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Abstract

Purpose – The present research is aimed at numerically retrieving five constant dimensional
thermo-physical properties of a biological tissue from dimensionless boundary temperature
measurements.
Design/methodology/approach – The thermal-wave model of bio-heat transfer is used as
an appropriate model because of its realism in situations in which the heat flux is extremely
high or low and imposed over a short duration of time. For the numerical discretization, an
unconditionally stable finite difference scheme used as a direct solver is developed. The sen-
sitivity coefficients of the dimensionless boundary temperature measurements with respect
to five constant dimensionless parameters appearing in a non-dimensionalized version of the
governing hyperbolic model are computed. The retrieval of those dimensionless parame-
ters, from both exact and noisy measurements, is successfully achieved using a minimization
procedure based on the MATLAB optimization toolbox routine lsqnonlin. The values of
the five dimensional parameters are recovered by inverting a non-linear system of algebraic
equations connecting those parameters to the dimensionless parameters whose values have
already been recovered.
Findings – Accurate and stable numerical solutions for the unknown thermo-physical prop-
erties of a biological tissue from dimensionless boundary temperature measurements are
obtained using the proposed numerical procedure.
Research limitations/implications – The current investigation is limited to the retrieval
of constant physical properties, but future work will investigate the reconstruction of the
space-dependent blood perfusion coefficient.
Practical implications – Since noise inherently present in practical measurements is in-
verted, the paper is of practical significance and models a real-world situation.
Social implications – The findings of the present article are of considerable significance
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and interest to practitioners in the biomedical engineering and medical physics sectors.
Originality/value – In comparison to Alkhwaji et al. (2012), the novelty and contribution
of this work are: (i) considering the more general and realistic thermal-wave model of bio-
heat transfer, accounting for a relaxation time, (ii) allowing for the tissue to have a finite
size, and (iii) the reconstruction of five thermally significant dimensional parameters.
Keywords Identification problem; hyperbolic equation; thermal-wave model; bio-heat trans-
fer
Paper type Research paper

1 Introduction

The knowledge of the spatio-temporal temperature profile of a living biological tissue is
vital for various biomedical applications, including cancer treatment using cryosurgery or
hyperthermia therapy in which the elimination of cancer cells is maximized and the damage
to the surrounding healthy tissue is minimized (Zhang et al., 2017). In addition, direct
measurements of the thermal properties often fail due to their high cost, inefficiency or other
technical reasons (Narasimhan and Sadasivam, 2013). Thus, mathematical modelling has
become crucial in pre-treatment planning for obtaining the thermo-physical properties and
the temperature distribution of the tissue under treatment to be used to direct surgeons to
determine the conditions of the tissue being treated (Zhang et al., 2017).

In the last few decades, despite of its simplicity, the Pennes’ bio-heat model (Pennes,
1948), based on the classical Fourier’s law of heat conduction, has attracted considerable
interest for its accurate modelling of a number of applications, including the prediction of
temperature of tumours embedded in healthy tissue (Zhang et al., 2006), the study of thermal
damage caused by burn injury or medical treatment (Nóbrega and Coelho, 2017), and the
study of the effects of thermal parameters on the temperature field (Firoozan et al., 2015;
Hafid and Lacroix, 2017). Those studies include the development of closed-form analytical
solutions (Gao et al., 1995; Kengne and Lakhssassi, 2015) and numerical methods (Cao et
al., 2010; Chan, 1992; Zhao et al., 2005). For instance, Kengne and Lakhssassi (2015) solved
the parabolic bio-heat transfer model in spherical coordinates by combining the method of
separation of variables with the Green’s function approach, while Chan (1992) numerically
solved the steady-state and transient Pennes’ bio-heat model in two and three dimensions
using the boundary element method.

On the other hand, few attention has been paid to the study of the thermal-wave model
(Liu et al., 1995), which is a more realistic model for bio-heat transfer, in various applications
(Ahmadikia et al., 2012; Liu et al., 1999; Zhukovsky and Srivastava, 2017). For example,
Ahmadikia et al. (2012) and Liu et al. (1999) solved the thermal-wave model of bio-
heat transfer, along with the Pennes’ bio-heat model, with constant and transient heat flux
boundary conditions using the Laplace transform method and the method of separation of
variables, respectively. The paramount importance of the thermal relaxation, accounted for
by the thermal-wave model, has been addressed in several studies (Chester, 1963; Hennessy
et al., 2019; Nóbrega and Coelho, 2017), e.g. Chester (1963) for gas dynamics and Hennessy
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et al. (2019) for nanoparticle melting. Nóbrega and Coelho (2017) studied the prediction of
temperature and thermal damage when a laser is applied for cancer treatment and showed
that the hyperbolic model of interest accurately approximates the physical results observed
in the experimental work of Mitra et al. (1995). Chester (1963) studied the thermal-wave
equation analytically and established an equality between the relaxation time and the critical
frequency, that is, the value above which heat propagates as wave-like behaviour rather than
diffusion-like behaviour.

Concerning inverse problems for bio-heat transfer, a great deal of numerical techniques
has been proposed to solve inverse problems for the Pennes’ bio-heat model (Bazán et al.,
2017; Cao and Lesnic, 2018; Huntul et al., 2018). However, limited attention has been given
to inverse problems for the thermal-wave model (Hsu, 2006; Lee et al., 2013; Yang, 2014).
For instance, Lee et al. (2013) studied the thermal-wave model and determined the unknown
surface heat flux of a living skin tissue from temperature measurements sampled over the
tissue using the conjugate gradient method (CGM) coupled with the discrepancy principle.

In this work, we consider the thermal-wave model whose parameters resemble the
thermo-physical properties of real tissue and blood, as given in Alkhwaji et al. (2012);
Özen et al. (2008), and attempt to recover five constant thermo-physical parameters, that
are: the blood perfusion rate wb, the thermal contact resistance R′′, the thermal conductivity
of tissue k, the relaxation time τ and the heat capacity of tissue Ct. Such thermo-physical
parameters play fundamental roles in the health of human beings. For instance, the perfu-
sion of blood - the volumetric directionless blood flow rate per unit tissue volume - has a
significant role for not only wound healing and the spread of tumour, but also for the removal
of wastes and the transfer of oxygen and nutrients to cells in biological tissue. In addition,
knowing the blood perfusion, decision-making concerned with the treatment of cancer can
be improved and a better understanding of the mechanisms of thermal damages due to burn
injury or medical treatment can be accomplished. In comparison to Alkhwaji et al. (2012),
the novelty and contribution of this work are: (i) considering the more general and realistic
thermal-wave model of bio-heat transfer, accounting for a relaxation time, (ii) allowing for
the tissue to have a finite size, and (iii) the reconstruction of five thermally significant di-
mensional parameters, while only two parameters were recovered in Alkhwaji et al. (2012).
To our knowledge, the recovery of such parameters has not been attempted in the literature
before.

