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ABSTRACT

Submarine slope channel systems have complicated three-dimensional

geometries and facies distributions, which are challenging to resolve using

subsurface data. Outcrop analogues can provide sub-seismic-scale detail,

although most exhumed systems only afford two-dimensional constraints on

the depositional architecture. A rare example of an accessible fine-grained

slope channel complex set situated in a tectonically quiescent basin that

offers seismic-scale, down-dip and across-strike exposures is the Klein

Hangklip area, Tanqua-Karoo Basin, South Africa. This study investigates

the three-dimensional architecture of this channel complex set to charac-

terise the stratigraphic evolution of a submarine channel-fill and the implica-

tions this has for both sediment transport to the deep-oceans and reservoir

quality distribution. Correlated sedimentary logs and mapping of key sur-

faces across a 3 km2 area reveal that: (i) the oldest channel elements in chan-

nel complexes infill relatively deep channel cuts and have low aspect-ratios.

Later channel elements are bound by comparatively flat erosion surfaces and

have high aspect-ratios; (ii) facies changes across depositional strike are con-

sistent and predictable; conversely, facies change in successive down depo-

sitional dip positions indicating longitudinal variability in depositional

processes; (iii) stratigraphic architecture is consistent and predictable at seis-

mic-scale both down-dip and across-strike in three-dimensions; (iv) channel-

base-deposits exhibit spatial heterogeneity on one to hundreds of metres

length-scales, which can inhibit accurate recognition and interpretations

drawn from one-dimensional or limited two-dimensional datasets; and (v)

channel-base-deposit character is linked to sediment bypass magnitude and

longevity, which suggests that time-partitioning is biased towards conduit

excavation and maintenance rather than the fill-phase. The data provide

insights into the stratigraphic evolution and architecture of slope channel-

fills on fine-grained continental margins and can be utilised to improve pre-

dictions derived from lower resolution and one-dimensional well data.

Keywords Channel architecture, channel base drape, channel hierarchy,
Karoo Basin, sediment bypass, submarine channel.
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INTRODUCTION

Submarine slope channels are conduits for
some of the largest sediment transport events
on Earth (e.g. Piper & Aksu, 1987; Gonzalez-
Yajimovich et al., 2007; Talling et al., 2007;
Jobe et al., 2018), with individual flows up to
an order of magnitude larger than the global
annual flux of rivers to the ocean (Milliman &
Syvitski, 1992; Talling et al., 2007; Sømme
et al., 2009). Submarine gravity flows within
these channels transport large quantities of
organic carbon and anthropogenic pollutants to
their ultimate sink on the basin-floor (Galy
et al., 2007; Gwiazda et al., 2015; Kane & Clare,
2019). Additionally, slope channel-fills can act
as valuable archives of past climatic and tec-
tonic events (e.g. Mutti, 1984; Bruhn & Walker,
1997; Clark & Cartwright, 2009; Pickering &
Bayliss, 2009; Covault & Graham, 2010; Hirst,
2012; Scotchman et al., 2015; Castelltort et al.,
2017) and form important hydrocarbon reser-
voirs on continental margins around the world
(Bruhn & Walker, 1997; Weimer et al., 2000;
Kolla et al., 2001; Prather, 2003; Mayall et al.,
2006; Zhang et al., 2015).
The evolution and character of slope chan-

nels is challenging to decipher using subsurface
data, as they are often characterised by compli-
cated three-dimensional (3D) facies heterogene-
ity and depositional geometries at sub-seismic
scale. Outcrop analogues can help to bridge
this scale gap and provide data to populate 3D
bodies mapped in seismic with stratigraphic
and facies information (e.g. Bryant & Flint,
1992; Clark & Pickering, 1996; Campion et al.,
2000; Sullivan et al., 2000; McCaffrey & Knel-
ler, 2001; Hodgetts et al., 2004; Bakke et al.,
2008, 2013; Hofstra et al., 2017). Most outcrops
only afford two-dimensional (2D) constraints of
the depositional architecture, which provides
only limited information on how architecture
and facies vary either laterally (across-strike) or
longitudinally (down-dip) (e.g. Walker, 1966a,
1966b, 1975; Campion et al., 2000; Sullivan
et al., 2000; Schwarz & Arnott, 2007; Kane
et al., 2009; Moody et al., 2012; Macauley &
Hubbard, 2013; Bain & Hubbard, 2016; Li et al.,
2016; Morris et al., 2016; Pitts et al., 2017).
Few outcrop-based studies have been able to
investigate the 3D architecture and stratigraphic
evolution of submarine channel-fills and those
that do rely on extrapolation of LiDAR (light
detection and ranging) data from oblique sec-
tions (Pyles et al., 2010, 2012). Additionally,

most outcrop analogues are from relatively
small foreland basins, with small catchments
and coarse-grained sediment (Beaubouef, 2004;
De Ruig & Hubbard, 2006; Jobe et al., 2010;
Moody et al., 2012; Hubbard et al., 2014; Bain
& Hubbard, 2016; Casciano et al., 2019), which
are poor analogues for the comparatively large,
fine-grained and mud-rich systems that are
common in offshore passive margin settings
with large drainage basins (e.g. Reading &
Richards, 1994; Bouma, 2000; Stelting et al.,
2000; Hubbard et al., 2005; Pickering & Corregi-
dor, 2005; Pr�elat et al., 2010; Kane & Pont�en,
2012).
Channel-cuts and their fills are commonly

time transgressive (e.g. McHargue et al., 2011;
Sylvester et al., 2011; Hubbard et al., 2014;
Hodgson et al., 2016), formed by numerous
energetic flows that excavated the channel. The
preserved expression of flows that bypassed sed-
iment further down-dip is composite erosion
surfaces and associated heterogeneous channel-
base-deposits. In the current study the term
channel-base-deposit is used instead of the com-
monly used channel-base-drape (e.g. Barton
et al., 2010) because a drape infers low-energy
or background depositional processes, whereas
channel base facies commonly indicate repeated
cycles of erosion, entrainment and deposition by
high-energy flows (e.g. Mutti & Normark, 1987).
The nature of channel-base-deposits is com-
monly used to infer the characteristics of their
parent flows, and can be useful in predicting the
presence or absence of sandstone down-dip
(Walker, 1975; Mutti & Normark, 1987; Barton
et al., 2010; Hubbard et al., 2014; Stevenson
et al., 2015; Li et al., 2016).
This study documents an exhumed Permian

slope channel complex set (Unit 5, Skoorsteen-
berg Formation) that crops out in the Tanqua
depocentre, Karoo Basin, South Africa (Fig. 1A
and B). A series of depositional strike, deposi-
tional dip, and oblique oriented cliff-faces per-
mit documentation of the lateral, longitudinal,
and vertical architecture of channel-fills in a
mud-rich, fine-grained system (Fig. 1C). The
objectives of this study are: (i) to elucidate the
stratigraphic evolution of the channel complex
set; (ii) to investigate the down-dip and across-
strike architectural and facies variability within
the channel complex set; (iii) to document the
facies and distribution of channel-base-deposits;
and (iv) to discuss the implications for reservoir
connectivity and interpretation of subsurface
data.
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GEOLOGICAL SETTING

The Karoo Basin developed during the Permian
due to subsidence induced by mantle flow
processes associated with subduction of the
Palaeo-Pacific plate, before transitioning to a retro-
arc foreland basin related to an adjacent fold and
thrust belt, from approximately 250 Ma (Cape Fold
Belt; De Wit & Ransome, 1992; Veevers et al., 1994;
Visser & Praekelt, 1996; Viglietti et al., 2017). The
deposits of the Karoo Supergroup, comprising the
glacial Dwyka Group, the marine Ecca Group and
the non-marine Beaufort Group, record basin deep-
ening followed by shallowing through the late Car-
boniferous to the Triassic (Fig. 1D; Smith, 1990;
Bouma & Wickens, 1991; Wickens, 1994; Johnson

et al., 1996; Hodgson et al., 2006). This study con-
cerns the Ecca Group, which records a prograda-
tional, shallowing-upward marine succession
(Fig. 1D; Smith, 1990; Bouma & Wickens, 1994;
Hodgson et al., 2006).
The Ecca Group in the Tanqua depocentre,

located in the south-west of the Karoo Basin
(Fig. 1), is subdivided into the Lower and Upper
Ecca Group: The Lower Ecca Group consists of
the relatively sand-starved basin-floor Prince
Albert and Whitehill formations (Visser, 1994;
Boulesteix et al., 2019); the Upper Ecca Group
includes the sand-starved basin-floor Tierberg
Formation (Visser, 1994; Boulesteix et al., 2019),
the basin-floor to base of slope Skoorsteenberg
Formation and slope to shallow-marine

