
This is a repository copy of Almost-zero logic implementation of Troika hash function on
reconfigurable devices.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158510/

Version: Accepted Version

Proceedings Paper:
Yalcin, T. and Kavun, E.B. orcid.org/0000-0003-3193-8440 (2020) Almost-zero logic
implementation of Troika hash function on reconfigurable devices. In: 2019 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). 2019 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), 09-11 Dec 2019,
Cancun, Mexico. IEEE . ISBN 9781728119588

https://doi.org/10.1109/reconfig48160.2019.8994780

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Almost-Zero Logic Implementation of Troika Hash

Function on Reconfigurable Devices

Tolga Yalçın

School of Informatics, Computing, and Cyber Systems

Northern Arizona University, Flagstaff, AZ, US

tolga.yalcin@nau.edu

Elif Bilge Kavun

Department of Computer Science

The University of Sheffield, Sheffield, UK

e.kavun@sheffield.ac.uk

Abstract—Blockchain technology has gained immense popu-
larity in the recent years due to its decentralized computing
architecture. While it originally emerged as a technology for
(crypto)currencies, it has since found many different application
areas including (but not limited to) payments, money transfers,
smart contracts, supply-chain management, networking, IoT,
etc. Initially, it was only Bitcoin, the de facto standard for
cryptocurrencies, but then it was followed by several (in fact
hundreds of) others. Each new cryptocurrency had or claimed
to have certain advantages over Bitcoin, such as transaction
speed and cost. However, they all relied on the original idea of
distributed ledger where each block has maintained a complete
history of each transaction in the network. Blockchain technology
has more recently been challenged by two new technologies called
Tangle and Hashgraph, which are “directed acyclic graphs”,
i.e. in layman’s terms blockchains without blocks and chains.
IOTA network is the original Tangle technology, which relies on
ternary arithmetic architecture and uses ternary hash function
“Troika”. It works on GF (3) and its design follows the sponge
construction. Two of the main claims of IOTA are scalability
and micro-transitions, both of which are likely to utilize compact
hardware platforms in practical implementations. In this paper,
an almost-zero logic compact and yet adequately fast hardware
architectures of Troika hash function targeting reconfigurable de-
vices are presented. The proposed architectures mainly depend on
the utilization of BRAMs on FPGAs. Three different RAM-based
hardware implementations have been realized on Xilinx Artix-7
xc7a12tcpg238-3 device; all using only a single BRAM tile with
minimal number of LUTs and FFs. The proposed architectures
can easily be implemented on different reconfigurable devices
with similar efficiency. To the best of our knowledge, this is the
first reported hardware implementation of Troika hash function
on reconfigurable devices which is also compact and fast.

I. INTRODUCTION

In very simple terms, a blockchain is a growing list of

records (blocks) which are linked to each other using cryp-

tographic techniques. Each block contains a cryptographic

hash of the previous block, a timestamp, and the transaction

data [1]. In other terms, the list of all transactions since the

creation of the blockchain is kept by all the blocks in the chain,

with new transactions being added on to existing ones. The

whole network is fully distributed and decentralized, there is

no central authority who has control over the ecosystem [2].

Such an architecture makes it resistant to modification of the

data by design; the recorded data in any given block cannot

be modified retroactively without alteration of all subsequent

blocks and the consensus of the network majority.

As a result of these properties, blockchain has been the

underlying technology for cryptocurrencies, especially as the

public transaction ledger of the cryptocurrency bitcoin [3].

The introduction of Bitcoin Cash (BCH) [3] design has in-

spired many other cryptocurrencies. Among these, Ethereum

(ETH) [4], Litecoin (LTC) [5], Ripple (XRP) [6] and IOTA [7]

are just a few popular examples.

Decentralized architecture of blockchain technology, which

makes it so trustworthy and desirable for secure transactions,

also makes it so cumbersome. Each transaction within the

network must be distributed throughout the whole network,

making it extremely slow. The transaction speed for Bitcoin

can be as high as tens of minutes [8]. As a result, several

attempts have been made in order to speed up blockchain, such

as the lightning network [9]. In addition to modifications on

the original blockchains, new technologies, namely “Tangle”

and “Hashgraph” have also been introduced. Both have certain

advantages and also disadvantages over blockchain.