This paper is organized as follows. In Section 1.1, the thermal-wave model of bio-heat
transfer is derived in a generic form, along with the Pennes’ bio-heat model, while Section
2 introduces the specific model of interest, along with a non-dimensionalized version of it.
In Section 3, an unconditionally stable FDM used as a direct solver is discussed, while two
numerical optimization techniques for inversion are introduced and discussed in Section 4,
along with a comparison between them. In Section 5, the sensitivity coefficients of the dimen-
sionless boundary temperature measurements with respect to five constant non-dimensional
parameters are computed. In Section 6, the retrieval of those dimensionless parameters is
obtained using a minimization procedure based on the MATLAB optimization toolbox rou-
tine lsqnonlin, for exact (i.e. p = 0) and noisy (for up to p = 0.1% noise) measurements.
Finally, the values of the five dimensional constant thermo-physical parameters, that are: the
blood perfusion rate wb, the thermal contact resistance R′′, the thermal conductivity k, the
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relaxation time τ and the heat capacity of tissue Ct, arising in the dimensional thermal-wave
model of interest, are recovered by inverting a non-linear system of algebraic equations con-
necting those parameters to the dimensionless parameters whose values have already been
recovered. The conclusions are drawn in Section 7.

1.1 Derivation of thermal-wave model

When modelling heat transfer in biological bodies, the Pennes’ bio-heat diffusive model
may become inaccurate for processes where a finite velocity of heat propagation occurs. In
this case, a relaxation time is required for a sufficient amount of energy to accumulate and
transfer, as evidenced in the experiments of Bertman and Sandiford (1970); Mitra et al.
(1995); Peshkov (1960).

The assumption of infinite velocity of propagation intuitively means that the temper-
ature gradient is felt instantaneously at all locations. This assumption is mathematically
described as:

q(x, t) = −k∇T (x, t), (1)

where T is the tissue temperature [°C], q is the heat flux [W m−2], k is the thermal conduc-
tivity of the tissue [W m−1K−1], x is the distance [m] and t is the time [s].

On the other hand, the heat balance equation reads as (Liu and Xu, 2000; Pennes,
1948):

ρtct
∂T

∂t
(x, t) +∇ · q(x, t) = wbρbcb(Ta − T ) +Qm(x, t) +Qe(x, t), (2)

where ρt and ct represent the density [kg m−3] and specific heat [J kg−1K−1] of the tissue,
respectively, ρb and cb represent the density [kg m−3] and specific heat [J kg−1K−1] of the
blood, respectively, wb is the blood perfusion rate [s−1], and Ta is the (constant) arterial
blood temperature [°C]. The heat source or sink wbρbcb(Ta − T ), depending on the sign of
the difference Ta − T , is due to blood flow, while the heat sources Qm and Qe are due to
metabolism and other external heating, respectively (Liu and Xu, 2000; Pennes, 1948).

Elimination of the heat flux q from the Fourier’s law (1) and the heat balance equation
(2) yields the Pennes’ bio-heat model given by (Pennes, 1948):

ρtct
∂T

∂t
= k∇2T + wbρbcb(Ta − T ) +Qm +Qe. (3)

To account for the finite velocity of propagation observed in bio-heat transfer, Cattaneo
(1958) and Vernotte (1958) independently modified the Fourier’s law of heat conduction (1)
to account for a relaxation time (time-lag) necessary for the creation of heat flux after a
temperature gradient has been imposed. This is mathematically described as:

q(x, t+ τ) = −k∇T (x, t), (4)

where τ = α/c2 is the relaxation time [s] necessary for the tissue to respond to the heat
perturbation (Özen et al., 2008), α = k/(ρtct) stands for the thermal diffusivity of the tissue
[m2 s−1], and c denotes the velocity of thermal waves in the biological tissue [m s−1] (Mitra
et al., 1995).
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A first-order Taylor approximation of q in the left-hand side of the modified version of
the Fourier’s law (4) yields that:

q(x, t) + τ
∂q

∂t
(x, t) = −k∇T (x, t). (5)

Elimination of the heat flux q from the non-Fourier’s law (5) and the heat balance
equation (2) yields the thermal-wave model of bio-heat transfer (or sometimes called the
Cattaneo-Vernotte equation) given by (Liu et al., 1995; Mochnacki and Tuzikiewicz, 2016):

ρtctτ
∂2T

∂t2
+ (ρtct + τwbρbcb)

∂T

∂t
= k∇2T +wbρbcb(Ta − T ) +Qm +Qe + τ

∂

∂t
(Qm +Qe). (6)

It can be noted that when there is no relaxation time, i.e. τ = 0, the thermal-wave hyperbolic
model given above coincides with the Pennes’ bio-heat parabolic model given by (3).

The objective of the paper is to investigate the governing hyperbolic partial differential
equation given by (6) subject to appropriate initial and boundary conditions, when some of
the physical coefficients are known or unknown. Those unknown coefficients determining the
thermo-physical properties of the tissue and blood are of significance for surgeons to judge
the conditions of their patients before undergoing surgeries (Zhang et al., 2017).

The next section introduces the specific model of interest.

2 Mathematical formulation

We consider the physical situation investigated in (Alkhwaji et al., 2012) consisting of a blood
perfusion measurement using a combined heat flux and temperature (CHFT) sensor that is
in thermal contact with the skin tissue. In this experiment, a set of air jets are impinging
on the top side of the CHFT sensor creating a sudden increase in convection, which in turn
it gives rise to an increase in heat transfer from the surface of the tissue through the sensor.
The heat flux and temperature at the surface between the tissue and sensor are measured
experimentally, as a function of time. As in Alkhwaji et al. (2012), we assume that the heat
transfer is one-dimensional (since the air penetration depth is small compared to the lateral
size of the sensor) and that the heat source due to metabolism can be neglected (since it is
small compared to the typical heat flux or, if we would be dealing with an ex-vivo tissue).
Then, letting L [m] denote the length of the finite tissue slab and tf [s] a time duration of
the thermal process (and assuming, for simplicity, that there is no an external heat source,
i.e. Qe = 0), equation (6) simplifies into (Özen et al., 2008):