Sources: Esri, DeLorme, USGS, NPS
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Fig. 1. Locality maps and stratigraphic context of the study area. (A) Location of the Tanqua depocentre, Karoo
Basin (black box) in South Africa. (B) Location of the Klein Hangklip outcrop (white box) within the Tanqua
depocentre, Karoo Basin. (C) Positions of logged sections and stratigraphic panels at the Klein Hangklip outcrop.
(D) Summarised stratigraphic column of the Tanqua succession (modified from Wild et al., 2005).
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Waterford Formation (Fig. 1D; Bouma & Wick-
ens, 1991; Bouma & Wickens, 1994; Johnson
et al., 2001; Wild et al., 2005; Hodgson et al.,
2006; Wild et al., 2009; Poyatos-Mor�e et al.,
2016).
The Skoorsteenberg Formation is 450 m thick

in the Tanqua Depocentre and comprises five
sandstone-prone units. The lower four units are
interpreted as a progradational succession of
submarine fans (Fans 1 to 4), overlain by a fifth
unit (Unit 5) interpreted as a base of slope to
lower-slope system (Bouma & Wickens, 1991,
1994; Johnson et al., 2001; Wild et al., 2005;
Hodgson et al., 2006; Pr�elat et al., 2009; Hansen
et al., 2019). Each fan is interpreted as a low-
stand systems tract and is overlain by regionally
correlated fine-grained packages interpreted as
the combined transgressive and highstand sys-
tems tracts (Goldhammer et al., 2000; Johnson
et al., 2001; Flint et al., 2011).
This study focusses on Unit 5 in the Klein

Hangklip study area located in the south of the
Tanqua depocentre (Fig. 1B and C). Here, the
preserved stratigraphy is 55 m thick, although
Unit 5 is ca 100 m thick regionally. Unit 5 at
Klein Hangklip is interpreted to represent a sub-
marine slope environment consisting of intra-
slope lobes, channel-fills and lateral channel
splay deposits (Wild et al., 2005). The channel-
fills have an internal hierarchy and are inter-
preted as a series of channel complexes (Wild
et al., 2005). A regional fine-grained unit sepa-
rates Unit 5 from the underlying Fan 4, which is
subdivided into sandstone-rich Upper and
Lower Fan 4 (Hodgson et al., 2006; Spychala
et al., 2017; Hansen et al., 2019).

METHODOLOGY AND DATA SET

This study utilises 21 sedimentary logs measured
at 1 : 20 scale (Fig. 2). Logs were used to con-
struct seven correlation panels; three oriented
down depositional-dip and four oriented along
depositional-strike (Figs 1C and 2). Correlations
were made in the field by mapping key packages
and surfaces. In addition, aerial and unmanned
aerial vehicle (UAV) photographs were used to
further support correlations in areas difficult to
access and were used to guide and supplement
geometric interpretations observed in the field.
Data collected include lithology, bed thickness
and palaeocurrents (n = 107) measured from rip-
ple cross-lamination, wood-fragment long-axis
orientation and channel incision surfaces.

FACIES AND CHANNEL HIERARCHY

The outcrops at Klein Hangklip have been inter-
preted as submarine channel-fills containing tur-
bidites (Wild et al., 2005). Six lithofacies were
identified and are summarised in Table 1. The
lithofacies are grouped into a channel-fill facies
association.

Lithofacies description and interpretation

F1: Siltstone
Description. Fine-grained to coarse-grained silt-
stones form packages or caps to individual beds
(Fig. 3A). Fine-grained siltstone packages appear
homogenous at outcrop, though on a micro-scale
siltstones in the Tanqua depocentre typically
consist of 0.1 to 1.0 mm scale beds (Boulesteix
et al., 2019). Typically, coarse-grained siltstones
are well-bedded (Fig. 3A), have bed thicknesses
of 0.01 to 0.07 m, and are frequently rippled.
Claystones were not observed in the study area.

Interpretation. Laminated siltstones which cap
individual sandstone beds are interpreted to be
deposited from the relatively dilute tail of turbidity
currents (Bouma 1962; Walker, 1966a; Mutti &
Ricci Lucchi, 1978; Stow & Bowen, 1980). Thick
packages of ‘laminated’ siltstones are likely to have
been deposited by numerous discrete and dilute
turbidity currents (Piper, 1972; Morris et al., 2014;
Newport et al., 2017; Boulesteix et al., 2019). Rip-
pled deposits are interpreted to form due to deposi-
tion and reworking by dilute, fully turbulent flows
(e.g. Walker, 1965; Allen, 1982; Baas, 1994).

F2: Laminated sandstone
Description. Very fine-grained to fine-grained
sandstone beds 0.05 to 2.5 m thick with alternat-
ing finer and coarser 0.5 to 1.0 mm thick lami-
nae which are bed-parallel to sub-horizontal
(Fig. 3B). Beds are commonly sharp-topped or
amalgamated, but rare examples grade to silt-
stone. Commonly, laminated sandstones form an
upper division to a sandstone bed, which has a
lower, structureless sandstone division. Organic
material, including leaf or wood-fragments, is
commonly preserved parallel to laminae.

Interpretation. Sandstones with parallel lamina-
tion can be deposited from the repeated formation
and collapse of near-bed layers termed ‘traction
carpets’ in high-concentration flows (Dzulynski &
Sanders, 1962; Hiscott & Middleton, 1979; Lowe,
1982; Sohn, 1997; Sumner et al., 2008); or by the
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migration of low-amplitude bed-waves in low-
concentration flows (Southard, 1991; Best &
Bridge, 1992). It is challenging to distinguish
which depositional process forms a given parallel
laminated deposit at outcrop (e.g. Talling et al.,
2012). However, parallel laminated sandstones at
Klein Hangklip are frequently associated with
thinner-bedded deposits in channel off-axis and
margin positions, where turbidity currents were
likely relatively low-concentration (Altinakar
et al., 1996; Hansen et al., 2015; Jobe et al.,
2017), and therefore migration of low-amplitude
bed-waves is preferred.

F3: Rippled sandstone
Description. Very fine-grained sandstone beds
with well-developed current-ripple cross-lamina-
tion (Fig. 3C). Typically, ripple laminations
develop as divisions within a bed overlying lami-
nated or structureless sandstone (Fig. 3C). Divi-
sions are 0.05 to 0.8 m thick, and form packages
up to 2.1 zm thick. Ripple laminations com-
monly exhibit supercritical angles of climb with
stoss-side preservation (Fig. 3C). Less frequently,
ripple laminations have subcritical angles of
climb, and are associated with thinner divisions
(<0.1 m) and reworked bed tops.

Interpretation. Ripple laminated sandstones are
deposited from fully turbulent flows, or parts of
flows, which are low concentration, have rela-
tively low rates of fallout, and can rework the
bed (e.g. Walker, 1965; Allen, 1982; Southard,
1991; Baas, 1994, 1999). Thick packages of rip-
pled sandstone with supercritical angles of
climb are interpreted to be deposited by sus-
tained, relatively dilute, flows in which the
depositional rate was in excess of that of bed-
form migration (e.g. Sorby, 1908; Allen, 1970b,
1991; Baas et al., 2000; Jobe et al., 2012).

F4: Structureless sandstone
Description. Very fine-grained to fine-grained
sandstone beds 0.02 to 6.7 m thick, which form
packages up to 10 m thick. Beds are apparently
structureless and ungraded to weakly graded
(Fig. 3D and E). Sandstone beds are frequently
dewatered, which is typical of sandstones in the
basin (e.g. Hodgson et al., 2006). Beds often form
either: (i) highly amalgamated packages in which
bedding surfaces are challenging to distinguish
(Facies F4b; Table 1; Fig. 3E); or (ii) relatively thin-
ner-bedded sandstones in which bedding surfaces
are distinguishable, even if amalgamated (Facies
F4a; Table 1; Fig. 3D). Plant fragments can beT
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observed along bed tops, or rarely observed within
the bed itself. Mudstone clasts are commonly
observed on bed tops, or isolated within the bed.

Interpretation. Apparently structureless sand-
stones are deposited incrementally from high-con-
centration, near-bed, parts of flows in which high
depositional rates inhibit the development of trac-
tional bedforms (Kuenen, 1966; Lowe, 1982; Knel-
ler & Branney, 1995; Baas et al., 2004; Leclair &
Arnott, 2005; Sumner et al., 2008). Rapid near-bed
aggradation is interpreted to create excess pore
pressures, resulting in dewatering (Lowe, 1975).
An alternative mode of deposition of is from the en
masse freezing of sandy debris flows (e.g. Shan-
mugam, 1996). However, structureless sandstones
in the field area commonly grade laterally into lam-
inated sandstones and do not pinch-out abruptly,

which are suggestive of spatial changes in flow
behaviour, as opposed to freezing of the flow (Tal-
ling et al., 2012, 2013). As such, sandstones here
are interpreted as the product of high-concentra-
tion near-bed layers of turbidity currents.

F5: Cross-bedded sandstone
Description. Very fine-grained to fine-grained
cross-bedded sandstones with foresets that reach
tens of centimetres in height are rarely observed
in the study area (Fig. 3F). Foresets may contain
abundant mudstone-clasts aligned parallel to
laminae, though more typically clasts are absent.