In our study, we focus on Tangle [10], which differentiates

itself from other decentralized networks. It is actually not a

blockchain. While preserving the decentralization and secu-

rity features of blockchain, the Tangle forms the distributed

ledger like a web of information instead of forming blocks to

create a chain of information. Tangle aims to solve problems

like scaling and slow transaction times that other blockchain

projects are currently struggling with.

The name of the token in Tangle network, which also is

the name of the foundation that has developed the Tangle

technology, is IOTA. The security of the core components in

IOTA system still relies on the security of a cryptographic

hash function and it is crucial that the hash function fulfills

the security requirements in order to ensure the validity of the

transactions on the Tangle. In previous works, Keccak/SHA-

3 [11] has been used as the underlying hash function in

IOTA system [12]. In 2018, Troika [13] is announced by

CYBERCRYPT as a new ternary hash function for IOTAs

ternary architecture and platform. Troika is based on sponge-

based construction [14], which uses a ternary permutation

function with state and output lengths of 729 and 243 trits,

respectively.

One of the main target applications of Tangle is the Internet-

of-Things. However, it is very unlikely that today’s IoT devices

will be able to cope with proof-of-work (PoW) computational

requirements of Tangle. In fact, it has been demonstrated that

both PoW and transaction signing are not practical without

hardware-accelerated cryptography on battery-powered de-

vices [15]. Low-cost Field Programmable Gate Array (FPGA)

devices, with their capability to implement both cryptographic

and logic functions are viable choices as hardware acceleration

and implementation platforms for Troika and consequently

IOTA. Furthermore, it is also possible to implement Troika

hash function utilizing mainly the block RAMs (BRAMs) on

the FPGA with minimal usage of look-up tables (LUTs) and

flip-flops (FFs), thereby freeing more logic for other functions.

In this work, an almost-zero logic and fast hardware ar-

chitecture of Troika hash function on configurable devices

(FPGAs) is presented. Three different variants of the proposed

architecture have been implemented on a state-of-the-art Xil-

inx Artix-7 FPGA device. Each of these implementations take

the same amount of cycles to process a new data block and

use 1 BRAM tile. The LUT and register utilization for these

three different implementations slightly differ due to different

implementation targets. To the best of our knowledge, this is

the first academic work on hardware implementation of Troika

hash function.

The remainder of this work is organized as follows: The

Troika ternary hash function is presented in Section II. Sec-

tions III and IV describe the architecture and implementation

of Troika on FPGA platform in detail and, finally, Section V

discusses the results of the proposed implementations.

II. TROIKA – A TERNARY HASH FUNCTION

Troika [13] is announced by CYBERCRYPT in 2018 as

a new ternary hash function designed especially for IOTAs

ternary architecture and platform. It is a sponge-based con-

struction (Figure 1) with a permutation designed for ternary

platforms. It works on a state of 729 trits with a rate r of

243 trits and capacity c of 486 trits. Its output length is 243

trits. The claimed security level is 243 trits for first and second

preimages and 243/2 trits for collisions.

m0

r

c

m1 z

Absorbing Squeezing

mn-1

fff

Fig. 1. Overview of sponge construction

The 729-trit state is organized as a 9x3x27 cuboid of trits.

The designers of Troika use the same naming convention as in

Keccak/SHA-3 [11] in order to address different parts of the

state. Figure 2 shows this naming convention for a 9x3x27-trit

state cuboid.

row

column

lane

sheet

plane

slice

Fig. 2. Naming convention for Troika state (9x3x27 cuboid)

For the hash computation, the state is initialized with all

zeros. A message is padded by appending a 1 and a number

of zeros (to make it a multiple of 243 trits) at its end. The

padded message is then formatted into n blocks of r = 243
trits each. Each 243-trit message block is then assigned to

the rate part of the state followed by a chained call to the

f function, which is a 729-trit permutation. Specifically, the

243-trit rate part of the state corresponds to the first nine slices

of the state. A 729-trit Troika permutation f is used to update

the 729-trit state for 24 rounds.

One round of Troika permutation updates the state using the

following operations:

• SubTrytes: A 3-trit (1 tryte) Sbox in GF(3) is applied on

each tryte of the state. Define

F (x0, x1, x2) = (x0, x1, x0 · x1 + x2)

and the trit permutations

π(x0, x1, x2) = (x1, x2, x0)

ρ(x0, x1, x2) = (x2, x1, x0).

Then the Sbox output is defined via

(x0, x1, x2) → ρ(F (π(F (π(F (x0 − 1, x1, x2)))))).