Ctτ
∂2θ

∂t2
(x, t) +

(

Ct + τwbCb

)∂θ

∂t
(x, t) = k

∂2θ

∂x2
(x, t)− wbCbθ(x, t),

(x, t) ∈ Qtf := (0, L)× (0, tf], (7)

where Ct := ρtct [J m−3K−1] and Cb := ρbcb [J m−3K−1] are the heat capacity of the tissue
and blood, respectively, and θ = T − Ta. As τ ց 0 equation (7) reduces to the traditional
Pennes’ equation given by (3).
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The downstream side x = L of the sample tissue is assumed insulated, whilst at the sur-
face x = 0 of the tissue there is a convective thermal contact with the ambient environment.
This results in the following boundary conditions:

q(0, t) + τ
∂q

∂t
(0, t) = −k ∂θ

∂x
(0, t) =

1

R′′

(

θs(t)− θ(0, t)
)

,
∂θ

∂x
(L, t) = 0, t ∈ [0, tf], (8)

where θs(t) is the contact skin temperature [°C] measured by the sensor and R′′ is the thermal
contact resistance [m2K W−1], which is the reciprocal of the thermal contact conductance,
or the heat transfer coefficient, between the sensor and the skin tissue. The first boundary
condition in (8) represents the generalized Newton’s law, (Hennessy et al., 2019).

Before the thermal process is initiated, the tissue temperature is at steady-state. In
this case, the initial conditions given by (11) below are found by solving the steady-state
form of the governing equation given by (7), that is, the second-order ordinary differential
equation (ODE) given by:

k
d2θ̂

dx2
(x) = wbCbθ̂(x), x ∈ (0, L), (9)

subject to the mixed boundary conditions:

−k dθ̂

dx
(0) =

1

R′′

(

θs,0 − θ̂(0)
)

,
dθ̂

dx
(L) = 0, (10)

where θs,0 = θs(0) is the steady-state skin contact temperature [°C]. On solving (9) and (10)
results in the initial conditions:

θ(x, 0) =
θs,0
D

[

e(x−2L)
√

wbCb/k + e−x
√

wbCb/k

]

,
∂θ

∂t
(x, 0) = 0, x ∈ [0, L], (11)

where D = 1 +R′′k
√

wbCb/k + (1−R′′k
√

wbCb/k)e
−2L

√
wbCb/k.

In comparison to the bioheat conduction model of (Alkhwaji et al., 2012) our mathe-
matical formulation is more general and realistic in the sense that: (i) it allows for the tissue
to have a finite size, i.e. L < ∞, and (ii) it incorporates the time-lag τ > 0 to take into
account for the finite speed of heat wave propagation. Moreover, in (Alkhwaji et al., 2012)
only the thermal contact resistance R′′ and the blood perfusion rate wb were obtained, whilst
in the present study we attempt to retrieve in addition the tissue’s thermal conductivity k,
and heat capacity Ct, along with the relaxation time τ .

The next subsection provides the constant thermo-physical properties appearing in the
thermal-wave model given by equations (7), (8) and (11) used to model heat transfer in
the one-layered, one-dimensional tissue slab, as given in Alkhwaji et al. (2012); Özen et al.
(2008).

2.1 Thermo-physical properties

The constant thermo-physical properties of the one-layered, one-dimensional slab of the
living biological tissue through which heat propagation is modelled by the thermal-wave
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model given by equations (7), (8) and (11) are provided in Table 1, as given in Alkhwaji et
al. (2012); Özen et al. (2008). In addition, the piecewise constant skin contact temperature
θs(t) for t ∈ [0, tf], as measured in Alkhwaji et al. (2012), is shown in Figure 1.

Table 1: Values of the constant thermo-physical properties from Alkhwaji et al. (2012),
except for τ from Özen et al. (2008). Note that 1W=1J s−1.

Symbol Parameter Value Unit
k Thermal conductivity of the tissue 0.5 W m−1K−1

ρt Density of the tissue 1050 kg m−3

ct Specific heat of the tissue 3800 J kg−1K−1

Ct Heat capacity of the tissue, Ct = ρtct 3.99× 106 J m−3K−1

ρb Density of the blood 1050 kg m−3

cb Specific heat of the blood 3800 J kg−1K−1

Cb Heat capacity of the blood, Cb = ρbcb 3.99× 106 J m−3K−1

wb Blood perfusion rate 0.04 s−1

τ Relaxation time on the heat flux 20 s

R′′
Thermal contact resistance between
the tissue and the environment

0.002 m2K W−1

L Length of the one-layered tissue slab 0.02 m
tf Time duration of the thermal process 60 s

Figure 1: Skin contact temperature θs(t) for t ∈ [0, tf], when tf = 60 s.

The next subsection presents a non-dimensionalized version of the thermal-wave model
given by equations (7), (8) and (11).
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2.2 Dimensionless model

Non-dimensionalization is a useful procedure utilized in various sub-fields of Applied Math-
ematics such as Fluid Dynamics, Thermoelasticity and Heat Transfer to remove the units of
variables and to reduce the number of parameters of the models for numerical convenience.
We introduce the following change of variables:

x̄ =
x

L
, t̄ =

t

tf
, θ̄(x̄, t̄) =

θ(x, t)

θs,0
, θ̄s(t̄) =

θs(t)

θs,0
. (12)

Then, the dimensionless form of the thermal-wave model given by equations (7), (8)
and (11) (omitting the bars for clarity) can be written as:

∂2θ

∂t2
(x, t) + a1

∂θ

∂t
(x, t) = a2

∂2θ

∂x2
(x, t)− a3θ(x, t), (x, t) ∈

(

0, 1
)

×
(

0, 1
]

, (13)

subject to the initial conditions:

θ(x, 0) =
1

D

[

ea5(x−2) + e−a5x

]

,
∂θ

∂t
(x, 0) = 0, x ∈ [0, 1], (14)

and the mixed boundary conditions:

−a4
∂θ

∂x
(0, t) = θs(t)− θ(0, t),

∂θ

∂x
(1, t) = 0, t ∈

[

0, 1], (15)

where

a1 =
tf
τ
+
wbCbtf
Ct

, a2 =
kt2f

τCtL2
, a3 =

wbCbt
2
f

τCt

, a4 =
R′′k

L
, a5 =

√

wbCb

k
L, (16)

and the constant D can be written as D = 1 + a4a5 + (1− a4a5)e
−2a5 .

In the next section, an unconditionally stable FDM used as a direct solver is discussed,
along with a convergence test for verification of the proposed direct solver.

3 Numerical solution of direct problem

Let us consider a generic hyperbolic problem given by:

a
∂2u

∂t2
(x, t) + b

∂u

∂t
(x, t) = c

∂2u

∂x2
(x, t)− du(x, t) + f(x, t), (x, t) ∈ Qtf , (17)

where a, b, c and d are given positive constants, and f is a given force function, subject to
the initial conditions:

u(x, 0) = φ(x),
∂u

∂t
(x, 0) = ψ(x), x ∈ [0, L], (18)

where φ and ψ are prescribed functions, and the Robin boundary conditions:

α1u(0, t) + β1
∂u

∂x
(0, t) = R1(t), α2u(L, t) + β2

∂u

∂x
(L, t) = R2(t), t ∈ [0, tf], (19)
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where αi and βi 6= 0 are prescribed constants, and Ri are prescribed functions for i = 1, 2.

We introduce an intermediate variable v (Dai and Nassar, 1999) as:

v := aut + bu, (x, t) ∈ Qtf , (20)

then:
vt = cuxx − du+ f(x, t), (x, t) ∈ Qtf . (21)

From (18) and (20) we obtain the initial condition:

v(x, 0) = aψ(x) + bφ(x), x ∈ [0, L]. (22)

We subdivide the computational domain Qtf into M and N subintervals of equal mesh
size ∆x = L/M and uniform time step ∆t = tf/N , respectively. At the grid node (xi, tj), we
denote ui,j := u(xi, tj), vi,j := v(xi, tj) and fi,j := f(xi, tj), where xi = i∆x and tj = j∆t for
i = 0,M and j = 0, N .

The Crank-Nicolson method, which is unconditionally stable and second-order accurate,
discretizes (20), (21), (18), (22) and (19) as:

ui,j+1 − ui,j
∆t

=
1

2a

(

vi,j − bui,j + vi,j+1 − bui,j+1

)

, (23)

vi,j+1 − vi,j
∆t

=
1

2

(

c

(∆x)2
δ2xui,j − dui,j + fi,j +

c

(∆x)2
δ2xui,j+1 − dui,j+1 + fi,j+1

)

, (24)

i = 0,M, j = 0, (N − 1),

ui,0 = φ(xi), vi,0 = aψ(xi) + bφ(xi), i = 0,M, (25)

α1u0,j+β1
u1,j − u−1,j

2∆x
= R1(tj), α2uM,j+β2

uM+1,j − uM−1,j

2∆x
= R2(tj), j = 0, N, (26)

where u−1,j = u(−∆x, tj) and uM+1,j = u(L + ∆x, tj) for j = 0, N and δ2xui,j = ui−1,j −
2ui,j + ui+1,j.

Solving (23) for vi,j+1, we obtain:

vi,j+1 =

(

b+
2a

∆t

)

ui,j+1 +

(

b− 2a

∆t

)

ui,j − vi,j. (27)

Introducing (27) in (24), we obtain:

−Aui−1,j+1+Bui,j+1−Aui+1,j+1 = Aui−1,j +Cui,j +Aui+1,j +2vi,j +
∆t

2

(

fi,j + fi,j+1

)

, (28)

for i = 0,M , j = 0, (N − 1), where A =
c∆t

2(∆x)2
, B =

(

2a

∆t
+ b

)

+
c∆t

(∆x)2
+
d∆t

2
and

C =

(

2a

∆t
− b

)

−
(

c∆t

(∆x)2
+
d∆t

2

)

.

At each time step tj+1 = (j + 1)∆t for j = 0, (N − 1), using the discretized Robin
boundary conditions given by (26), the difference equations given by (27) and (28) can be
reformulated as a two-step implicit FDM procedure of the form:

L̃uj+1 = Ẽuj + 2vj + b̃
j , (29)
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vj+1 =

(

b+
2a

∆t

)

uj+1 +

(

b− 2a

∆t

)

uj − vj , (30)

where:
uj = (u0,j, . . . , uM,j)

T, vj = (v0,j, . . . , vM,j)
T,

L̃ =















B − λ1 −2A 0 . . . 0 0 0

−A B −A . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −A B −A
0 0 0 . . . 0 −2A B + λ2















,

Ẽ =















C + λ1 2A 0 . . . 0 0 0

A C A . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . A C A

0 0 0 . . . 0 2A C − λ2















,

b̃
j =



























∆t

2

(

f0,j + f0,j+1

)

− 2A∆x

β1

(

R1(tj) +R1(tj+1)
)

∆t

2
(f1,j + f1,j+1)

...
∆t

2
(fM−1,j + fM−1,j+1)

∆t

2
(fM,j + fM,j+1) +

2A∆x

β2

(

R2(tj) +R2(tj+1)
)



























,

and λk =
2αkA∆x

βk
for k = 1, 2.

We next consider a numerical example to verify the convergence and accuracy of the
proposed FDM scheme.

Example. We consider the direct problem (17)-(19) with tf = L = 1, a = b = c = d = 1,
αi = βi = 1 for i = 1, 2,

u(x, 0) = φ(x) = cos (πx) + sin (πx) + 2,
∂u

∂t
(x, 0) = ψ(x) = cos (πx) + 2, (31)

R1(t) = π + 3et, R2(t) = et − π, (32)

and

f(x, t) = (3 + π2)et cos (πx) + (1 + π2) sin (πx) + 6et. (33)

Then, the analytical solution is given by:

u(x, t) = et
(

cos (πx) + 2
)

+ sin (πx). (34)

Figure 2 shows the analytical (34) and numerical solutions obtained with various mesh
sizes M = N ∈ {10, 20, 40}. The absolute errors between the exact and numerical FDM
solutions are also included. From this figure, it can be seen that the convergence of the
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(a)

(b)

(c)

Figure 2: The analytical (34) and numerical FDM solutions for the temperature u(x, t)

of the direct problem (17)-(19) obtained with various mesh sizes: (a) M = N = 10, (b)
M = N = 20, and (c) M = N = 40. The absolute errors between them are also included.
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numerical FDM solution towards the analytical solution (34) is achieved since the absolute
error approaches zero as the mesh size is refined.

In the next section, we introduce two numerical optimization techniques for inversion.
In addition, we numerically simulate the generalized heat flux at x = 0,

−k ∂θ
∂x

(0, t) =: q̃(t) = q(0, t) + τ
∂q

∂t
(0, t), t ∈ [0, tf], (35)

by solving the dimensional model given by equations (7), (8) and (11), and the dimensionless
boundary temperatures at x ∈ {0, 1} by solving the dimensionless model given by equations
(13)-(15), to be used as additional measurements for a comparison between the presented
inversion techniques and for the reconstruction of all possible parameters of the dimensionless
model given by equations (13)-(15), respectively.

4 Numerical solution of inverse problems

A discussion of two numerical optimization approaches for inversion is performed in the next
two subsections.

4.1 Graphical approach

The idea of this approach is to visualize the objective function associated with the inverse
problem under consideration and then find its minimum and its corresponding minimizers
graphically. We apply this method for the determination of one or two parameters simultane-
ously. As for the reconstruction of more than two parameters, this graphical method becomes
impractical and hence the second inversion approach described next is more efficient.

4.2 MATLAB optimization toolbox routine lsqnonlin

We employ the MATLAB optimization toolbox routine lsqnonlin, which does not require
supplying by the user the gradient of the objective function associated (Mathworks, 2012).
This routine attempts to find the minimum of a sum of squares by starting from an arbitrary
initial guess. This routine is compiled with the following parameters:

• Algorithm is the Trust Region Reflective (TRR) minimization (Coleman and Li, 1996).

• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 102 × (number of variables).

• Termination tolerance on the function value = 10−20.

• Solution tolerance = 10−20.

• Lower and upper bounds on the unknowns = 10−10 and 103, respectively.

12



• Initial guesses for the unknowns = unity.

In the next subsection, we numerically simulate the generalized heat flux (35) of the
dimensional model given by equations (7), (8) and (11), and the dimensionless boundary
temperatures of the dimensionless model given by equations (13)-(15), to be used as addi-
tional measurements for a comparison between the presented inversion techniques discussed
in Sections 4.1 and 4.2, respectively, and for the reconstruction of all possible parameters
of the dimensionless model given by equations (13)-(15), respectively. It is worth pointing
out that, according to (35), in the hyperbolic model of bioheat transfer that is considered
in this paper, the temperature gradient is not the heat flux q(0, t) but the generalized heat
flux q̃(t) := q(0, t) + τ∂tq(0, t), (Yu, 2018).

4.3 Exact and noisy measurements

As for as the generalized heat flux used in the inversion of the model parameters as input
data coming from experiment, in practice, it would be actually the heat flux q(0, t) that
we would measure with some error ε > 0. Then, we could compute the time-derivative
using a finite-difference approximation with a step size of O(

√
ε) for stability, and finally,

if τ is known, we could have the generalized heat flux q̃(t) calculated by adding q(0, t) to

τ
∂q

∂t
(0, t), as defined in (35). However, in this paper we simulate the data q̃(t) numerically

by solving, using the FDM described in Section 3, the direct problem given by equations
(7), (8) and (11), with the model parameters of Table 1, to provide the value of −k∂xθ(0, t).
In any case, the generalized flux measurements are only used in section 4.4 to illustrate the
comparison between the two inversion approaches; the real inversion performed in Section
6 uses instead non-destructive testing measurements of the boundary temperature, which
are also practically feasible and realistic. The dimensional generalized heat flux q̃(t) =

−k∂xθ(0, t), and the dimensionless boundary temperatures θ(0, t) and θ(1, t) are depicted in
Figure 3 for various mesh sizes M = N ∈ {160, 320, 640}, showing that convergent results
have been achieved. The dimensional boundary temperatures can easily be inferred from
Figures 3(b) and (c) and equation (12) by multiplying the dimensionless time t by tf = 60 s
and the dimensionless temperature θ̄ by θs,0 = 35°C.

In what follows, in order to avoid committing an inverse crime, we consider the nu-
merically simulated dimensional generalized heat flux q̃(t), and the dimensionless boundary
temperatures θ(0, t) and θ(1, t) obtained with M = N = 640 from our FDM direct solver as
input data in the inverse problems of interest, which themselves are solved with a coarser
mesh of Minv = Ninv = 320. Further, since in reality measured data is subject to noise, we
perturb the numerically simulated data by random noise as:

q̃ǫ(tj) = q̃(tj) + ǫ1j, j = 1, Ninv, (36)

θǫ(0, tj) = θ(0, tj) + ǫ2j, j = 1, Ninv, (37)

θǫ(1, tj) = θ(1, tj) + ǫ3j, j = 1, Ninv, (38)

where ǫ1j, ǫ2j and ǫ3j are random variables generated from a Gaussian normal distribution
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(a)

(b) (c)

Figure 3: Plots of the simulated (a) dimensional generalized heat flux q̃(t) at x = 0, (b)
dimensionless boundary temperature θ(0, t) at x = 0, and (c) dimensionless boundary tem-
perature θ(1, t) at x = 1.

with mean zero and standard deviations σ1, σ2 and σ3, respectively, given by:

σ1 = p× max
j=1,Ninv

|q̃(tj)|, σ2 = p× max
j=1,Ninv

|θ(0, tj)|, σ3 = p× max
j=1,Ninv

|θ(1, tj)|, (39)

where p represents the percentage of noise. We use the MATLAB function normrnd(0, σk, Ninv)

to generate the random variables (ǫkj)j=1,Ninv
for k = 1, 2, 3.

The relative error (RE%) used to evaluate the accuracy of the numerical results is
defined as:

RE(β) =
|βnumerical − βexact|

|βexact| × 100%, (40)

where βnumerical denotes the numerically obtained quantity and βexact stands for the true
value of the such quantity, if available. In addition, the average relative error (ERR%) used
to evaluate the total accuracy of the numerical results for the reconstruction of the five
parameters of interest is defined as:

ERR =
1

5

5
∑

i=1

|βnumerical
i − βexact

i |
|βexact

i | × 100%, (41)

where (βnumerical
i )i=1,5 denotes a vector of the numerically obtained quantities and (βexact

i )i=1,5

stands for a vector of the true values of such quantities, if available.

The next section presents a comparison between the two numerical optimization ap-
proaches discussed in Sections 4.1 and 4.2, respectively, for the reconstruction of one or two
parameters simultaneously.
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4.4 Comparison between two inversion approaches

We illustrate the two numerical optimization approaches discussed in Sections 4.1 and 4.2,
respectively, for the reconstruction of one or two parameters simultaneously. We reconstruct
the blood perfusion rate wb alone, as well as the blood perfusion rate wb and the thermal
contact resistance R′′ simultaneously from the measured generalized flux q̃(tj) for j = 1, Ninv,
whose convergent results have already been shown in Figure 3(a). The details of the graphical
approach, the toolbox lsqnonlin routine, the FDM, and the noise and the error computation
are the same as described in Sections 4.1–4.3.

The objective functions that we typically minimize for the reconstruction of the blood
perfusion rate wb alone, as well as the blood perfusion rate wb and the thermal contact
resistance R′′ simultaneously are given, respectively, by:

F1(wb) =
1

σ2
f

Ninv
∑

j=1

(

q̃(tj)− q̃c(tj;wb)
)2
, (42)

F2(wb, R
′′) =

1

σ2
f

Ninv
∑

j=1

(

q̃(tj)− q̃c(tj;wb, R
′′)
)2
, (43)

where q̃c denotes the computed generalized flux and σ2
f is the variance of the noise in the cor-

responding dimensional generalized flux measurement found using the MATLAB command
var. In the case of noisy measurement, q̃ is replaced by q̃ǫ (defined in (36)) in (42) and (43).

The convergence of the objective functions F1 and F2 given by (42) and (43), respec-
tively, as functions of the number of iterations, minimized using the MATLAB optimization
toolbox routine lsqnonlin, is depicted in the top-left and lower-left of Figure 4, respectively,
for both exact (i.e. p = 0) and noisy (with p = 1% noise) data, while the top-right and
lower-right of the same figure illustrate the graphical approach of Section 4.1 based on sim-
ply plotting the objective functions F1 and F2 given by (42) and (43), respectively, for exact
data, i.e. p = 0, on linear-log scale for wb ∈ [0, 0.08]s−1 and R′′ ∈ [1.5, 2.5]× 10−3 m2K W−1.

Table 2 shows the exact and recovered values of the blood perfusion rate wb when the
generalized heat flux measurement is noise-free or subjected to a noise of level of p = 1%.
The numerical values have been obtained using the two numerical optimization approaches
discussed in Sections 4.1 and 4.2, respectively. The initial guess for the unknown blood
perfusion rate wb when using the MATLAB routine lsqnonlin was taken equal to unity. Other
details such as the values of the objective function F1 given by (42) at the recovered solutions,
the ideal values of the objective function denoted by F ideal

1 and found by substituting the
exact value of the blood perfusion wb into the direct problem given by equations (7), (8)
and (11) and then solving for the generalized heat flux, subsequently used to evaluate the
objective function F1, are also included.

Table 3 shows the exact and recovered values of the blood perfusion rate wb and the
thermal contact resistance R′′ when the generalized heat flux measurement is noise-free or
subjected to a noise of level of p = 1%. The numerical values have been obtained using the
two numerical optimization approaches discussed in Sections 4.1 and 4.2, respectively. The
initial guesses for the unknown blood perfusion rate wb and the thermal contact resistance
R′′ when using the MATLAB routine lsqnonlin were taken equal to unity.
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Figure 4: The objective functions F1 and F2 given by (42) and (43), respectively, as functions
of the number of iterations, with p = 1% noise and without (p = 0) noise in (36) (left panel),
and the graphical representations of the objective functions on linear-log scale, without
(p = 0) noise (right panel).

Table 2: Recovered values of the blood perfusion rate wb and the relative errors (RE%).

Using the graphical approach
p = 0 p = 1%

exact numerical RE% numerical RE%
wb 0.04 0.04 0 0.04 0

Value of objective
function F1

1.664×10−3 1.738

Computational time 9 seconds 10 seconds
Sampling box [0, 0.08]

Number of sampling nodes 81
Using the MATLAB optimization toolbox routine lsqnonlin

p = 0 p = 1%

exact numerical RE% numerical RE%
wb 0.04 0.0399 0.08% 0.0397 0.77%

F ideal
1 1.664×10−3 1.738

Value of objective
function F1

1.409×10−3 1.714

Number of iterations 33 31
Computational time 8 seconds 9 seconds

Reason of
halting iteration

Norm of current step is less than step tolerance, 10−20
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Table 3: Recovered values of the blood perfusion rate wb and the thermal contact resistance
R′′, and the relative errors (RE%).

Using the graphical approach
p = 0 p = 1%

exact numerical RE% numerical RE%
wb 0.04 0.04 0 0.04 0
R′′ 0.002 0.002 0 2.012×10−3 0.6%

Value of objective
function F2

1.664×10−3 1.732

Computational time 15 minutes 17 minutes
Sampling box [0, 0.08]×[0.0015, 0.0025]

Number of sampling nodes 81×81

Using the MATLAB optimization toolbox routine lsqnonlin

p = 0 p = 1%

exact numerical RE% numerical RE%
wb 0.04 0.03995 0.12% 0.0399 0.34%
R′′ 0.002 1.999×10−3 0.02% 2.004×10−3 0.20%

F ideal
2 1.664×10−3 1.738

Value of objective
function F2

1.399×10−3 1.713

Number of iterations 66 65
Computational time 21 seconds 22 seconds

Reason of
halting iteration

lsqnonlin solver exceeded function evaluation limit, 200

Nevertheless, a comparison of the computational time shown in Table 3 for the simul-
taneous reconstruction of the blood perfusion rate wb and the thermal contact resistance
R′′ using the two numerical optimization approaches discussed in Sections 4.1 and 4.2, re-
spectively, reveals that the graphical method of Section 4.1 becomes inefficient when two or
more parameters have to be estimated. In such a situation, the optimization approach of
Section 4.2 is employed, as invoked in Section 6 for the reconstruction of all the five dimen-
sionless constant parameters (ai)i=1,5 appearing in the non-dimensionalized model given by
equations (13)-(15). However, prior to this full inversion, in the next section, it is useful to
perform a sensitivity analysis (Beck and Arnold, 1985; Özişik and Orlande, 2000) of the five
dimensionless parameters defined in equation (16) appearing in the model given by equa-
tions (13)-(15) in order to gain an insight into the amount of information contained in the
boundary temperature measurements.

5 Sensitivity analysis

In this section, we perform a sensitivity analysis to gain an insight into which parameters
have the highest influence on the measured boundary temperatures θ(0, tj) and θ(1, tj) for
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j = 1, Ninv. The sensitivity coefficients can be computed by various approaches, as described
in Beck and Arnold (1985); Özişik and Orlande (2000), such as the analytical approach, the
boundary value approach and the finite difference approach. We chose the latest to compute
the normalized sensitivity coefficients as it is the most direct and appropriate approach for
the inverse problem considered in this paper. The normalized sensitivity coefficient of the
dimensionless boundary measurement θ(j, t), j ∈ {0, 1}, with respect to the parameter γi is
defined as (Beck and Arnold, 1985; Özişik and Orlande, 2000):

Sj(γi)(t) := γi
∂θ(j, t)

∂γi
≈ γi

θ(j, t; γ1, · · · , γi +∆γi, · · · , γρ)− θ(j, t; γ1, · · · , γi, · · · , γρ)
∆γi

,

j ∈ {0, 1}, (44)

where ∆γi is relatively small, e.g. ∆γi = 0.001γi, where γi is the true value of the parameter
considered. In general, the sensitivity coefficients are desired to be large and uncorrelated.

Figures 5 and 6 show the timewise variations of the normalized sensitivity coefficients
S0(ai) and S1(ai) for i = 1, 5 corresponding to the measured dimensionless boundary temper-
atures θ(0, t) and θ(1, t), respectively, obtained using the forward first-order accurate finite
difference defined in equation (44). From Figures 5 and 6, it can be seen that the normalized
sensitivity coefficients are uncorrelated. However, from the left-hand side of Figure 6 it can
be seen that S1(ai) for i = 1, 4 are of O(10−6), hence small, indicating that, compared to
Figure 5 where their counterparts, i.e. S0(ai) for i = 1, 4, are of O(10−1), the dimensionless
temperature measurement at the convective boundary x = 0 contains more information than
the measurement at the insulated boundary x = 1, see equation (15).

Figure 5: The sensitivity coefficients for the dimensionless boundary temperature θ(0, tj) for
j = 1, Ninv with respect to the constant parameters (ai)i=1,5.

The MATLAB optimization toolbox routine lsqnonlin previously used for the estimation
of one or two parameters in Section 4.4 is utilized in the next section to recover all the five
dimensionless constant parameters (ai)i=1,5 of the dimensionless model given by equations
(13)-(15), when both the dimensionless boundary temperatures θ(0, tj) and θ(1, tj) for j =

1, Ninv are measured free of noise p = 0 or subjected to a noise of level of p = 0.1%. We do
not use the generalized heat flux defined in equation (15) as additional measurement because
its expression depends on the parameter a4 which is unknown.
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Figure 6: The sensitivity coefficients for the dimensionless boundary temperature θ(1, tj) for
j = 1, Ninv with respect to the constant parameters (ai)i=1,4 (left) and a5 (right).

6 Retrieval of five parameters

We herein reconstruct all the five dimensionless constant parameters a = (ai)i=1,5 appearing
in the dimensionless model given by equations (13)-(15) from the measured dimensionless
boundary temperatures θ(0, tj) and/or θ(1, tj) for j = 1, Ninv, whose convergent results have
already been shown in Figures 3(b) and (c), respectively. The details of the toolbox lsqnonlin

routine, the FDM, and the noise and the error computation are the same as described in
Sections 4.2 and 4.3.

The objective function that we typically minimize for the reconstruction of all the five
dimensionless parameters a = (ai)i=1,5 is given by:

G(a) = G0(a)+G1(a) =
1

σ2
0

Ninv
∑

j=1

(

θ(0, tj)−θc(0, tj;a)
)2
+

1

σ2
1

Ninv
∑

j=1

(

θ(1, tj)−θc(1, tj;a)
)2
, (45)

where:

G0(a) =
1

σ2
0

Ninv
∑

j=1

(

θ(0, tj)− θc(0, tj;a)
)2
, (46)

G1(a) =
1

σ2
1

Ninv
∑

j=1

(

θ(1, tj)− θc(1, tj;a)
)2
, (47)

θc(0, tj;a) and θc(1, tj;a) for j = 1, Ninv denote the computed dimensionless boundary tem-
peratures, and σ2

0 and σ2
1 are the variances of the noise in the corresponding boundary

temperature measurements found using the MATLAB command var. In the case of noisy
measurements, θ(0, tj) and θ(1, tj) are replaced by θǫ(0, tj) and θǫ(1, tj) (defined in (37)
and (38), respectively), in (45)-(47). The initial guesses for the five unknown dimensionless
parameters were taken equal to unity.

Tables 4(a), 4(b) and 5 show the exact and recovered values of all the five dimension-
less parameters (ai)i=1,5 appearing in the dimensionless model given by equations (13)-(15).
Those results have been obtained using the MATLAB optimization toolbox routine lsqnon-

lin when the measurements (noise free, i.e. p = 0, or with p = 0.1% noise) are only the
dimensionless boundary temperature at x = 0 minimizing (46), the dimensionless boundary
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temperature at x = 1 minimizing (47), and both the dimensionless boundary temperatures
at x ∈ {0, 1} minimizing (45). From Tables 4(a) and (b), it can be seen that the numerical
reconstruction of the parameters a2, a4 and a5 are very inaccurate when measuring only
the temperature at x = 0 or x = 1, but a combination of both in the objective function G

given by (45) renders the numerically obtained solution for all the five constant parameters
(ai)i=1,5 accurate, as seen in Table 5. Clearly, there is not enough information when using
the individual measurements of θ(0, tj) or θ(1, tj) for j = 1, Ninv above and more comple-
mentary information is supplied when both these dimensionless boundary temperatures are
measured. Other details such as the values of the objective function G given by (45) at the
recovered solutions, the ideal values of the objective function denoted by Gideal and found
by substituting the exact values of the five non-dimensional components (ai)i=1,5 into the
direct problem given by equations (13)-(15) and then solving for the dimensionless boundary
temperatures, subsequently used to evaluate the objective function G, are also included in
Table 5.

The convergence of the objective functions G0, G1 and G given by (46), (47) and (45),
respectively, as functions of the number of iterations, corresponding the above three cases,
minimized using the MATLAB optimization toolbox routine lsqnonlin, is depicted in Figure
7, whilst Figure 8 show the relative errors (RE%) defined in (40) for the unknowns (ai)i=1,5

arising in the dimensionless model given by equations (13)-(15) when the measurements are
both the dimensionless boundary temperatures at x ∈ {0, 1}. From Figure 7(c) as well
as Figure 8, it can be seen that the objective function G given by (45) and the relative
errors (RE%) defined in (40), as functions of the number of iterations, stabilize in about
40 iterations for both exact and noisy data. Overall from Table 5 and Figure 8, it can be
concluded that accurate and stable numerical results have been successfully achieved for
the reconstruction of all the five dimensionless constant unknowns (ai)i=1,5 appearing in the
dimensionless model given by equations (13)-(15).
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Table 4: Recovered values of the parameters (ai)i=1,5 and the relative errors (RE%) when the
measurement is only the dimensionless boundary (a) temperature θ(0, t) or (b) temperature
θ(1, t).

(a) When only θ(0, t) is measured
p = 0 p = 0.1%

exact numerical RE% numerical RE%
a1 5.4 5.3997 5.8×10−3% 5.4052 0.1%
a2 0.05639 2.43 4209% 3.29 5737%
a3 7.2 7.103 1.35% 7.089 1.54%
a4 0.05 0.335 570% 0.394 688%
a5 11.299 1.785 84% 1.563 86%

(b) When only θ(1, t) is measured
p = 0 p = 0.1%

exact numerical RE% numerical RE%
a1 5.4 5.3999 1.4×10−3% 5.3988 0.02%
a2 0.05639 0.87 1442% 0.85 1408%
a3 7.2 35.29 390% 34.54 380%
a4 0.05 33.82 67548% 33.73 67356%
a5 11.299 6.37 44% 6.37 44%

Table 5: Recovered values of the parameters (ai)i=1,5 and the relative errors (RE%) when
both the dimensionless boundary temperatures θ(0, t) and θ(1, t) are measured.

p = 0 p = 0.1%

exact numerical RE% numerical RE%
a1 5.4 5.3991 0.02% 5.3949 0.09%
a2 0.05639 0.05627 0.21% 0.05607 0.56%
a3 7.2 7.1878 0.17% 7.1671 0.46%
a4 0.05 0.04996 0.08% 0.04993 0.15%
a5 11.299 11.2998 2.3×10−3% 11.3005 8.2×10−3%

Gideal 4.77×10−3 8.937×10−2

Value of objective
function G

3.62×10−3 8.584×10−2

Number of iterations 83 83
Computational time 53 seconds 57 seconds

Reason of
halting iteration

lsqnonlin solver exceeded function evaluation limit, 500
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(a) (b)

(c)

Figure 7: The objective functions G0, G1 and G given by (46), (47) and (45), respectively, as
functions of the number of iterations, corresponding to measuring (a) only θ(0, t), (b) only
θ(1, t) or (c) both θ(0, t) and θ(1, t).
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(a)

(b) (c)

(d) (e)

Figure 8: The relative error values (in percentage) defined in (40): (a) RE(a1), (b) RE(a2),
(c) RE(a3), (d) RE(a4) and (e) RE(a5), as functions of the number of iterations, without
noise, i.e. p = 0, and with p = 0.1% noise.
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Finally, the values of the dimensional constant parameters wb, R′′, k, τ and Ct arising
in the thermal-wave model given by equations (7), (8) and (11) can be recovered by inverting
the system of nonlinear equations defined in (16) to obtain:

τ± =
a1tf ± tf

√

a21 − 4a3
2a3

, wb± =
a2a

2
5

t2f
τ±, R′′

±
=

a3a4t
2
f

(a2a5)2LCbτ±
,

k± =

(

a2a5L
)2
Cb

a3t2f
τ± and Ct =

a2a
2
5Cb

a3
. (48)

From (48), it is interesting to observe that the dimensional inverse problem considered
admits mathematically two different solutions (except for the parameter Ct) whose exact and
numerical values are outlined in Table 6, along with the relative errors (RE%). A similar
situation was also previously encountered in (Flouri et al., 2016), where a dual solution was
obtained when solving for a renal two-compartment filtration model using a transformed
linear inversion. The solution found using the formulae with the negative sign in (48) is
chosen as the desirable solution according to some prior knowledge on the values of the
thermo-physical parameters available from the literature (Alkhwaji et al., 2012; Özen et al.,
2008).

Table 6: Recovered physical values of wb, R′′, k, τ and Ct and the relative errors (RE%).

(a) Solution found using the positive sign in (48)
p = 0 p = 0.1%

exact numerical RE% numerical RE%
wb+ 0.05 0.0502 0.48% 0.0504 0.83%

R′′

+ 0.0016 1.592× 10−3 0.51% 1.586× 10−3 0.86%

k+ 0.625 0.6277 0.44% 0.6295 0.72%

τ+ 25 25.172 0.69% 25.346 1.38%

Ct 3.99× 106 3.988× 106 0.04% 3.986× 106 0.09%

(b) Solution found using the negative sign in (48)
p = 0 p = 0.1%

exact numerical RE% numerical RE%
wb− 0.04 0.0397 0.72% 0.0394 1.45%

R′′

−
0.002 2.014× 10−3 0.69% 2.029× 10−3 1.43%

k− 0.5 0.4962 0.76% 0.4922 1.56%

τ− 20 19.897 0.52% 19.818 0.91%

Ct 3.99× 106 3.988× 106 0.04% 3.986× 106 0.09%

From the third and fourth columns of Table 6(b), it can be seen that accurate and stable
numerical results have been successfully achieved for the simultaneous reconstruction of all
the five dimensional constant unknowns of interest, arising in the thermal-wave model given
by equations (7), (8) and (11), for noiseless data, i.e. p = 0. In addition, the average relative
error (ERR%) defined in equation (41) is 0.55% for this recovery. Similarly, from the fifth
and sixth columns of Table 6(b), it can be seen that accurate and stable numerical results
have been successfully achieved for the simultaneous reconstruction of all the five dimensional
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constant unknowns when the percentage of noise is p = 0.1%. A comparison between the
fourth and sixth columns of the same table reveals that the presence of measurement error
only alters the accuracy of the recovered values of the unknowns slightly, as the average
relative error (ERR%) defined in equation (41) is only 1.09% for p = 0.1% noise compared
to 0.55% for p = 0.

To sum up, the results of Tables 5 and 6(b), and Figure 8 confirm that accurate and
stable numerical reconstruction of all the five thermo-physical dimensional constant param-
eters, that are: the blood perfusion rate wb, the thermal contact resistance R′′, the thermal
conductivity k, the relaxation time τ and the heat capacity of tissue Ct, from both exact and
noisy (for up to p = 0.1% noise) dimensionless boundary temperatures at x ∈ {0, 1}, has
been achieved using the MATLAB optimization toolbox routine lsqnonlin. As for a higher
percentage of noise such as 1%, it was found that some relative errors (RE%) of the recovered
dimensional parameters are of about 10% and thus the results for this level of noise are not
presented.

7 Conclusions

In this paper, an investigation into the numerical retrieval of five constant thermo-physical
parameters arising in a thermal-wave model of bio-heat transfer has been carried out. For
the numerical discretization, an unconditionally stable FDM was used as a direct solver.
Accurate and stable numerical results for the simultaneous reconstruction of the five constant
thermo-physical parameters, that are: the blood perfusion rate wb, the thermal contact
resistance R′′, the thermal conductivity k, the relaxation time τ and the heat capacity of
tissue Ct arising in the dimensional thermal-wave model of interest has been successfully
achieved through a minimization procedure based on the MATLAB optimization toolbox
routine lsqnonlin, when both the dimensionless boundary temperatures at x ∈ {0, 1} are
measured for p = 0 and p = 0.1% noise. It was found that the considered dimensional
inverse problem mathematically admits two solutions; one of which may correspond to the
true thermo-physical properties of the one-layered, one-dimensional tissue slab considered,
as found from the literature (Alkhwaji et al., 2012; Özen et al., 2008).

A possible direction of further work is the determination of the same thermo-physical
properties recovered in this paper, but for a multi-layered tissue stratified into epidermis,
dermis, subcutaneous and inner tissue (Özen et al., 2008).
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