Interpretation. The development of dune-scale
cross-bedded sands is suppressed at high near-
bed concentrations and sediment fallout rates
(Lowe, 1988; Baas et al., 2011). Dune-scale

30 cm

Lens cap

A  F1

C  F3

B  F2

D  F4a

E  F4b & F6 F  F5

G  F6 H  F7

Fig. 3. Representative photographs
of lithofacies in the study area.
(A) Bedded siltstone (F1).
(B) Laminated sandstone (F2).
Person for scale is ca 1.8 m tall.
(C) Rippled sandstone (F3). Lens
cap for scale, 60 mm diameter.
(D) Medium-bedded amalgamated
sandstone (F4a). (E) Thick-bedded
amalgamated sandstone (F4b) with
a mudstone-clast-rich base (F6).
(F) Cross-bedded sandstone (F5b).
Hammer for scale, 27 cm long.
(G) Mudstone-clasts concentrated
on an erosion surface (F6).
(H) Argillaceous sandstone (F7)
within a channel-base-deposit.
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cross-bedding in deep-water systems is therefore
interpreted to form from long-lived, fast-moving,
relatively dilute flows that had low rates of sedi-
ment fallout (Walker, 1965; Allen, 1970a; Sum-
ner et al., 2012).

F6: Mud-clast-rich sandstone
Description. Mudstone-clast-rich sandstones are
structureless. They also contain an abundance of
mudstone clasts distributed throughout the bed
or package (Fig. 3E and G).

Interpretation. Mudstone-clast-rich sandstones
are interpreted to be deposited from near-bed
parts of high-concentration flows in which tur-
bulence was suppressed (e.g. Lowe, 1982). Mud-
stone clasts are likely sourced from either
erosion and entrainment of local substrate
(Walker, 1966a; Johansson & Stow, 1995; Butler
& Tavarnelli, 2006; Southern et al., 2015) or
transported in the flow from further updip
(Johansson & Stow, 1995; Hodgson, 2009).

F7: Argillaceous sandstone
Description. Argillaceous, very fine-grained to
fine-grained sandstones are observed only in
axial channel-base-deposits (Fig. 3H). Typically,
beds are 0.1 to 0.4 m thick, and locally form
composite packages up to 1 m thick, are rela-
tively poorly sorted, darker in colour and are
more fissile than other sandstones. Argillaceous
sandstones are usually mudstone-clast-rich, with
clasts in varying stages of break-up (Fig. 3H).

Interpretation. Poorly sorted, argillaceous
sandstones with an elevated matrix content are
interpreted to be deposited under flows
transitional between turbulent and laminar (e.g.
Wang & Larsen, 1994; Baas & Best, 2002; Sylvester
& Lowe, 2004; Baas et al., 2009; Kane & Pont�en,
2012; Kane et al., 2017). The common occurrence
of argillaceous sandstones overlying erosion sur-
faces suggests that the source of flow transforma-
tion was likely local substrate entrainment
(Southern et al., 2015; Fonnesu et al., 2016),
which suppressed turbulence, as opposed to lon-
gitudinal flow transformation (e.g. Haughton
et al., 2009; Hodgson, 2009; Kane et al., 2017).

Facies associations

One major facies association is identified in the
study area. This is a channel-fill facies associa-
tion, which is described below.

FA1: Channel-fill
Channel-fills can exhibit a wide-range of fill-
styles, which can be partially preserved, symmet-
rical or asymmetrical; and can be filled with dif-
ferent proportions of sandstone, mudstone or
debrites. Such variability can occur at the individ-
ual channel element, complex, and complex set
scale (e.g. Pickering & Corregidor, 2005; Mayall
et al., 2006; Pyles et al., 2010; Moody et al., 2012;
Bayliss & Pickering, 2015; Zhang et al., 2015; Li
et al., 2016). Despite this, a generalised facies
association for the Klein Hangklip channel-fill is
proposed. Divergence from these descriptions
across different channel elements, complexes and
the channel complex set are described in the
results.
Where symmetrical, a given channel-fill typi-

cally exhibits a gull-wing-like geometry. The
channel axis is located at the thickest point of
the channel-fill, and predominantly consists of
comparatively thick-bedded, amalgamated F4a,
F4b and F6 (Table 1; Figs 3 to 5). Channel off-
axis positions overlie the steep erosional cut of
the channel, with the fill being stratigraphically
thinner, and comprise comparatively thinner-
bedded F4, F4b and F2; with subordinate F6
(Figs 3 to 5). Channel margin positions overlie
the low-gradient, upper parts of the channel-cut,
corresponding to the upper and outer parts of a
gull-wing geometry. Channel margin deposits
are comparatively thin and are laterally exten-
sive (Fig. 4). Channel margin facies typically
consist of comparatively thin-bedded F2 and
F4a, with localised F1 and F3 (Figs 3 to 5).

Channel hierarchy

Submarine slope channel-fills are hierarchically
organised (Fig. 5; e.g. Sprague et al., 2002, 2005;
Di Celma et al., 2011; McHargue et al., 2011;
Moody et al., 2012; Macauley & Hubbard, 2013;
Stright et al., 2014; Li et al., 2016). The hierar-
chy used in the current study is based on Spra-
gue et al. (2002, 2005), though note the
substitution of ‘channel fill’ for ‘channel ele-
ment’; from the smallest to the largest scale, the
hierarchy consists of: (i) beds/facies that share
similar lithologies; (ii) storeys, which consist of
beds filling an individual erosion surface or
scour (Friend et al., 1979); (iii) channel ele-
ments, which represent a single cycle of cut-
and-fill (Fig. 5), and can contain numerous stor-
eys; (iv) channel complexes formed from two or
more nested channel elements (Fig. 5); and (v)
channel complex sets formed by two or more
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stacked channel complexes (Fig. 5). This hierar-
chical scheme has been applied to the Unit 5
succession based on scale and stacking patterns;

and by correlation of logs and mapping of
bounding surfaces both in the field and using
aerial photography.

Lower Fan 4

Upper Fan 4
C1

C3 KHKC

C2

C4

E

50 m 5 m

Log 1 Log 2 Log 3
Outcrop in Fig. 9

Structureless sandstone
(F4)

Mud clast rich sandstone- -
(F6)

Laminated sandstone
(F2)

Siltstone
(F1)

Climbing ripple sandstone
(F3)

Fig. 4. Photopanel interpretation of an across-depositional-strike oriented cliff-face. The channel-fill incises from
the channel margin in the north to the channel axis in the south, where it may incise the top of Upper Fan 4. The
channel axis (for example, Log 3) is thicker and contains thick-bedded F6 and F4b in lower channel elements,
and bedded F4a in upper channel elements. The off-axis (for example, Log 2) is thinner and comprises bedded
F4b in lower channel elements, and bedded F4a and F2 in upper channel elements. Channel margin positions (for
example, Log 1) comprise bedded F4a in lower channel elements, and bedded F2 in upper channel elements.

High aspect ratio
channel elementAxisOff-axisMargin

Low aspect ratio
channel element

Siltstone (F1)
Laminated sandstone (F2)
Structureless sandstone (F4)
Mud-clast-rich sandstone (F6)

Channel complex set

Channel complex

ca.

ca.

500 m

25 m

Fig. 5. Schematic summary of the hierarchical scheme applied to the Klein Hangklip channel-fill. ‘Channel com-
plex set’ is the largest hierarchical level observed and consists of two channel complexes, each comprising four
channel elements. Sub-environment geometries and facies distributions are schematically illustrated based on pre-
vious work (Mutti, 1977; Campion et al., 2000; Sullivan et al., 2000; Eschard et al., 2003; Beaubouef, 2004;
Macauley & Hubbard, 2013).
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RESULTS

Architectural element descriptions

The architectural elements that make up the
Klein Hangklip channel complex set are
described below. The channel complex set is
interpreted to consist of two channel complexes:
stratigraphically, ‘KHKC’ and ‘KHKD’, each of
which is made up of four channel elements.

Channel element 1: KHKC
The exposed outcrop of KHKC has a lenticular
geometry (Fig. 4), representing approximately
one half of the original channel complex from
its left-hand channel margin to the channel-axis
(relative to palaeoflow; Fig. 6). KHKC incises
into the underlying siltstones and locally incises
Upper Fan 4 (Fig. 6). The maximum observed
incision is 20.5 m. The base of KHKC is rarely
exposed, though the channel-base-deposit is
observed 100 m to the south of Log 19 where
KHKC incises F3 facies of Upper Fan 4
(Fig. 7A). KHKC is at least 890 m wide, has a
maximum thickness of 32.9 m at Log 3 (Fig. 2;
Panel 5), and thins and fines northward (Fig. 6;
Panels 5 to 7). The minimum thickness of KHKC
is 9.5 m at the channel margin position of Log
16 (Fig. 2; Panel 7), although KHKC visibly con-
tinues to thin for 125 m to the north of that
position. No external lev�ees belonging to KHKC
are identified, although their existence cannot
be ruled out. If lev�ees are present, they are likely
to be siltstone-prone, and weather recessively,
resulting in exposures being covered by vegeta-
tion and scree. Four channel elements are iden-
tified in KHKC; these are (KHK) C1 to (KHK) C4.