This corresponds to a 3-round source-heavy unbal-

anced 3-trit Feistel network with the Feistel function

F , the cyclic shift π, the additional affine mapping

((x0, x1, x2) → (x0 − 1, x1, x2)) at the input, and the

trit permutation ρ at the output.

The mapping SubTrytes on the entire state X is then

defined as Xi,j,k → s(Xi,j,k).
• ShiftRows: Each row of the state is rotated by a constant

amount.

This is defined as




X.,0,i

X.,1,i

X.,2,i



 →





X.,0,i

X.,1,i ≫ 1
X.,2,i ≫ 1





for all slices.

• ShiftLanes: Each lane of the state is rotated by an amount

read from a look-up table.

This is defined as




xi,0,.

xi,1,.

xi,2,.



 →





xi,0,. ≫ Ri,0

xi,1,. ≫ Ri,1

xi,2,. ≫ Ri,2





where Ri,j are read from the look-up table.

• AddColumnParity: Trits of each column are updated by

adding sum of parities of two adjacent columns.

This mapping provides diffusion along columns by

adding to each column xx,.,z the parities of the two

adjacent columns xx−1,.,z and xx+1,.,z+1, where indices

are taken modulo their respective dimensions.

• AddRoundConstant: A round-dependent constant is

added to the (rows of) state.

AddRoundConstant is the only mapping in the round

transformation that differs from round to round. It is

defined as

x.,0,. → x.,0,. +RCr.

III. TROIKA ARCHITECTURE ON FPGA

Troika is similar to Keccak with its permutation-heavy

structure. However, unlike Keccak where addition and multi-

plication are bitwise and can be implemented with single XOR

and AND gate, respectively, Troika operations are ternary

operations, i.e. trit-wise, as shown in Figure 3. The Troika

Sbox uses a 3-stage Feistel structure, where one ternary

multiplication and one ternary addition takes place at each

stage. The gate count (in our case LUT count) for a single

Sbox depends on the gate counts for trit-wise addition and

multiplication circuits. Therefore, we have decided to start

with optimizing implementation of these two gates.

+ 0 1 2 × 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

Fig. 3. Ternary trit-wise addition (left) and multiplication (right) operations

Due to the binary nature of logic implemented within the

FPGAs, ternary operations need to be implemented using

binary gates. This requires selection of a binary representation

for ternary symbols prior to circuit implementation. The most

basic and also one of the most area effective representation

is using ‘00’, ‘01’ and ‘10’ for ternary symbols 0, 1 and 2,

respectively. Previous studies in the literature suggest other

more efficient representations, such as ‘01’, ‘11’ and ‘10’ as

given in [16].

Although initially we tried all 24 (4!) possible represen-

tations, we decided to go with a different approach, where

we represent the ternary symbols with 3 bits, using a scheme

similar to one-hot encoding. In our representation, 0, 1 and 2

are represented using ‘001’, ‘010’ and ‘100’, respectively. The

truth tables using this representation are given in Figure 4.

+ 001 010 100 × 001 010 100

001 001 010 100 001 001 001 001

010 010 100 001 010 001 010 100

100 100 001 010 100 001 100 010

Fig. 4. Truth tables for ternary addition (left) and multiplication (right) using
the selected representation

This representation simplified the binary definitions for

ternary operations considerably:

• Ternary addition formulas:

y2 = (a0 ∧ b2) ∨ (a1 ∧ b1) ∨ (a2 ∧ b0)

y1 = (a0 ∧ b1) ∨ (a1 ∧ b0) ∨ (a2 ∧ b2)

y0 = ¬(y1 ∨ y2)

• Ternary multiplication formulas:

y2 = ¬(y1 ∨ y0)

y1 = (a1 ∧ b1) ∨ (a2 ∧ b2)

y0 = a0 ∨ b0

Conversion between default 2-bit ternary representation to

our ternary representation is also quite simple, making it

possible to store ternary symbols (trits) in 2-bit registers:

• 2-bit ternary (d1d0) to 3-bit ternary (b2b1b0) conversion:

b2 = d1

b1 = d0

b0 = ¬(b2 ∨ b1)

• 3-bit ternary (b2b1b0) to 2-bit ternary (d1d0) conversion:

d1 = b2

d0 = b1

Using the 3-bit representation, ternary adder, ternary multi-

plier and ternary S-box require 3, 3 and 16 LUTs, respectively.

