMC ⁸⁷ Sr/ ⁸⁶ Sr values from best-preserved samples, based on
146	the screening described above, define a gentle fall from ~ 0.7058 to ~ 0.7052 from the
147	Jiayuan to the Jiudingshan Formation, followed by a return to \sim 0.7056, a slight dip to
148	~0.7055, and a final rise to ~0.7061 through the Wangshan Formation (Fig. 1). The
149	profile described here traces the lowest value for stratigraphic levels for which
150	systematically less-radiogenic CMC and some well-preserved bulk samples are both
151	present, and to which the strictest screening has been applied. The curve, therefore,
152	represents a conservative estimate for primary oscillations of the contemporaneous
153	seawater ⁸⁷ Sr/ ⁸⁶ Sr curve. Published data from the Jinxian Group (Dalian) imply a further
154	rise to ~0.7064 in the uppermost units there (Fairchild et al., 2000; Kuang et al., 2011),
155	which are dated to ca. 920 Ma (Yang et al., 2012; Zhang et al., 2016).
156	THE NEOPROTEROZOIC STRONTIUM ISOTOPE CURVE AND DISCUSSION
157	Here we use the compilation of Cox et al. (2016) as a foundation for a new
158	seawater ⁸⁷ Sr/ ⁸⁶ Sr curve. The general age models of individual successions were
159	constructed either from basic thermal subsidence modeling where possible, or by linear
160	interpolation between correlated ages based on the assumption of constant sedimentary

161	rates (Cox et al., 2016). The latter is used for the Huaibei data from this study and Xiao et
162	al. (2014) in Figure 2. The trend outlined in our study is similar to that reported for the
163	Urals by Kuznetsov et al. (2017), which could indicate that the North China craton and
164	Urals successions are of comparable age. This would be in agreement with the
165	approximate ages assigned by Cox et al. (2016) to those successions. Furthermore, it
166	suggests that the overall rise is followed by a return to less-radiogenic values of ~ 0.7053 ,
167	documented from the Uk Formation in the southern Urals (Kuznetsov et al., 2006).
168	The new curve (Fig. 2B[[Fig. 2 does not appear to have a panel B (check all
169	call-outs in the text)]]) confirms an overall trend toward increasing seawater ⁸⁷ Sr/ ⁸⁶ Sr
170	values through the entire Neoproterozoic, punctuated by "knickpoints" or falls in the
171	curve. The general trend indicates therefore increasing influence from weathering of
172	radiogenic continental crust relative to hydrothermal input, punctuated by intervals of
173	lower ⁸⁷ Sr/ ⁸⁶ Sr when Sr sources to the oceans became less radiogenic. The part of the
174	curve that covers the interval of this study (ca. 980–920 Ma) shows a dip from ~ 0.7058 to
175	\sim 0.7052 (similar to that seen also in the southern Ural Mountains), then an abrupt rise to
176	\sim 0.7064 before a sharp fall to \sim 0.7052 by ca. 920 Ma, which approximately coincides
177	with the eruption of the Dashigou LIP (Peng et al., 2011) that presumably increased the
178	influx of less-radiogenic Sr via both hydrothermal input and basalt weathering. This
179	extensional magmatism could represent early signs of Rodinia breakup, but proximity to
180	contemporaneous arc magmatism to the east (Kee et al., 2019) implies lithospheric
181	thinning in a craton interior, and possibly a backarc setting instead. Other falls in Tonian
182	seawater ⁸⁷ Sr/ ⁸⁶ Sr were also preceded by LIP eruptions, e.g., the [[Provide a geographic

183	location for each of the following LIPs]]Baish, Guibei, Kangding, Shaba, and later
184	Franklin events (Fig. DR3) just before the onset of Sturtian "snowball Earth".
185	Although the weathering of LIP basalt may lead initially to a decrease in the
186	seawater ⁸⁷ Sr/ ⁸⁶ Sr value (flood basalt generally exhibits a near-mantle Sr isotope
187	composition), the age distribution of widespread extension, represented by passive
188	margins and the breakup of supercontinents, correlates well with increasing seawater
189	⁸⁷ Sr/ ⁸⁶ Sr. In this regard, the staged breakup of the supercontinent that followed later
190	Tonian LIP eruption events could have exposed old, more-radiogenic craton interiors to
191	weathering at newly formed passive margins, and could have changed the climates of
192	continental interiors, potentially enhancing erosion and therefore chemical weathering.
193	Following the final phases of Rodinian assembly, this could explain why, following
194	episodic steep dips of the global curve, seawater ⁸⁷ Sr/ ⁸⁶ Sr continued to rise toward its
195	eventual high point of ~0.709 (Goddéris et al., 2017).
196	Our new updated compilation of strontium isotopes (Fig. 2B) and LIPs (see
197	details in Fig. DR3) hints that the weathering of LIPs had a considerable influence on
198	ocean composition well before the postulated timing of Rodinia breakup. Chemical
199	weathering of freshly erupted mafic volcanic rock at low latitudes was likely a major
200	source of nutrient phosphorus to the Tonian ocean (Horton, 2015; Gernon et al., 2016;
201	Cox et al., 2016; Jenkyns, 2010; Pogge von Strandmann et al., 2013), rendered
202	oligotrophic and ferruginous after prolonged denudation of the long-lived supercontinent
203	Rodinia (Guilbaud et al., 2015). Nutrient input into a largely anoxic ocean would have
204	driven carbon (and potentially also pyrite) burial at productive ocean margins, while the
205	subsequent oxygenation could conceivably have facilitated the opportunistic radiation of

- 206 large, aerobic eukaryotes reported from the North China craton (Dong et al., 2008; Tang 207 et al., 2013, 2015). Pending further study, and consistent with reports of major carbon-208 isotope fluctuations in these and correlative successions (Hua and Cao, 2004; Xiao et al., 209 2014; Park et al., 2016; this study), we postulate an earlier, more eventful end to the 210 "boring billion" than previously envisaged. 211 CONCLUSIONS 212 This is the first study that specifically uses carbonate components (in this case, 213 demonstrably early and isotopically pristine, cavity-filling calcite microspar cements as well as well-preserved bulk carbonate) to reconstruct Neoproterozoic seawater ⁸⁷Sr/⁸⁶Sr. 214 Together with published data, we document a series of oscillations in ⁸⁷Sr/⁸⁶Sr that can 215 216 plausibly be linked to the weathering of known volcanic provinces (Fig. 2). Although the 217 weathering of large igneous provinces has previously been implicated in end-Tonian 218 events coincident with supercontinent breakup, we conclude that the weathering of flood 219 basalts exerted a considerable influence on ocean composition well before the postulated 220 breakup of Rodinia.
- 221 ACKNOWLEDGMENTS

222 This study was supported by the UK Natural Environment Research Council–

223 National Natural Sciences Foundation of China (NSFC) co-funded research program

- 224 "Co-Evolution of Life and the Planet" and project "Re-Inventing the Planet: The
- 225 Neoproterozoic Revolution in Oxygenation, Biogeochemistry and Biological
- 226 Complexity" (grant NE/1005978/1 to Shields and NSFC grant 41661134048 to Zhu), and
- 227 the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant
- 228 XDB18000000 to Zhu). Zhou acknowledges Xiaoming Chen, Jing Liu (Stable Isotope

- 229 lab, Nanjing Institute of Geology and Palaeontology), Gary Tarbuck and Anne-Lise
- 230 Jourdan (University College London, UK [UCL]) for their technical support, and
- 231 Zhengxiao Guo (UCL) for his supervisory role.[[Would you like to acknowledge this
- 232 paper's reviewers?]]

233 **REFERENCES CITED**

- Bailey, T.R., McArthur, J.M., Prince, H., and Thirlwall, M.F., 2000, Dissolution methods
- for strontium isotope stratigraphy: Whole rock analysis: Chemical Geology, v. 167,
- 236 p. 313–319, <u>https://doi.org/10.1016/S0009-2541(99)00235-1</u>.
- 237 Bradley, D.C., 2008, Passive margins through earth history: Earth-Science Reviews,

238 v. 91, p. 1–26, <u>https://doi.org/10.1016/j.earscirev.2008.08.001</u>.

Brand, U., 2004, Carbon, oxygen and strontium isotopes in Paleozoic carbonate

240 components: An evaluation of original seawater-chemistry proxies: Chemical

241 Geology, v. 204, p. 23–44, <u>https://doi.org/10.1016/j.chemgeo.2003.10.013</u>.

- 242 Brand, U., Jiang, G., Azmy, K., Bishop, J., and Montañez, I.P., 2012, Diagenetic
- 243 evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow
- 244 Canyon, Nevada, U.S.A.)—1: Brachiopod and whole rock comparison: Chemical
- 245 Geology, v. 308–309, p. 26–39, <u>https://doi.org/10.1016/j.chemgeo.2012.03.017</u>.
- 246 Brass, G.W., 1976, The variation of the marine ⁸⁷Sr/⁸⁶Sr ratio during Phanerozoic time:
- 247 Interpretation using a flux model: Geochimica et Cosmochimica Acta, v. 40, p. 721–
- 248 730, <u>https://doi.org/10.1016/0016-7037(76)90025-9</u>.
- 249 Chaves, A.D.O., Ernst, R.E., Söderlund, U., Wang, X., and Naeraa, T., 2018, The 920-
- 250 900 Ma Bahia-Gangila LIP of the São Francisco and Congo cratons and link with
- 251 Dashigou-Chulan LIP of North China craton: New insights from U-Pb

- 252 geochronology and geochemistry: Precambrian Research, v. 329, p. 124–137,
- 253 https://doi.org/10.1016/j.precamres.2018.08.023.
- 254 Cox, G.M., Halverson, G.P., Stevenson, R.K., Vokaty, M., Poirier, A., Kunzmann, M.,
- Li, Z.-X., Denyszyn, S.W., Strauss, J.V., and Macdonald, F.A., 2016, Continental
- flood basalt weathering as a trigger for Neoproterozoic Snowball Earth: Earth and
- 257 Planetary Science Letters, v. 446, p. 89–99,
- 258 <u>https://doi.org/10.1016/j.epsl.2016.04.016</u>.
- 259 Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., 1992, Sedimentary cycling and
- 260 environmental change in the late Proterozoic: Evidence from stable isotopes:
- 261 Geochimica et Cosmochimica Acta, v. 56, p. 1317–1329,
- 262 <u>https://doi.org/10.1016/0016-7037(92)90064-P</u>.
- 263 Dong, L., Xiao, S., Shen, B., Yuan, X., Yan, X., and Peng, Y., 2008, Restudy of the
- 264 worm-like carbonaceous compression fossils *Protoarenicola*, *Pararenicola*, and
- 265 *Sinosabellidites* from early Neoproterozoic successions in North China:
- 266 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 138–161,
- 267 <u>https://doi.org/10.1016/j.palaeo.2007.05.019</u>.
- 268 Ernst, R.E., Wingate, M.T.D., Buchan, K.L., and Li, Z.X., 2008, Global record of 1600-
- 269 700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the
- 270 proposed Nuna (Columbia) and Rodinia supercontinents: Precambrian Research,
- 271 v. 160, p. 159–178, <u>https://doi.org/10.1016/j.precamres.2007.04.019</u>.
- Fairchild, I.J., Spiro, B., Herrington, P.M., and Song, T., 2000, Controls on Sr and C
- 273 isotope compositions of Neoproterozoic Sr-rich limestones of East Greenland and
- 274 North China, in Grotzinger, J.P., and James, N.P., eds., Carbonate Sedimentation and

- 275 Diagenesis in the Evolving Precambrian World: SEPM (Society for Sedimentary
- 276 Geology) Special Publication 67, p. 297–313.
- 277 Fu, X., Zhang, S., Li, H., Ding, J., Li, H., Yang, T., Wu, H., Yuan, H., and Lv, J., 2015,
- 278 New paleomagnetic results from the Huaibei Group and Neoproterozoic mafic sills
- in the North China Craton and their paleogeographic implications: Precambrian
- 280 Research, v. 269, p. 90–106, <u>https://doi.org/10.1016/j.precamres.2015.08.013</u>.
- 281 Gaillardet, J., Viers, J., and Dupré, B., 2014, Trace elements in river waters, in Drever,
- J.I., ed., Treatise on Geochemistry (second edition), Volume 7: Surface and
- 283 Groundwater, Weathering and Soils: Amsterdam, Elsevier, p. 195–235,
- 284 https://doi.org/10.1016/B978-0-08-095975-7.00507-6.
- 285 Gao, L., Zhang, C., Liu, P., Tang, F., Song, B., and Ding, X., 2009, Reclassification of
- the Meso- and Neoproterozoic chronostratigraphy of North China by SHRIMP
- zircon ages: Acta Geologica Sinica (English edition), v. 83, p. 1074–1084,
- 288 <u>https://doi.org/10.1111/j.1755-6724.2009.00135.x</u>.
- 289 Gernon, T.M., Hincks, T.K., Tyrrell, T., Rohling, E.J., and Palmer, M.R., 2016, Snowball
- 290 Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup:
- 291 Nature Geoscience, v. 9, p. 242–248, <u>https://doi.org/10.1038/ngeo2632</u>.
- 292 Goddéris, Y., Le Hir, G., Macouin, M., Donnadieu, Y., Hubert-Théou, L., Dera, G.,
- Aretz, M., Fluteau, F., Li, Z.X., and Halverson, G.P., 2017, Paleogeographic forcing
- of the strontium isotopic cycle in the Neoproterozoic: Gondwana Research, v. 42,
- 295 p. 151–162, <u>https://doi.org/10.1016/j.gr.2016.09.013</u>.

- 296 Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M., and Shields-Zhou, G.A., 2015, A
- 297 global transition to ferruginous conditions in the early Neoproterozoic oceans:
- 298 Nature Geoscience, v. 8, p. 466–470, <u>https://doi.org/10.1038/ngeo2434</u>.
- Halverson, G.P., Dudás, F.Ö., Maloof, A.C., and Bowring, S.A., 2007, Evolution of the
- 300 ⁸⁷Sr/⁸⁶Sr composition of Neoproterozoic seawater: Palaeogeography,
- 301 Palaeoclimatology, Palaeoecology, v. 256, p. 103–129,
- 302 <u>https://doi.org/10.1016/j.palaeo.2007.02.028</u>.
- 303 Horton, F., 2015, Did phosphorus derived from the weathering of large igneous provinces
- 304 fertilize the Neoproterozoic ocean?: Geochemistry Geophysics Geosystems, v. 16,
- 305 p. 1723–1738, <u>https://doi.org/10.1002/2015GC005792</u>.
- 306 Hua, H., and Cao, R., 2004, An abrupt variation event of stromatolitic microstructures in
- 307 the Neoproterozoic and its origination background: Acta Palaeontologica Sinica,
- 308 v. 43, p. 234–245.
- 309 [[Volume/pages/DOI appear to refer to the original article, not the comment -
- 310 please verify that the correct reference is cited, and update the citation
- 311 accordingly]]Jacobsen, S.B., and Kaufman, A.J., 1999, The Sr, C and O isotopic
- 312 evolution of Neoproterozoic seawater—Comment: Chemical Geology, v. 161, p. 37–
- 313 57, <u>https://doi.org/10.1016/S0009-2541(99)00080-7</u>
- Jenkyns, H.C., 2010, Geochemistry of oceanic anoxic events: Geochemistry Geophysics
- 315 Geosystems, v. 11, Q03004, <u>https://doi.org/10.1029/2009GC002788</u>.
- 316 Kaufman, A.J., and Knoll, A.H., 1995, Neoproterozoic variations in the C-isotopic
- 317 composition of seawater: Stratigraphic and biogeochemical implications:

- 318 Precambrian Research, v. 73, p. 27–49, <u>https://doi.org/10.1016/0301-</u>
- 319 <u>9268(94)00070-8</u>.
- 320 Kee, W.-S., Kim, S.W., Kwon, S., Santosh, M., Ko, K., and Jeong, Y.-J., 2019, Early
- 321 Neoproterozoic (ca. 913–895 Ma) arc magmatism along the central–western Korean
- 322 Peninsula: Implications for the amalgamation of Rodinia supercontinent:
- 323 Precambrian Research, v. 335, 105498,
- 324 <u>https://doi.org/10.1016/j.precamres.2019.105498</u>.
- 325 Kuang, H., Liu, Y., Peng, N., and Liu, L., 2011, Geochemistry of the Neoproterozoic
- 326 molartooth carbonates in Dalian, eastern Liaoning, China, and its geological
- 327 implications: Earth Science Frontiers, v. 18, p. 25–40.
- 328 Kuznetsov, A.B., Semikhatov, M.A., Maslov, A.V., Gorokhov, I.M., Prasolov, E.M.,
- 329 Krupenin, M.T., and Kislova, I.V., 2006, New data on Sr- and C-isotopic
- 330 chemostratigraphy of the Upper Riphean type section (Southern Urals): Stratigraphy
- and Geological Correlation, v. 14, p. 602–628,
- 332 <u>https://doi.org/10.1134/S0869593806060025</u>.
- 333 Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., 2012, The Sr isotope
- 334 composition of the world ocean, marginal and inland seas: Implications for the Sr
- isotope stratigraphy: Stratigraphy and Geological Correlation, v. 20, p. 501–515,
- 336 <u>https://doi.org/10.1134/S0869593812060044</u>.
- 337 Kuznetsov, A.B., Bekker, A., Ovchinnikova, G.V., Gorokhov, I.M., and Vasilyeva, I.M.,
- 338 2017, Unradiogenic strontium and moderate-amplitude carbon isotope variations in
- early Tonian seawater after the assembly of Rodinia and before the Bitter Springs

- 340 Excursion: Precambrian Research, v. 298, p. 157–173,
- 341 <u>https://doi.org/10.1016/j.precamres.2017.06.011</u>.
- Liu, Y., Gao, L., Liu, Y., Song, B., and Wang, Z., 2006, Zircon U-Pb dating for the
- 343 earliest Neoproterozoic mafic magmatism in the southern margin of the North China
- 344 Block: Chinese Science Bulletin, v. 51, p. 2375–2382,
- 345 <u>https://doi.org/10.1007/s11434-006-2114-0</u>.
- 346 McArthur, J.M., 1994, Recent trends in strontium isotope stratigraphy: Terra Nova, v. 6,
- 347 p. 331–358, <u>https://doi.org/10.1111/j.1365-3121.1994.tb00507.x</u>.
- 348 McArthur, J.M., Howarth, R.J., and Shields, G.A., 2012, Strontium isotope stratigraphy,
- 349 *in* Gradstein, F.M., et al., eds., The Geologic Time Scale: Amsterdam, Elsevier, p.
- 350 127–144, <u>https://doi.org/10.1016/B978-0-444-59425-9.00007-X</u>.
- 351 Melezhik, V.A., Ihlen, P.M., Kuznetsov, A.B., Gjelle, S., Solli, A., Gorokhov, I.M.,
- 352 Fallick, A.E., Sandstad, J.S., and Bjerkgård, T., 2015, Pre-Sturtian (800–730 Ma)
- 353 depositional age of carbonates in sedimentary sequences hosting stratiform iron ores
- 354 in the Uppermost Allochthon of the Norwegian Caledonides: A chemostratigraphic
- 355 approach: Precambrian Research, v. 261, p. 272–299,
- 356 <u>https://doi.org/10.1016/j.precamres.2015.02.015</u>.
- 357 Montañez, I.P., Banner, J.L., Osleger, D.A., Borg, L.E., and Bosserman, P.J., 1996,
- 358 Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian
- 359 platform carbonates: Implications for the evolution of Cambrian seawater ⁸⁷Sr/ ⁸⁶Sr:
- 360 Geology, v. 24, p. 917–920, <u>https://doi.org/10.1130/0091-</u>
- 361 <u>7613(1996)024<0917:ISIVAS>2.3.CO;2</u>.

362	Park, H., Zhai, M., Yang, J., Peng, P., Kim, J., Zhang, Y., Kim, M., Park, U., and Feng,
363	L., 2016, Deposition age of the Sangwon Supergroup in the Pyongnam basin (Korea)
364	and the Early Tonian negative carbon isotope interval: Yanshi Xuebao, v. 32,
365	p. 2181–2195.
366	Peng, P., Bleeker, W., Ernst, R.E., Söderlund, U., and McNicoll, V., 2011, U-Pb
367	baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma
368	sills in the North China craton: Evidence for a Neoproterozoic mantle plume: Lithos,
369	v. 127, p. 210-221, https://doi.org/10.1016/j.lithos.2011.08.018.
370	Pogge von Strandmann, P.A.E., Jenkyns, H.C., and Woodfine, R.G., 2013, Lithium
371	isotope evidence for enhanced weathering during Oceanic Anoxic Event 2: Nature
372	Geoscience, v. 6, p. 668-672, <u>https://doi.org/10.1038/ngeo1875</u> .
373	Shields, G.A., 1999, Working towards a new stratigraphic calibration scheme for the
374	Neoproterozoic-Cambrian: Eclogae Geologicae Helvetiae, v. 92, p. 221-233.
375	Tang, Q., Pang, K., Xiao, S., Yuan, X., Ou, Z., and Wan, B., 2013, Organic-walled
376	microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan
377	region of North China and their biostratigraphic significance: Precambrian Research,
378	v. 236, p. 157–181, https://doi.org/10.1016/j.precamres.2013.07.019.
379	Tang, Q., Pang, K., Yuan, X., Wan, B., and Xiao, S., 2015, Organic-walled microfossils
380	from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their
381	biostratigraphic implications: Precambrian Research, v. 266, p. 296-318,

382 <u>https://doi.org/10.1016/j.precamres.2015.05.025</u>.

- 383 Veizer, J., 1989, Strontium isotopes in seawater through time: Annual Review of Earth
- and Planetary Sciences, v. 17, p. 141–167,
- 385 <u>https://doi.org/10.1146/annurev.ea.17.050189.001041</u>.
- 386 Wang, Q., Yang, D., and Xu, W., 2012, Neoproterozoic basic magmatism in the
- 387 southeast margin of North China Craton: Evidence from whole-rock geochemistry,
- 388 U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei
- area of China: Science China. Earth Sciences, v. 55, p. 1461–1479,
- 390 <u>https://doi.org/10.1007/s11430-011-4237-7</u>.
- 391 Xiao, S., Shen, B., Tang, Q., Kaufman, A.J., Yuan, X., Li, J., and Qian, M., 2014,
- 392 Biostratigraphic and chemostratigraphic constraints on the age of early
- 393 Neoproterozoic carbonate successions in North China: Precambrian Research,
- 394 v. 246, p. 208–225, <u>https://doi.org/10.1016/j.precamres.2014.03.004</u>.
- 395 Yang, D.-B., Xu, W.-L., Xu, Y.-G., Wang, Q.-H., Pei, F.-P., and Wang, F., 2012, U-Pb
- 396 ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of
- 397 northern Jiangsu and southern Liaoning Provinces, China: Implications for the Late
- 398 Precambrian evolution of the southeastern North China Craton: Precambrian
- 399 Research, v. 216–219, p. 162–176, <u>https://doi.org/10.1016/j.precamres.2012.07.002</u>.
- 400 Yang, J., Zheng, W., Wang, Z., and Tao, X., 2001, Age determining of the upper
- 401 Precambrian system of northern Jiangsu-Anhui by using Sr and C isotopes: Journal
- 402 of Stratigraphy, v. 25, p. 44–47 [in Chinese].
- 403 Zang, W.-L., and Walter, M.R., 1992, Late Proterozoic and Early Cambrian microfossils
- 404 and biostratigraphy, northern Anhui and Jiangsu, central-eastern China: Precambrian
- 405 Research, v. 57, p. 243–323, <u>https://doi.org/10.1016/0301-9268(92)90004-8</u>.

- 406 Zhang, S.-H., Zhao, Y., Ye, H., and Hu, G.-H., 2016, Early Neoproterozoic emplacement
- 407 of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the
- 408 southeastern North China Craton: Precambrian Research, v. 272, p. 203–225,
- 409 <u>https://doi.org/10.1016/j.precamres.2015.11.005</u>.
- 410 Zheng, W., Yang, J., Hong, T., Tao, X., and Wang, Z., 2004, Sr and C isotopic
- 411 correlation and the age boundary determination for the Neoproterozoic in the
- 412 southern Liaoning and northern Jiangsu–northern Anhui Provinces: Gaoxiao Dizhi
- 413 Xuebao, v. 10, p. 165–178 [in Chinese].
- 414 Zhu, R.-Z., Ni, P., Wang, G.-G., Ding, J.-Y., Fan, M.-S., and Ma, Y.-G., 2019,
- 415 Geochronology, geochemistry and petrogenesis of the Laozhaishan dolerite sills in
- 416 the southeastern margin of the North China Craton and their geological implication:
- 417 Gondwana Research, v. 67, p. 131–146, <u>https://doi.org/10.1016/j.gr.2018.10.016</u>.

418 FIGURE CAPTIONS

- 419 Figure 1. Carbonate carbon and strontium isotope data for Huaibei Group in the Huaibei
- 420 area (Jiangsu), North China craton. VPDB—Vienna Peedee belemnite. Data are shown
- 421 alongside a stratigraphic log of the Huaibei Group, published ages for the eastern block
- 422 of North China craton, and inferred correlation between the Huaibei and Jinxian
- 423 Groups,[[Define the grain-size abbreviations used at the bottom of the rock log]]
- 424 Also shown is a geological map of the eastern block of the North China craton (NCC).
- 425 Data points that did not pass screening are not shown.
- 426 [[In the figure, in the column headings at top, capitalize only the first word and
- 427 proper nouns in each heading, spell out "Stratigraphic", correct the spelling of
- 428 "height", and change "maps" to "map". Under "Published ages", adjust the

429	topmost age so that the superscript "1" isn't overprinted by the red box; change
430	instances of "~" to "ca.". In the map, include a north arrow; redo the labels that
431	look like they have been stretched diagonally (they should only be rotated, not
432	skewed); change hyphen to en dash for "Trans-", and make "orogen" lowercase;
433	make instances of "belt", "massif", and "block" (except for the one in all caps)
434	lowercase; capitalize "Ocean". In the legend, capitalize (only) the first word of each
435	label, plus proper nouns (make "block" and "belt" lowercase); add an explanation
436	for crossbedding(?) symbol and the "SB" label shown along the rock log; the
437	"Stromatolite bank" symbol does not appear to be shown in the figure; spell out
438	"CMC"; reword "Unfinished formation" to make it clear what this means (and
439	make sure that the gray-dashed symbol actually appears in the figure). At the
440	bottom of the figure, the citation "He et al., 2016" is not in the reference list; change
441	periods to em dashes after reference ID numbers; put reference years in parentheses
442	instead of setting them off with commas; insert a comma after "Yang et al."; in the
443	"YPM" definition, change the colon to an em dash, and make the definition all
444	lowercase with no bold letters]]
445	
446	Figure 2. Isotopic evolution of Neoproterozoic seawater: proposed Neoproterozoic

447 seawater ⁸⁷Sr/⁸⁶Sr curve (black line with blue halo); new compilation of global carbonate

448 δ^{13} C (gray-circles; VPDB—Vienna Peedee belemnite); updated large igneous province

- 449 (LIP) record during 1050–500 Ma (light-red bars; bar heights indicate size of LIP); and
- 450 supercontinent cycle during 1050–500 Ma (Bradley, 2008) (red and green horizontal
- 451 bars) [[Explain the black vertical hatch marks shown in the supercontinent cycle]].

- 452 Light-blue columns in background mark three known glaciations, from old to young:
- 453 Sturtian, Marinoan, and Gaskiers. The updated compilation of LIPs from 1050–500 Ma is
- 454 based on Ernst et al. (2008), and the updated compilation at
- 455 http://www.largeigneousprovinces.org/. Additionally, the sizes of ca. 920 Ma Dashigou
- 456 LIP and Bahia-Ganila LIP (in the North China craton) were taken from Peng et al. (2011)
- 457 and Chaves et al. (2018) [[respectively?]] (for more detail, see Fig. DR3 [see footnote
- 458 1]). For δ^{13} C data, gray circles are published data compiled by Cox et al. (2016); green
- 459 circles are data from Xiao et al. (2014); red circles are from this study. For ⁸⁷Sr/⁸⁶Sr data,
- 460 red stars are data from this study; details of all other data (diamonds) can be found in Cox
- 461 et al. (2016).
- 462 [[In the figure, fix the cut-off superscripts on the left side of the figure; at the top,
- 463 make "assembly" and "breakup" lowercase (make "breakup" one word); make
- 464 "glaciation" lowercase.]]
- 465
- 466 ¹GSA Data Repository item 2020xxx, **[[Please provide item title(s) and brief**
- 467 **descriptions here**]], is available online at
- 468 http://www.geosociety.org/datarepository/2020/, or on request from
- 469 editing@geosociety.org.