KHKC1: C1 is lenticular in geometry with a
maximum thickness of 10.2 m at its axis (Log
20), and is 5.4 m thick in the channel margin at
Log 18 (Figs 4 and 6). C1 continues to thin north-
ward; however, it becomes increasingly challeng-
ing to discern individual channel elements. The
base of C1 is rarely exposed, except south of Log
19 (Figs 1C and 7A), where it comprises: (i) a
basal incision surface lined by mudstone clasts
which cuts into underlying sandstones; overlain
by (ii) 0.2 m of thin-bedded coarse siltstone; and
(iii) 1.1 m of lenticular thin-bedded sandstones,
with rare localised mudstone clasts and medium-
bedded sandstones that lie on a subtle erosion
surface into thin-bedded sandstones (Fig. 7B).
The upper surface of the channel-base-deposit is
mudstone-clast-rich and is immediately overlain

by KHKC1. The channel-base-deposit is poorly
exposed at Log 3, where a 0.1 m thick (mini-
mum) mudstone-clast-rich siltstone lag is
observed below the basal F4 of the channel-fill.
The channel axis (for example, Log 3; Fig. 2) of
C1 is composed of amalgamated F6 with mud-
stone-clast-rich bed tops at the base, overlain by
F4b (Fig. 4). F6 beds decrease in number and
mudstone clasts reduce in size stratigraphically
upward (Figs 4 and 6). The channel margin of C1
primarily comprises F4a, although F2 and F3 are
observed locally (Figs 4 and 6).

KHKC2: C2 is 16.8 m thick at its channel axis at
(Log 3; Fig. 2; Panel 4), thinning to 6.2 m to the
north-east at Log 18, and 3.5 m to the south at Log
13 (Fig. 8). The base of C2 incises into C1 and is
marked by a channel-base-deposit that has vari-
able facies. In the westernmost logged sections
(Logs 20 and 21), the channel-base-deposit of C2 is
a basal mudstone-clast-rich layer overlain by a 0.1
to 0.2 m thick fine siltstone with localised mud-
stone clasts. One kilometre down-dip to the east
(Log 3) the base of C2 is characterised by amalga-
mated, mudstone-clast-rich sandstones that are
locally eroded through a thin siltstone bed
(Fig. 8). At Logs 4, 5 and 13, the channel-base-
deposit of C2 is expressed as a clast-rich compos-
ite channel-base-deposit that is up to 1.5 m thick
with multiple composite scour surfaces. The
channel-base-deposit is composed of siltstone
with decimetre-scale rounded and angular sand-
stone clasts, remobilised bedded sandstones up to
up to 1 m in length, and abundant mudstone
clasts that range from centimetres to a metre in
length. The deposit is also locally expressed as a
0.3 m thick clast-rich siltstone with thin beds of
discontinuous clay-rich sandstones, or as an amal-
gamation surface with the underlying sandstones
of C1, mantled by mudstone clasts. The fill of C2
varies spatially, both laterally from channel axis
to channel margin positions, and in different pan-
els down depositional dip (Figs 6 and 8). Typi-
cally, the channel axis comprises F4b, with F6
locally observed in the lower 2 m (Figs 6 and 8).
Up to 4.5 m of F3 is observed in the channel axis
of Logs 20 and 21 (Fig. 6; Panel 4). Bedding
becomes less ambiguous as amalgamation
decreases towards off-axis and channel margin
positions (Fig. 4); this is accompanied by a
decrease in bed thickness, and an increase in the
proportion of F4a and F2 (Figs 4 and 6).

KHKC3: The basal erosion surface and channel-
base-deposit of C3 are relatively flat-lying and
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have been identified at outcrop through an
abrupt stratigraphic change in facies from thick-
bedded to relatively thin-bedded sandstones
(Fig. 4). C3 has a tabular geometry relative to
those observed in C1 and C2 (Figs 4 and 6). The
fill of C3 has a maximum thickness of 8 m at
Log 3, which is located in the axis of KHKC

(Figs 2 and 4), but is typically 3 to 4 m thick
elsewhere (Fig. 2). The channel-base-deposit of
C3 is laterally variable, comprising a 5 to 20 cm
siltstone at Logs 4, 5, 16, 18 and 20 (Fig. 2), a
clast-rich siltstone at Logs 1, 2 and 21 (Fig. 2),
and amalgamated thin beds at Logs 3, 12 and 15
(Fig. 2). The fill of C3 predominantly consists of

?

?

?

Channel element or
scour erosion surface
Channel complex
erosion surface

25 m

250 m

N

F4: Structureless sandstone (inferred)

F5: Mud clast rich sandstone (inferred)- -

F2: Laminated sandstone (inferred)
F1: Siltstone (inferred)

Panel 4

Panel 5

Panel 6

Panel 7

F3: Climbing rippled sandstone (inferred)
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Fig. 6. Depositional strike-oriented correlation panels. Panels are arranged from proximal (bottom) to distal (top)
to illustrate changes in facies and geometries.
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F4a and F4b (for example, Log 3; Table 1; Figs 4
and 6). Channel axis and off-axis positions con-
tain F6, which is typically located near the base
of the channel element (Figs 4 and 6). Bed thick-
ness and degree of amalgamation decrease into
channel margin positions, which comprise F2
and F4a, with rare F6 overlying the channel-base-
deposit (Figs 4 and 6). In southern channel mar-
gin localities (Logs 4 and 5) the fill of C3 is domi-
nated by F2, with localised F4a (Figs 8 and 9).

KHKC4: C4 is the uppermost channel element
of the KHKC channel complex and has a rela-
tively tabular geometry (Figs 6 and 8). The total
thickness of C4 is unknown as the upper portion
is poorly-exposed and therefore thicknesses
should be considered a minimum value. C4 is
thickest in the channel axis at Log 17 (7.8 m;
Fig. 2), the measured thicknesses at other locali-
ties are typically 3 to 5 m (Figs 6 and 8). The C4
erosion surface and channel-base-deposit are
rarely exposed, and they have a variable charac-
ter where they can be observed. The channel-
base-deposit is typically a thin siltstone
(<10 cm, locally up to 30 cm; Fig. 7E) that may
contain mudstone clasts, although the base is
also locally expressed as an amalgamation sur-
face. The facies of the C4 channel element fill is
variable, particularly from channel axis to chan-
nel margin. In axial positions, C4 comprises F4a
with local F4b and F6 (Figs 4 and 6). Off-axis
positions consist of F2 and F4a, with F4b and
F6 locally present down-dip (Figs 6 and 8).
Channel margin positions are predominantly
composed of F2, with localised F4a (Figs 4 and 6).
The south-eastern most position of C4, Log 5, has
2 m of F1 at the base and is overlain by 1 m of F3
(Fig. 9).

Channel element 2: KHKD
The uppermost sandstones of KHKC are over-
lain by approximately 2 m (minimum) of silt-
stone at Log 5, which is incised by the erosion
surface of the overlying channel-fill, KHKD. The
KHKD channel complex is exposed in a 2.7 km
wide (minimum) outcrop oriented oblique to
strike, (Panel 1; Figs 2 and 9) and is not
exposed on the north face of Klein Hangklip.
KHKD is thickest (39.0 m) at Log 7 (Fig. 6) and
thins into the east and west channel margins to
6.2 m (Log 10) and 4.5 m thick (Log 6), respec-
tively (Figs 2 and 8). The western composite-cut
of KHKD is steeper than the eastern channel-cut
(Figs 8 and 9). The margin of the channel com-
plex pinches out approximately 40 m to the

west of Log 6 (Figs 8 and 9). The pinchout of
the eastern margin is not observed due to the
oblique nature of the outcrop, although the thin-
ning and change of facies to predominantly lam-
inated sandstone suggests that it is located
south of Logs 9 and 10 (see Fig. 10). The chan-
nel axis of KHKD incises a maximum of approx-
imately 22.5 m into the underlying fill of KHKC
at Log 7 (Figs 8 and 9). Similar to KHKC, no
external lev�ees are identified, although they are
possibly present but not exposed. Four channel
elements have been identified in KHKD (D1
to D4):

KHKD1: D1 is the oldest channel element in
the KHKD channel complex. D1 is mapped over
2.7 km in Panel 1 and is best exposed on the
southern face of the outcrop (Figs 8 and 9). The
basal erosion surface and channel-base-deposit
of KHKD1 form the base of the channel element
and are well-exposed across the outcrop (Figs 9
and 11A). In channel margin positions, the
channel-base-deposit is predominantly com-
posed of at least 11 cm of F1 with rare mud-
stone clasts and lenticular very fine sandstone
beds. In channel off-axis positions, the channel-
base-deposit is 5 to 30 cm thick and consists of
F1 and thin F4a, which are discontinuous and
locally slumped (Fig. 11B). In channel axis posi-
tions, the channel-base-deposit is composite, up
to 2.5 m thick, and comprises: amalgamated F6;
remobilised clasts that are commonly sheared
[Fig. 11C; F1, which is commonly amalgamated;
F7 (Fig. 11C); and F4b, which is locally amal-
gamated with underlying KHKC sandstones
(Fig. 11D)].
KHKD1 is up to 17.0 m thick in the channel

axis at Log 7 (Fig. 2) and thins laterally to 2.5 m
and 2.2 m at its western and eastern channel
margins at Logs 6 and 10, respectively (Panel 1;
Figs 2 and 8). In proximal positions, D1 thins
northward from 9.5 m at Log 20, to 6.3 m at Log
21 over 70 m (Fig. 6). The proportion of F4a
decreases, which is accompanied by an increase
in F2 (Fig. 6). On the southern outcrop face, the
channel-base-deposit of D1 is 1.5 m thick and
composite at Log 7 (Fig. 11C), becoming thinner
and more silt-prone to both the east and west at
Logs 9 and 6, respectively (Fig. 2; Panel 1). The
facies distribution of D1 is asymmetrical (Figs 8
and 9). Towards the west (Logs 5 and 6; Fig. 2),
D1 predominantly consists of F2 (Figs 8 and 9),
with abundant laminae-parallel plant fragments.
The proportion of F4b and amalgamated F6
increase into the thickest and most axial parts of
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D1 at Logs 7 and 14, adjacent to the steep west-
ern channel-cut (Fig. 9). Thin (<10 cm) layers of
F1 wedge out from the steep western channel-
cut (Fig 11B). F1 beds are incised by overlying
deposits that contain abundant clasts of F1
towards the axial positions (Fig. 11B and C).
The eastern channel-cut, from Log 9 to Log 8,
has a relatively shallower gradient (Fig. 8). The
channel-fill exhibits a gradual decrease in F4b
and F6 away from the channel axis, and a con-
current proportional increase in F2 to the east of
Log 7 (Fig. 8). Stratigraphically within D1 the
proportions of F4b and F6 decrease upward
with a concurrent increase in F2 (Figs 8 and 9).
Locally, F5 is observed at the base of D1 at Log
20 (Fig. 3F) and Log 8.

KHKD2: D2 has a subtle unconformable contact
with D1 and can be traced on aerial photographs
between Logs 13 and 14 (Fig. 9). D2 has a lenticu-
lar geometry, thickening from east of Log 13
towards Log 7 (Fig. 9), but is poorly exposed to
the east where the cliffs are lichen-covered. The
base of D2 is characterised by a sharp contact
between thin-bedded F2 of D1, to thick-bedded
F2 (Fig. 7D) and 1.2 m of F4b of D2, respec-
tively. The upper-fill of D2 consists of 3.3 m of
bedded (0.02 to 0.3 m thick) F6 and also con-
tains localised 0.1 to 0.5 m thick scour-fills con-
sisting of centimetre-scale beds of F4a and thin-
bedded F6.

KHKD3: D3 has a relatively tabular geometry,
with thicknesses between 3.9 m and 1.2 m
(Fig. 9). The channel-base-deposit of D3 is 0.1 to
0.3 m thick, flat-lying, laterally continuous, and
consists predominantly of F1, which is locally
clast-rich. Localised amalgamation of thin-
bedded F4a is also observed. However, adjacent
to the steeper western channel cut of KHKD, the
channel-base-deposit of D3 is expressed as an
up to 0.3 m thick composite deposit consisting

of mudstone-clasts and sandstone-clasts and
argillaceous sandstones. Laterally to the east,
over 2 to 3 m, this channel-base-deposit is pre-
served as a sandstone amalgamation surface. In
all cases the channel-base-deposit overlies a
sandstone bed mantled with mudstone clasts. At
Logs 13 and 7, D3 consists of F4b and F6 (Figs 8
and 9). The proportions of F4b and F6 decrease
to the east and west with a concurrent increase
in the proportion of F2 (Figs 8 and 9).

KHKD4: D4 is the uppermost channel element
identified in the KHKD channel complex. The
thickness of D4 is variable, from 13.0 m at Log 7
to 1.4 m thick at Log 10 (Fig. 2); these are mini-
mum recorded thicknesses due to modern ero-
sion. The basal surface of D4 is relatively flat-
lying, suggesting that the channel element has an
overall tabular geometry (Figs 8 and 9). The chan-
nel-base-deposit of D4 is typically characterised
by fine-grained, thin-bedded F4a, which incise
into and amalgamate with the underlying sand-
stones of D3 (Fig. 7G and H). Locally, the chan-
nel-base-deposit comprises 10 cm of F1, which is
clast-rich and overlain by centimetre-thick to
decimetre-thick beds of F6. Where KHKD is thick-
est, the fill of D4 predominantly comprises F6b at
the base, and localised F2 in the upper 2 to 3 m
(Figs 8 and 9). Where KHKD thins to the east, D4
consists of F4a and F4b, with localised F2 (Figs 8
and 9). Conversely, to the west D4 predominantly
comprises F2 at Log 5 (Figs 8 and 9).

Palaeocurrents

Unit 5 at Klein Hangklip is interpreted to have
north-eastward oriented palaeoflow (Wild et al.,
2005). Palaeoflow directions of the Hangklip
channel-fills are constrained by ripple cross-
laminations, channel-cut orientations, outcrop
constraints, and preferential orientation of
wood-fragment long axes.

Fig. 7. Erosion surfaces and channel-base-deposits (CBDs). (A) KHKC incised into underlying stratigraphy near
Log 19 on the north of Klein Hangklip. (B) Inset of (A), the basal deposit of C1 observed at a channel margin posi-
tion. The deposit is 1.5 m thick and predominantly comprises thin-bedded sandstones deposited from dilute
flows, and medium-bedded sandstones which incise into underlying beds, deposited from larger flows. Lens cap
(60 mm diameter) circled for scale. (C) Sharp erosion surface between channel elements D1 and D2 which lacks a
channel-base-deposit. Logging pole markings spaced every 10 cm. (D) Channel-base-deposit of D3 at its most com-
posite, located on the outer bend of the channel-fill. The composite deposit is incised by overlying sandstone and
laterally identified as a sandstone amalgamation surface. Lens cap circled. (E) A ca 30 cm thick siltstone-rich
channel-base-deposit between channel element C3 and C4. (F) Typical non-composite character of the D3 chan-
nel-based-deposit observed at other localities. (G) Thin-bedded channel element scale channel-base-deposit
between D3 and D4. Hammer circled (27 cm long). (H) Thin-bedded coarse siltstone channel-base-deposit between
channel elements D3 and D4.
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Fig. 9. (A) Photomosaic of an east–west oriented cliff face on the southern side of Klein Hangklip. (B) Annotated
overlay showing architectural and facies relationships. KHKD incises into KHKC from west to east, cutting into
channel margin facies of channel elements C2, C3 and C4. The channel axis of the KHKD channel complex com-
prises greater proportions of F4b and F6 compared to the channel off-axis and margin positions to the east and
west. Facies distribution is asymmetrical, with sharper pinch-outs and facies transitions against the steeper west-
ern margin (outer bank) compared to the shallower eastern margin (inner bank).
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depositional dip-oriented and strike-oriented directions.
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KHKC
Ripple cross-lamination measurements from
Logs 1, 12 and 20 through KHKC suggest north-
ward palaeoflow, whereas measurements from
Logs 4 and 21 suggest southward and eastward

palaeoflow, respectively (Fig. 10A). Long-axes of
wood-fragments in Logs 4 and 15 are oriented
east–west (Fig. 10A). The northward thinning of
KHKC towards Logs 15, 16 and 18 (Fig. 6) sug-
gests that the axis of the channel was situated
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Fig. 10. Palaeocurrent data collected in the field. (A) KHKC is constrained by its outcrop limits, which are consis-
tent with wood-fragment orientation. (B) The orientation of KHK is constrained by the channel-cut at Log 13 and
its outcrop limits, which are supported by preferred wood-fragment orientations.
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south of those localities (Fig. 10A). The absence
of KHKC in south-eastern Logs 10 and 11 indi-
cates that the channel was located to the north
of these positions. Channel margin facies
observed in channel elements C3 and C4 at Logs
4 and 5 suggest that the axis of these channel
elements was positioned to the north (Figs 9
and 10A).
These data suggest that KHKC was oriented

north-east/south-west, with a north-eastward
palaeoflow consistent with regional palaeocur-
rent observations (e.g. Hansen et al., 2019), and
is essentially straight at the scale of the outcrop
(Fig. 10A). Variable ripple cross-lamination
trends are interpreted to represent flows that
over-spilled the channel axis, and which may
have been deflected off confining slopes (e.g.
Kane et al., 2010).

KHKD
The western margin of KHKD is well-con-
strained at Log 13, where the strike of the
channel-cut is oriented north-east/south-west
(Figs 9 and 10B). Long-axes of wood-fragments
show preferred orientations to the east at Logs
13 and 20, and north-east at Log 7, respec-
tively (Fig. 10B). At Log 11, the preferred

wood-fragment orientation is east/south-east.
The presence of KHKD at Logs 20 and 21, and
eastward of Log 5, but absence at Logs 3 and
4, suggest that KHKD curved around these
positions to the south (Figs 6 and 10B). The
absence of KHKD in localities on the north
face of Klein Hangklip suggests that the chan-
nel lay to the south (Figs 6 and 10B). Expo-
sure of KHKD is continuous along the east–
west oriented southern face, suggesting that
the orientation of KHKD is parallel to sub-par-
allel to the outcrop (see Panel 1; Figs 2 and
10B). Log 10 contains a greater proportion of
channel margin facies relative to Logs 9 and
11, which are both thicker, and show an
increase in channel axis facies (F4b and F6) in
their respective directions (Panel 1; Fig. 2B),
suggesting that the channel margin is located
to the south of these positions (Fig. 10B). The
channel-cut and wood-fragment orientation at
Logs 7 and 13 suggests that KHKD was sinu-
ous at the scale of the outcrop (Fig. 10B). This
is further supported by facies asymmetry at
the western margin (e.g. Pyles et al., 2010),
and facies transitions between Logs 9, 10 and
11, which suggest that the channel axis curved
around to the north of Log 10.

B
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KHKD1

KHKC2

CBD

Lenses of F1 eroded in axis

Slumped beds
C

KHKD1

KHKC

CBD

D

KHKD1

KHKC
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KHK C

B

D
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100 m

F6

Mudstone clasts

Remobilised beds

Erosion surface and base of channel-base-deposit Top of channel-base-deposit

Fig. 11. Lateral variability in facies of the KHKD channel-base-deposit. (A) Unmanned aerial vehicle (UAV) pho-
tograph of KHK showing positions of (B), (C) and (D). (B) Channel complex scale channel-base-deposit in an off-
axis position which comprises draping thin-bedded sandstones and slumped beds. Hammer circled (27 cm long).
(C) Highly composite channel complex scale channel-base-deposit in a channel axis position of KHKD1. Person
for scale is ca 1.8 m tall. (D) Sharp, mudstone-clast-rich amalgamated erosion surface between channel complexes
KHKC and KHKD. Lens cap (60 mm diameter) for scale.
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Channel architecture interpretations

Type-1: Low aspect ratio channel elements
KHKC1 and KHKC2, and KHKD1 and KHKD2,
are the two lowermost channel elements in their
respective channel complexes (Figs 6 and 8).
Each channel element is thickest in the channel
complex axis, thinning towards the margin of
the channel complex, and incised into the
underlying stratigraphy by 5.5 to 22.5 m (Figs 4
and 9). Basal erosion surfaces have gull-wing
geometries, and are typically mantled by mud-
stone clasts in the channel axis, which decrease
in abundance towards the channel margins
(Figs 6, 7 and 11A to D). At the channel axes,
channel-base-deposits are typically composite,
forming packages up to 2.5 m thick, and consist
of clast-rich siltstone, discontinuous argillaceous
sandstones and locally remobilised beds
(Fig. 11C). In off-axis positions, channel-base-
deposits are more silt-rich with thin sandstone
beds, and localised metre-scale slide blocks
(Fig. 11B); locally the channel-base-deposit is
preserved as a mudstone clast-rich amalgama-
tion surface (Fig. 11D). At channel margin
positions, the channel-base-deposit is character-
istically represented by 0.5 to 0.3 m of siltstone.
The channel axis of low aspect ratio channel
elements is characterised by amalgamated F4b
with localised F6 near the base, and F2 is some-
times observed in the upper few metres (Figs 6
and 8). Off-axis positions typically consist of
F4a and F4b with increasing proportions of F2
towards the channel margin; F6 is rarely
observed (Figs 6 and 8). The channel margins
consist of F4a and F2 (Figs 6 and 8).

Type-2: High aspect ratio channel elements
KHKC3 and KHKC4, and KHKD3 and KHKD4
constitute the uppermost channel elements in
their respective channel complexes (Figs 6 and
8). The channel elements are tabular in geome-
try and have comparatively high aspect ratios
with relatively consistent thicknesses (typically
2 to 6 m), but locally have thicknesses
between 1.2 m and 13 m (Figs 6 and 8). Basal
erosion surfaces are typically tabular to sub-
horizontal and commonly mantled by mud-
stone clasts (Figs 7 and 9). The associated
channel-base-deposit is typically 0.05 to 0.3 m
of siltstone with localised mudstone clasts,
though it may be present as an amalgamation
surface marked by mudstone clasts. Channel
axis deposits of high aspect ratio channel ele-
ments consist of bedded F4a and uncommon

F4b, with localised F6 and F2 at the base and
top, respectively (Figs 4 and 6). Off-axis posi-
tions comprise comparatively thinner-bedded
F4a and F2 (Figs 4 and 6). Channel margin
positions are characterised by a proportional
increase in F2 (Figs 4 and 6). F1 and F3 are
observed in KHKC4 in south-eastern localities
(Fig. 6).

Channel element architecture
KHKC and KHKD are each composed of four
channel elements; two low aspect ratio channel
elements overlain by two high aspect ratio chan-
nel elements. Both channel complexes are high
sand-to-gross, the minimum recorded value is
88.5% in KHKC at Log 15. All other logged sec-
tions have sand-to-gross values in excess of 90%.

KHKC. Palaeocurrent directions, outcrop
geometries and facies transitions suggest that
KHKC is relatively symmetrical and straight at
the scale of the outcrop (Fig. 10A). The channel
axis of each channel element in KHKC is situ-
ated in the channel complex axis (Fig. 6) sug-
gesting aggradationally stacked channel elements
with relatively symmetrical facies distribution.
Channel margin positions are dominated by bed-
ded F2 and F4a, with localised F1 and F3 (Figs 4
and 6). Off-axis positions are characterised by F2
and F4a, infrequent F4b and rare F6 (Figs 4 and
6). Channel axis positions are dominated by F6
and F4b in the lower, low aspect ratio channel
elements, but comprise bedded F4a and F4b
with localised F6, and an upward proportional
increase in F2 (Figs 4 and 6).

KHKD. Palaeocurrents and outcrop geometries
suggest that KHKD was sinuous at the scale of
the outcrop (Fig. 10B). The channel-complex
geometry is asymmetrical, with a steeper west-
ern channel cut and shallower eastern channel
cut (Figs 8 and 9). Each channel element is
thickest and contains respectively higher pro-
portions of F6 and F4b in positions in the chan-
nel axis immediately east of the western
channel cut (Figs 8 and 9). Facies transitions to
channel margins dominated by F2 are gradual to
the east, but comparatively abrupt to the west
against the steeper channel cut (Figs 8 and 9).
The asymmetrical channel element facies distri-
bution suggests that the channel axes of succes-
sive channel elements were concentrated in the
outer bank of the channel complex bend, and
stacked aggradationally (Figs 8 and 9; see also
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Navarro et al., 2007; Jobe et al., 2010; Labour-
dette & Bez, 2010; Pyles et al., 2010; Li et al.,
2016). These relationships are strongest in low
aspect ratio channel elements, D1 and D2 (Figs 8
and 9). The upper, high aspect ratio channel ele-
ments D3 and D4 exhibit more-laterally exten-
sive deposits of F4a and F4b; however, F6 is
only identified in the channel complex axis
(Figs 8 and 9).

Distribution of channel-base-deposits

Low aspect ratio channel element channel-base-
deposits typically have a relatively steep angular
contact to underlying strata and exhibit facies
asymmetry (for example, Figs 9 and 11). Channel
axis positions are characterised by relatively thick
composite channel-base-deposits (up to 2.5 m),
comprising clast-rich siltstones, remobilised
clasts of F4 and F6 up to 1.5 m in length, mud-
stone rafts and amalgamated packages of F6
(Fig. 11C). Locally, channel-base-deposits are not
composite, and are identified only as clast-rich
amalgamation surfaces with the sandstones of the
underlying channel element (Figs 7C and 11C).
Typically, off-axis positions exhibit a slightly
thinner deposit and contain localised slumped
beds that were shed from the channel erosion sur-
face (Fig. 11B). Channel margin positions are
characterised by <30 cm thick, locally clast-rich,
siltstone deposits that typically overlie a mud-
stone-clast-rich bed top. KHKD2 differs from other
low aspect ratio channel elements because it lacks
a preserved channel-base-deposit (Fig. 7C).
Instead, the subtle erosion surface is marked by a
sharp, sub-parallel, facies transition from thin-
bedded F4a to F4b (Fig. 7C).
High aspect ratio channel element channel-

base-deposits are relatively flat-lying, are charac-
terised by siltstones up to 40 cm thick, and are
less heterogeneous compared to those of low-
aspect ratio channel elements (Fig. 7E to H).
Channel-base-deposits in channel axis positions
frequently contain millimetre-scale to centime-
tre-scale clasts of siltstone and commonly over-
lie a mudstone-clast-rich bed top. Locally, the
channel-base-deposit is marked by a clast-rich
amalgamation surface. Channel off-axis and mar-
gin positions are comparatively clast-poor,
although local beds of siltstone starved ripples
are observed. The KHKD4 channel-base-deposit
comprises 5 to 10 cm of thin-bedded coarse-
siltstone to very fine-sandstone beds, and locally
a <10 cm siltstone, which are subtly incised by
overlying beds of the channel-fill (Fig. 7G and

H). In contrast, the KHKD3 channel-base-deposit
is locally composite adjacent to the steep KHKD
channel-cut surface.

DISCUSSION

Stratigraphic evolution

Incision and the resultant development of a com-
posite channel complex-set erosion surface is the
first recorded phase of channel evolution
(Figs 12A and 13). In common with other docu-
mented examples, the development of the surface
is likely to have been time-transgressive (Sylve-
ster et al., 2011; Hodgson et al., 2016; Englert
et al., 2020). However, the record of the develop-
ment of the surface, and its formative processes,
is obscured due to both the erosion of stratigraphy
deposited during excavation of the surface, and
the limited exposure of the surface and its chan-
nel-base-deposit. The 1.5 m thick channel-base-
deposit mantling the channel complex set erosion
surface (Fig. 7A and B) is interpreted to have
been deposited from relatively dilute parts of
multiple flows, which were primarily confined in
the channel axis (e.g. Hubbard et al., 2014). These
deposits suggest that the erosion surface acted as
a long-lived conduit for the bypass of sediment
into the deeper basin (Fig. 13; e.g. Hubbard et al.,
2014; Stevenson et al., 2015; Englert et al., 2020).
The nature of channel-base-deposits is used as a
proxy for the energy, and number of, bypassing,
partially bypassing, and depositional flows; and
the relative durations of the complete sediment-
bypass, bypass-dominated, and depositional
phases (sensu Stevenson et al., 2015). This
approach assumes that the preserved deposit
reflects the time-averaged flow-processes during
deposition, and that any material that was depos-
ited is preserved.
The fill of KHKC records the transition from

complete sediment bypass to a depositional zone
(sensu Stevenson et al., 2015; Figs 12B and 13),
relative to the channel axis. Aggradational phases
are interpreted to be comparatively short-lived
due to decreased evidence of erosion and rework-
ing (see also Englert et al., 2020). The first stage
of this aggradation is recorded by the strongly
channelised fill of C1 (Fig. 12B). A subsequent
phase of incision and filling is marked by channel
element C2 (Fig. 12C), indicating an increase in
flow-energy, sediment bypass, and degradation of
the slope (Fig. 13). Flows causing degradation of
the slope were not necessarily larger (e.g.
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F4: Structureless sandstone F6: Mud clast rich sandstone- -

F2: Laminated sandstoneF1: Siltstone F3: Climbing ripple sandstoneN
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C D
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Fig. 12. Stratigraphic evolution of the KHK channel system. (A) Erosion of the KHKC surface and sediment
bypass-dominated zone. (B) Transition to deposition dominated flows and infilling of KHKC1. (C) Incision and
subsequent infilling of KHKD2. (D) Shallow incision and infill of high aspect ratio channel elements KHKC3 and
KHKC4. (E) Sediment bypass-dominated zone resulting in excavation of KHKD channel cut. (F) Transition to
deposition dominated flows and aggradation of KHKD1. (G) Incision and fill of KHKD2. (H) Shallow incision and
deposition of the KHKD3 and KHKD4 channel elements.
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Sylvester et al., 2011), but were more erosive than
flows resulting in aggradation. The C2 channel-
base-deposit is highly composite, suggesting that
there was a long-lived bypass-dominated zone
before aggradation of the C2 fill (Fig. 13). The
individual fills of C1 and C2 record a vertical
decrease in evidence for sediment bypass up
stratigraphy (Fig. 13), from F6 and F4b at the base
to F2 and F4a at the tops (Figs 4 and 6).
The upper-fill of C2 was partially incised dur-

ing the formation of the higher aspect-ratio
channel element C3, indicating an increase in
flow energy, erosion, and sediment bypass
(Figs 12D and 13). The C3 fill was also partially
incised as part of the development of channel
element C4. The thin siltstone-rich channel-
base-deposits, shallow depth of incision and
less-composite nature suggest that erosion and
bypass was less-pronounced and protracted,
probably due to less-erosive flows, compared to
the incisions related to C1 and C2 (Fig. 13). The
fills of C3 and C4 are similar and suggest a tem-
poral decrease in flow energy (Figs 12D and 13).
Following the fill of the KHKC channel com-

plex, approximately 2 m of siltstone was depos-
ited, representing a prolonged hiatus of sand
supply to the area. The period of silt-prone
deposition was ended by incision of the KHKD
channel-cut (Fig. 12E) indicating an increase in
flow energy and sediment bypass (Fig. 13; e.g.
Kneller, 2003); possibly driven by eustatic sea-
level fall (e.g. Flint et al., 2011) and the overall
progradation of the system (e.g. Hodgson et al.,
2006). The highly composite channel-base-
deposit includes depositional and erosional fea-
tures at the base of the D1 channel axis, suggest-
ing that the channel axis was a long-lived
sediment bypass zone (Fig. 13; e.g. Hubbard
et al., 2014; Stevenson et al., 2015).

A gradual transition to net depositional flows
resulted in the fill of the KHKD channel complex
(Figs 12F and 13). KHKD1 records an upward
decrease in in F6 and bed amalgamation, support-
ing a temporal reduction in sediment bypass
(Figs 12F and 13). Facies asymmetry, with F6 and
F4b being more common adjacent to the steep
western channel-cut (Fig. 12F), suggests that the
highest energy flow components were located
near the base of the outer-bank (secondary or heli-
cal flow; see Keevil et al., 2006; Imran et al.,
2007; Peakall et al., 2007; Peakall & Sumner,
2015). Erosion of F1 lenses from the channel-cut
in towards the channel axis (Fig. 11B and C) sug-
gests that flows were highly energetic in the thal-
weg of the channel axis (Reimchen et al., 2016),
and decelerated against the outer channel-cut
(e.g. Keevil et al., 2006).
The incision related to the fill of D2 (Fig. 7C)

is interpreted to represent erosion by bypassing
flows. The channel-base-deposit related to D2 is
sharp and non-composite, suggesting a short-
lived bypass-dominated phase, or that subse-
quent flows eroded the initial channel-base-
deposit (Fig. 13). The D2 fill records aggradation
of the channel fill by lower energy, depositional
flows (Fig. 13). However, the upper fill of D2
contains scours, which were infilled by thin
beds. This may be associated with a gradual
increase in flow energy, and record the transi-
tion from depositional, to partially bypassing, to
fully bypassing flows, which resulted in the
incision of the D3 channel-cut (Figs 12G and 13;
see also package 2 of Pyles et al., 2010). The
upper part of D2 is weakly incised, considered
to reflect a decrease in flow energy and sediment
bypass compared to the incision of underlying
channel elements (Fig. 13). The lack of incision
and composite channel-base-deposits suggests
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Fig. 13. Schematic illustration of channel evolution and flow behaviour in the channel axis of respective channel
complexes. Highly composite erosion surfaces and channel-base-deposits suggest the excavation of channel cuts
and bypass phases record long periods of time. However, most of the thickness of the channel-fill is represented
by aggradational sandstones developed under strongly depositional flows. This suggests that time-partitioning in
submarine channels may be biased towards individual surfaces, which occupy a small portion of the channel
thickness.
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that the amount, and subsequent duration, of
sediment bypass was limited (Fig. 13). The
channel-base-deposit is overlain by high aspect
ratio channel element D3 (Fig. 12H), indicating
that flows became deposition-dominated
(Fig. 13). The fill of the D3 channel element was
incised as part of the development of channel
element D4 (Figs 12H and 13). The incision sur-
face of D4 is relatively flat-lying compared to
low aspect ratio channel elements, suggesting
limited phases of bypassing and partially
bypassing flows (Fig. 13). However, the channel-
base-deposit is locally composite in the area
adjacent to the steep channel-cut of KHKD,
which is located on the outer bend of the chan-
nel. This suggests that higher-energy parts of
flows were concentrated at the outer bend,
and that bypass and substrate remobilisation
was more efficient in these locations. The subse-
quent aggradation of the D4 channel element
reflects the transition to depositional flows
(Fig. 13).

Three-dimensional channel architecture
The KHK outcrop permits quasi-3D facies distri-
bution to be recorded in a series of depositional
dip-oriented and strike-oriented panels (Figs 6
and 8). The KHKC channel complex shows no
substantial down depositional-dip changes in
geometry or sandstone to gross. However, subtle
changes in facies are recorded in dip-oriented
sections, from F4 to F2 to F4, and varying thick-
ness and distribution of F6 (Figs 4 and 6). The
KHKC channel complex is interpreted to be rela-
tively straight at the scale of the outcrop. Channel
complex KHKD, which is inferred to be sinuous
in planform, has a steeper western (outer-bank)
channel cut, and displays a more pronounced
facies variation across depositional-strike with a
greater proportion of F4b and F6 compared to the
eastern side of the channel cut. These observa-
tions are made on a 0.1 to 1.0 km scale, in pre-
dominantly sandstone-filled channels; similar
distributions have been noted in other channel
systems such as the Beacon Channel (Pyles et al.,
2010). However, at a system-scale (i.e. over tens
to hundreds of kilometres), channel-fills may
show major longitudinal facies variability in
response to the dominance of different flow pro-
cesses. In proximal areas, slumps and debris
flows are more abundant, whereas in distal parts
of the system deposits of high-density and low-
density turbidites are more commonly observed
(De Ruig & Hubbard, 2006; Malkowski et al.,
2018). Therefore, at the scale of the depositional

system, flow processes, and the methods of sedi-
ment mobilisation in up-dip areas are likely to
have the strongest influence on heterogeneity.
Channel sinuosity, and its effect on the inherited
flow processes, is likely to determine local facies
distribution and channel element geometries over
longitudinal profiles of 0.1 to 1.0 km (e.g. De Ruig
& Hubbard, 2006; Pyles et al., 2010; Reimchen
et al., 2016; Malkowski et al., 2018).

Controls on channel element architecture

Each channel complex contains two low aspect
ratio channel elements overlain by two high
aspect ratio channel elements. Low aspect ratio
channel elements have lenticular geometries and
facies distributions, with bed thicknesses that
decrease from channel axis to channel margin.
Highly erosive flows are interpreted to have
incised the basal channel-cuts (Fig. 13; Pyles
et al., 2010; McHargue et al., 2011; Fildani et al.,
2013; Hubbard et al., 2014; Hodgson et al., 2016).
Subsequently flows became progressively con-
fined, enhancing flow efficiency (sensu Mutti,
1992), increasing bypass and erosion, and further
entrenching the channel (e.g. Hodgson et al.,
2016). Development of thick, composite channel-
base-deposits (Figs 7A, 11B and 11C) is inter-
preted to represent a prolonged sediment bypass-
dominated period in the channel axis through the
early stages of waning sediment supply (Fig. 13;
e.g. Hubbard et al., 2014). This early stage of
channel aggradation was likely characterised by
numerous flows which were bypassing, partially
bypassing and depositional. The gradual transi-
tion to net depositional flows is preserved in the
channel-base-deposit where deposits of earlier
depositional flows were eroded and remobilised
by bypassing or partially bypassing flows (see
also Vendettuoli et al., 2019). Remobilised depos-
its and clasts of beds (Fig. 11B and C) suggest that
successive flows were transitional between depo-
sitional, and fully bypassing, remobilising beds
(Fig. 13; e.g. Stevenson et al., 2015). This is pos-
sibly linked to smaller cycles of waxing and wan-
ing energy superimposed on the overall trend
(e.g. Vendettuoli et al., 2019). KHKD2 differs
from other low aspect ratio channel elements as it
lacks a composite channel-base-deposit (Fig. 7C).
The subtle, amalgamated KHKD2 channel-base-
deposit surface is interpreted to represent either:
(i) a relatively rapid transition from near-com-
plete sediment bypass to deposition-dominated
flows, inhibiting the development of a composite
channel-base-deposit (Fig. 13); or (ii) incision

© 2020 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of
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and erosion of the initial channel-base-deposit by
later flows.
A gradual upward increase in the number of

net depositional flows resulted in initial aggrada-
tion and deposition of amalgamated F6 at the base
of the channel complex axis (Fig. 13). Packages of
F6 overlain by F4 at the base of channel-fills are
interpreted to record the transition from bypass-
ing, to partially bypassing, to depositional flows.
During aggradation, higher-concentration flows,
or parts of flows, were more strongly influenced
by channel topography, and were contained in
the channel axis where they rapidly deposited
thick packages of F4b (e.g. Hubbard et al., 2014).
Local changes in intra-channel topography and
gradient may have resulted in subtle down-dip
and across-strike variations in depositional facies
caused by flow acceleration or deceleration, and
entrainment of substrate. Dilute, low-concentra-
tion flow components were able to surmount
channel topography to the channel margins,
depositing thinner bedded F4a and F2 (Fig. 12;
e.g. Campion et al., 2000; Jobe et al., 2017). Dis-
parity in deposit thickness resulted in more rapid
fill of accommodation in the channel axis relative
to the channel margin (see also: Hubbard et al.,
2014).

Subsurface implications

Seismic reflection data do not have the vertical
resolution to show complicated geometric rela-
tionships and small-scale features such as chan-
nel-base-deposits (Fig. 14; e.g. Alpak et al.,
2013; Morris et al., 2016). Therefore, well-data
are crucial in identifying these features in the
subsurface in order to build realistic geological
models. The Klein Hangklip seismic-scale chan-
nel-fill has a high sand percentage, typically in
excess of 90%. In such a channel-fill, the hetero-
geneities controlling reservoir performance are
likely to be related to sandstone facies and depo-
sitional processes (e.g. Hirst et al., 2002; Lien
et al., 2006; Zhang et al., 2015; Porten et al.,

2016; Bell et al., 2018), and the distribution and
character of channel-base-deposits (Larue &
Hovadik, 2006; Funk et al., 2012; Alpak et al.,
2013; Jackson et al., 2019).
Core logging and image log/dip-meter analy-

sis are common ways to identify and interpret
channel-base-deposits and erosion surfaces (e.g.
Barton et al., 2010; Morris et al., 2016). This
study reveals that these methods may prove
challenging as:

1 Highly composite channel-base-deposits are
locally observed as clast-rich amalgamation sur-
faces, not suggestive of substantial sediment
bypass (Figs 11 and 14). Thus, small changes in
well placement could result in dramatically differ-
ent core interpretations (Fig. 14).
2 Siltstone bypass channel-base-deposits may

be challenging to differentiate from abandon-
ment or low-energy depositional drapes without
identification of clasts or a mudstone-clast-rich
basal surface (Fig. 14), which may influence the
prediction of reservoir sandstones down-dip.
3 Some erosion surfaces are characterised by

subtle amalgamation surfaces and facies
changes, which may not be interpreted as a
major bounding surface (Figs 7, 11 and 14).
4 High aspect ratio channel elements have rel-

atively flat-lying erosion surfaces, which may
make dip-meter identification challenging
(Fig. 14).

CONCLUSIONS

The Klein Hangklip outcrop of Unit 5 of the
Skoorsteenberg Formation permits high-resolu-
tion analysis of the architecture, facies and
stacking patterns of a submarine slope channel
complex set, composed of two stacked channel
complexes. The lower channel-complex, which
is 32.9 m thick and at least 890 m wide, is
straight at the scale of the outcrop; the upper
channel-complex is 39.0 m thick, is sinuous,
and exhibits architectural and facies asymmetry.

Fig. 14. Comparison of scales of observation. (A) Photopanel interpretation of the Klein Hangklip outcrop. (B)
Sedimentary logs collected from the outcrop, with key surface interpretations. (C) Comparison to a Miocene chan-
nel complex set from the Taranaki Basin, New Zealand. The Klein Hangklip channel-fills, and the heterogeneities
within them are 1 to 2 reflectors thick. Data sourced from the New Zealand Petroleum and Minerals Petroleum
Exploration Dataset. (D) Synthetic cores, drawn from logged data, of key stratigraphic positions illustrating the
challenges of correctly identifying key channel surfaces in one-dimensional datasets. Red dashed lines represent
erosion surfaces.
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Each channel-complex consists of four channel-
elements, which are grouped into:

1 Lower channel-elements which are: (i) low-
aspect ratio; (ii) incise up to 20 m into underly-
ing stratigraphy; and (iii) exhibit strong facies
trends from abundant amalgamated structureless
sandstone and mudstone-clast-rich facies in
channel-axis positions to bedded structureless
sandstone and laminated sandstones in channel-
margin positions.
2 Upper-channel elements are: (i) high-aspect

ratio; (ii) do not incise deeply into underlying
stratigraphy; and (iii) have less-contrasting chan-
nel-axis to channel-margin facies transitions.

In both channel complexes systematic and
predictable facies changes are observed from
comparatively thick-bedded amalgamated sand-
stones deposited from energetic flows in chan-
nel-axis positions, to bedded and laminated
sandstones in channel-margin positions. Con-
versely, positions in comparative down-deposi-
tional dip positions (for example, from an up-
dip channel axis position to a down-dip channel
axis position) show subtle, but non-systematic
heterogeneity in sandstone facies.
Channel-base-deposits mapped in deposi-

tional-dip and strike sections exhibit spatial and
temporal heterogeneity at metres to hundreds of
metres length scales, which could inhibit accu-
rate characterisation in subsurface and limited-
outcrop studies. The depth of incision and com-
posite nature of channel-base-deposits are used
as proxies for the existence of long-lived bypass
conduits. This analysis suggests that time-parti-
tioning during channel evolution is strongly
biased towards excavation and maintenance of
these conduits, whereas aggradation of the rela-
tively thick-bedded sandstone-fills was compara-
tively short-lived.
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