While this coding solves the area problem for a single S-

box and it is possible to come up with a serial implementation

using a single S-box, the state size is still a big problem. Troika

state requires storage of 729 trits, which is equivalent to 1458

bits. A register-based implementation would occupy just too

many registers, which is a precious commodity for a low-

cost FPGA. As going with high-end FPGAs would directly

contradict with our initial target of a low-cost implementation

targeting IoT applications, we opted for a RAM-based archi-

tecture.

We efficiently use BRAM tiles of Xilinx 7 Series FP-

GAs [17] (an Artix-7 device is selected) to store Troika state,

where the Troika hashing algorithm is implemented using two

dual-port RAMs: 1458-trit (1458x3-bit) RAM-1 and 729-trit

(729x3-bit) RAM-2. In the placement these are interpreted

as a single BRAM tile consisting of two 18K BRAMs (see

Section V). The required state contents are called trit-by-trit

in every clock cycle with an algorithm-specific addressing

scheme in order to apply the corresponding round’s f function

operations.

In addition to the RAMs, a single Sbox, a single accumu-

lator to implement parity generator functionality for columns

and a round constant generator are used to implement the full

Troika functionality. These blocks are implemented on LUTs

using combinational logic.

The functional operation of the architecture takes place in

a data loading phase (WriteInput), two operation phases for

each round and result reading phase (ReadOutput). It can be

summarized as follows:

• Data loading phase: Initially, data is divided into 243-

trit blocks and padded using the specified Troika padding

scheme. This phase is executed by the external processor.

The first 243 trits are loaded to the first 243 locations

inside RAM-1. The following 486 locations are then

loaded with all-zero trits (using our representation with

‘001’ bits). This completes the state initialization step

of the algorithm. The initialized state is then applied 24

rounds of the Troika permuation, f .

• Phase-1: In this phase, three operations of Troika per-

mutation are executed. These are SubTrytes, ShiftRows

and ShiftLanes, respectively. In implementation of the

SubTrytes, each trit is read from the first 729 locations

(first half) of RAM-1, one by one in order. Every read trit

is shifted into a 2-trit shift register. At every 3 trits (i.e. 1

tryte), combined output of the shift register is sent into the

Sbox, which generates the corresponding 1-tryte parallel

output combinationally. This output is then shifted into a

second 2-trit shift register. Output of the shift register

is written into both the second 729 locations (second

half) in RAM-1 and the RAM-2. However, in writing the

result, instead of a linearly increasing addressing scheme,

a much more complex addressing scheme is used. This

scheme is fact corresponds to the combined ShiftRows

and ShiftLanes permutations. Once all trits in the first

half of RAM-1 are processed, Phase-1 is completed.

• Phase-2: In this phase, three read operations are done

in parallel: One from trits of the columns in increasing

order from second half of RAM-1, and the other two

from the trits of the two adjacent columns from both

ports of RAM-2. While all 3 trits of adjacent columns

are added to form adjacent column parities, the main

column trits are stored in a 3-trit shift register. After every

3rd read trit, required column parities are accumulated

and are added to the stored target column trits. This

completes the AddColumnParity operation. In parallel,

the round constant generator circuit, which is an 11-tap

ternary LFSR is run. However, its output is updated once

in every third trit and added to the AddColumnParity

output. The resultant output is the round function f

output, and it is written back to the first half of RAM-

1 in increasing address order. Once, all the columns are

processed, Phase-2 and therefore the corresponding round

is completed, and the output is back in the first half of

RAM-1.

• Output reading phase: The two operation phases are

repeated for a total of 24 times, which completes the

Troika permutation function on the target data block.

Once, it is completed, if there are further data blocks

to be processed, the next 243-trit data block is loaded to

the first 243 locations of RAM-1. However, this time the

following 486 locations are NOT cleared. They are left

untouched, and the whole 2-phase 24-round permutation

is repeated. Upon completion of processing of all data

blocks, the result is read from the first 243 locations of

RAM-1 by the host processor.

The operation and data flow of this scheme and the corre-

sponding block diagram are shown in Figure 5 and Figure 6.

Note that the 2-to-3 and 3-to-2 bit transform blocks (marked

in RED) between memories (registers and RAMs) and com-

binational logic are only used in implementations 2 and 3.

In this scheme, each phase takes 734 cycles to complete,

resulting in a total of 35232 cycles for 24 rounds of Troika.

In addition, 243 clock cycles are needed to write the new

input block to RAM-1 in every 24 rounds. As stated earlier, it

is assumed that data is written to RAM-1 by a host processor

and therefore it is not implemented as part of our architecture.

Hashing of one message block takes 35475 clock cycles

(approximately 35K clock cycles).

In our architecture, registers are only used for temporary

data storage and implementation of state machines of the

complex addressing scheme and the round constant generator.

IV. IMPLEMENTATIONS

We have implemented three variants of this architecture,

which differ from each other in minor details:

• Implementation 1: This version implements exactly the

functionality explained in the previous section. It requires

use of a 1458x3 and a 729x3 RAM. In practice, two block

RAMs of a single BRAM slice are used, both in 2048x8

configuration. While not used in this version, this gives

us flexibility for future implementations (such as masked

implementations with multiple shares).

• Implementation 2: In this version, each trit is stored

as 2 bits using the default ternary representation. These

RAM-1

RAM-2

SubTrytes

ShiftRows

ShiftLanes

RAM-1

AddColumn

Parity
AddRound

Constant

Write

Input

Round 1

RAM-2

RAM-1

SubTrytes

ShiftRows

ShiftLanes

AddColumn

Parity
AddRound

Constant

RAM-1

RAM-2

RAM-1

SubTrytes

ShiftRows

ShiftLanes

AddColumn

Parity
AddRound

Constant

Round 2

Round 24

Write New

Input

Read

Output

OR

Rounds

3 to 23

. . .

. . .

. . .

. . .

. . .

Fig. 5. Data flow of Troika FPGA implementation

2-bit trits are then converted to 3-bit trit representations

at the output of the RAMs for Sbox and column parity

logic operations, and then re-converted back to 2-bit

representations at the input of RAMs. This architecture

requires use of a 1458x2 and a 729x2 RAM, which in

practice has no effect on the overall area. However, it

also uses less LUTs and flip-flops, and leaves more space

inside RAMs for possible future extensions.

• Implementation 3: This version is derived from the

second implementation, i.e. it too stores each trit us-

ing 2 bits. However, this time the look-up table where

ShiftLanes parameters are stores are not implemented as

combinational logic. Instead, they too are stored inside

RAM, to be specific, in the 27 locations following the

first 729 locations of RAM-2. Morever, they require 5-

bits for storage. In other words, this time RAM-2 size is

756x5 bits. Again, it does not change anything in terms

of RAM usage. However, total number of used LUTs is

reduced considerably.

V. RESULTS

All designs are simulated and tested in ModelSim using the

available test vectors in the Troika specification document.

All three implementations are synthesized and placed using

Xilinx’s Vivado Design Suite v2019.1 on a small FPGA. In

order to demonstrate the area effectiveness of our architectures,

we opted for the smallest version of Xilinx Artix-7 devices,

i.e. xc7a12tcpg238-3. The area results are given in Table I

for all implementation flavors. In our implementations, we

targeted minimal area. However, the designs also proved to

be rather high speed, i.e. about 150 MHz for all three imple-

mentations, respectively, corresponding to a hashing speed of

4200 blocks/sec. If encoded, a transaction in IOTA consists of

2673 trytes [18] and the average transaction (confirmation)

time is reported to be around 1-2 minutes [19]. So, our

hashing speed seems to be in line with IOTA transaction speed

according to these values.

TABLE I
TROIKA HASH FUNCTION IMPLEMENTATION RESULTS ON XILINX

ARTIX-7 (XC7A12TCPG238-3) FPGA

Impl 1 Impl 2 Impl 3 Available

LUT slices 227 206 190 8000
– as Logic 214 193 183 8000
– as Shift Reg 13 13 7 5000
Register slices (as FF) 180 160 191 16000
Block RAM tiles 1 1 1 20
– as RAMB18E1 only 2 2 2 40

As expected, the second version of Troika implementation

saves both LUT and flip-flops thanks to the savings coming

from the 2-bit operations (except for the switch to the ternary

operations). The third implementation saves LUT slices as the

shift amount look-up table is stored in the RAM, while using

more flip-flops. However, the total number of slices used is

lower, resulting in the most compact circuit. All three versions

require only two block RAMs, or in other words only a single

BRAM tile.

To the best of our knowledge, our work presents the only

hardware implementation of Troika hash function to date. In

addition, the only available software implementation is the

reference implementation provided by CYBERCRYPT. Due

to lack of implementations in the literature, it is unfortunately

not possible to compare our results with other works.

VI. CONCLUSION

In this paper, three different hardware implementations of

Troika hash function, which is designed as a hash function for

the cryptocurrency IOTA, are proposed. All implementations

follow a RAM-based design and use only a single BRAM tile

S-box

0

LD

CLRUPD

RAM-1 RAM-2

CONTROL

ROUND CONSTANT

AddColumnParity +

AddRoundConstant

SubTrytes + ShiftRows + ShiftLanes

OUTA OUTB

INPA INPB

ADRA

WENA

ADRB

WENB

OUTA OUTB

INPA INPB

ADRA

WENA

ADRB

WENB

DATA

INP

HASH

OUT

Fig. 6. Block Diagram Troika FPGA implementation

from Xilinx 7 Series FPGAs. The utilization of LUT and flip-

flop slice are based on the datapath implementation and the

efficient utilization of BRAM spaces. Using this approach, we

have achieved an almost-zero logic implementation, however

with an acceptable hashing speed. Our speed target is derived

from the reported highest speeds in [15]. It is of course

possible to lower the total cycle count and hence increase

throughput, but at the expense of additional Sboxes and

BRAMs, which would contradict with our almost zero logic

target in this study.

We can conclude that the proposed implementations in

this paper would be mainly interesting for existing FPGA

applications that already occupy a lot of LUTs and FFs,

but have many available DSP slices and BRAM tiles. As

a future work, we plan to implement fully parallel versions

of Troika for even faster implementations. We also plan to

explore protected versions against physical attacks.

REFERENCES

[1] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-

coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton, NJ, USA: Princeton University Press, 2016.

[2] C. Catalini and J. S. Gans, “Some Simple Economics of the Blockchain,”
NBER Working Papers 22952, National Bureau of Economic Research,
Inc, 2016.

[3] S. Nakamoto, “Bitcoin: A Peer-to-peer Electronic Cash System,” 2009.

[4] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[5] J. Reed, Litecoin: An Introduction to Litecoin Cryptocurrency and

Litecoin Mining. USA: CreateSpace Independent Publishing Platform,
2017.

[6] I. Takashima, Ripple: The Ultimate Guide to the World of Ripple XRP,

Ripple Investing, Ripple Coin, Ripple Cryptocurrency, Cryptocurrency.
USA: CreateSpace Independent Publishing Platform, 2018.

[7] R. Alexander, IOTA - Introduction to the Tangle Technology: Everything

You Need to Know About the Revolutionary Blockchain Alternative.
Independently published, 2018.

[8] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, e. J. Watten-
hofer, Roger”, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner,
and K. Rohloff, “On Scaling Decentralized Blockchains,” in Financial

Cryptography and Data Security, (Berlin, Heidelberg), pp. 106–125,
Springer Berlin Heidelberg, 2016.

[9] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments,” 2016.

[10] S. Popov, The Tangle. White Paper, 2018.
[11] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Keccak Speci-

fications,” 2009.
[12] T. Pototschnig, “https://medium.com/@punpck/iota-crypto-core-fpga-

3rd-progress-report-3611b030d80d,” 2019.
[13] CYBERCRYPT - Troika Reference Document, “https://www.cyber-

crypt.com/wp-content/uploads/2019/07/20181221.iota .troika-
reference.v1.0.1.pdf,” 2018.

[14] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, Sponge Functions.
Ecrypt Hash Workshop, 2007.

[15] A. Elsts, E. Mitskas, and G. Oikonomou, “Distributed Ledger Technol-
ogy and the Internet of Things: A Feasibility Study,” in Proceedings

of the 1st Workshop on Blockchain-enabled Networked Sensor Systems,
BlockSys’18, (New York, NY, USA), pp. 7–12, ACM, 2018.

[16] W. Geiselmann and R. Steinwandt, “A Redundant Representation of
GF (QN) for Designing Arithmetic Circuits,” IEEE Trans. Comput.,
vol. 52, pp. 848–853, July 2003.

[17] Xilinx, “7 Series FPGAs Memory Resources User Guide UG473
(v1.14),” 2019.

[18] D. Schiener, “The Anatomy of a Trans-
action https://domschiener.gitbooks.io/iota-
guide/content/chapter1/transactions-and-bundles.html,” 2018.

[19] Web resource, “What is the average transaction time in IOTA?
https://iota.stackexchange.com/questions/88/what-is-the-average-
transaction-time-in-iota,” 2017.

