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Expanding attributable fraction applications to outcomes wholly attributable to 

a risk factor 

 

Abstract 

 

The problem central to this document is the estimation of change in disease attributable to 

an epidemiological exposure variable that stems from a change in the distribution of that 

variable. We require that both disease and exposure are quantifiable as real numbers, and 

then ask how to estimate the fraction of disease attributable to exposure, producing the 

general attributable fraction methodology. After the mathematical framework is in place, 

we explore the implications of a disease that is wholly attributable to a given risk factor, 

demonstrate why standard applications of the attributable fractions do not extend, and 

present general methodological considerations for this case.  Finally, we demonstrate the 

methodology using the example of alcoholic psychoses.  



Introduction 

 

The population attributable fraction is a common tool for estimating the proportion of 

disease that is attributable to a given risk factor in epidemiology. Two extensions of the 

total population attributable fraction are the estimation of disease distribution among 

population subgroups defined by exposure patterns and the estimation of the change in 

disease incidence resulting from a change in exposure distribution.  The first application is 

realized by isolating the components of the attributable fraction when the exposure 

distribution is categorical1 and by changing the bounds of integration, thus forming 

exposure categories, when the exposure distribution is given by a continuous function. The 

second application is practically realized by altering the exposure distribution or the 

probability of disease given exposure in the generalized attributable fraction.2 The classical 

formulations of the population attributable fraction contain either a term for incidence of 

disease among a reference group (typically an unexposed population), or measures 

probability of disease given exposure relative to such a reference group. Regardless, when 

the incidence of disease among the reference group is exactly 0, the population attributable 

fraction collapses to 1, as we will see in the following section. When incidence of disease 

among the reference group is 0, we say that the disease is wholly attributable to the risk 



factor, as opposed to partially attributable when incidence among the reference group is 

strictly greater than 0 and strictly less than 1. The questions of disease distribution by 

exposure group and change in disease prevalence stemming from change in exposure are 

still relevant in the study of wholly attributable diseases, so we develop and demonstrate 

methodology to that end. 

 The aims of this paper are threefold: 

1. To present a derivation of the generalized attributable fraction and the two 

applications described above, 

2. To explore and resolve the situation for wholly attributable disease, to which the 

usual methodology does not extend, 

3. To develop an alternative formulation for wholly attributable disease distribution 

that permits the two applications of interest. 

 We first derive the generalized population attributable fraction as a computable 

metric when both the distribution of exposure and its relationship to risk relative to a 

control are known.  The applications of disease distribution over exposure patterns and 

change in disease incidence from change in exposure are then explored, we discuss the 

obstruction to expanding these applications to results wholly attributable to the exposure 



variable, and propose a general method that is currently in use by the authors.3-5  Finally, 

we present a worked example in the context of alcohol epidemiology. 

 

Generalized attributable fraction 

 

Derivation of the population attributable fraction is identical to that found in Eide & 

Heuch.2 We begin by deriving an estimate for the fraction of disease attributable to a given 

exposure variable.  Let 𝑋 be a real-valued random exposure variable whose distribution 

over the population 𝑆 is the cumulative distribution function 𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥).  Let 𝐷 

denote a disease that may be attributable to exposure to 𝑋. Then the probability of such a 

disease is denoted 𝑃𝑟(𝐷), and the conditional probability of disease as a function of 

exposure level is denoted 𝑝(𝑥) = 𝑃𝑟(𝐷|𝑋 = 𝑥).  The unconditional probability of disease 

is then: 

𝑃𝑟(𝐷) = ∫ 𝑝(𝑥)𝑑𝐹(𝑥)ℝ (1) 

We obtain the fraction of disease attributable to exposure to a given risk factor by 

considering a counterfactual exposure scenario with random exposure variable 𝑋∗ on ℝ 



with cumulative distribution function 𝐹∗(𝑥) = 𝑃𝑟(𝑋∗ ≤ 𝑥).  In particular, suppose we have 

a scenario where exposed 𝐸 means 𝑋 > 𝑥0, and 𝑃𝑟(𝐸) = 0. We define the special case of a 

counterfactual exposure distribution 𝐹∗ in which no person is exposed to the risk factor, i.e. 𝑃𝑟∗(𝐸) = 0.  We denote this distribution by 𝐹0, and 𝐹0 is then defined by 𝐹0(𝑥0) =𝑃(𝐸′) = 1.  We also assume that the relationship between exposure and probability of 

disease is unchanged, so the unconditional probability of a disease event in this exposure 

scenario is: 

𝑃𝑟0(𝐷) = ∫ 𝑝(𝑥)𝑑𝐹0(𝑥)ℝ (2) 

The excess probability of disease is then 𝑃𝑟(𝐷) − 𝑃𝑟0(𝐷) and the fraction of disease 

attributable to exposure, i.e. the population attributable fraction, is: 

𝜆 = 𝑃𝑟(𝐷) − 𝑃𝑟0(𝐷)𝑃𝑟(𝐷) (3) 

There is an unexposed population whose proportion is exactly 𝐹(𝑥0) = ∫ 𝑑𝐹(𝑥)𝑥≤𝑥0  and an 

exposed population whose proportion is 1 − 𝐹(𝑥0) = ∫ 𝑑𝐹(𝑥)𝑥≥𝑥0 .  In the prospective 

scenario of no exposure, 𝐹0(𝑥0) = 1 and 1 − 𝐹0(𝑥0) = 0 by definition.  The risk of disease 

among the unexposed is given by 



𝑅′ = ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥<𝑥0 (4) 

We first consider the case where the disease is only partially attributable to the risk factor 

and exposure to the risk factor in the population is incomplete. Here, the unexposed are at 

risk of disease and there exists an unexposed population (i.e. 𝑝(𝑥) > 0 and 𝐹(𝑥) > 0 on a 

subinterval of (−∞, 𝑥0]), so 𝑅′ > 0. We break down the components of 𝜆 as: 

𝑃𝑟(𝐷) = 𝑃𝑟(𝐷 ∩ 𝐸) + 𝑃𝑟(𝐷 ∩ 𝐸′) = 𝑃𝑟(𝐷 ∩ 𝑋 ≥ 𝑥0) + 𝑃𝑟(𝐷 ∩ 𝑋 ≤ 𝑥0) 

= ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 + 𝐹(𝑥0) ⋅ 𝑅′ (5) 

𝑃𝑟0(𝐷) = 𝑃𝑟0(𝐷 ∩ 𝐸) + 𝑃𝑟0(𝐷 ∩ 𝐸′) = 𝑃𝑟0(𝐷 ∩ 𝑋 ≥ 𝑥0) + 𝑃𝑟0(𝐷 ∩ 𝑋 ≤ 𝑥0) 

= ∫ 𝑝(𝑥)𝑑𝐹0(𝑥)𝑥≥𝑥0 + 𝐹0(𝑥0) ⋅ 𝑅′ 
= 0 + 1 ⋅ 𝑅′ = 𝑅′                          (6) 

We modify 𝜆 into an expression in terms of relative risk, taking 𝑅𝑅(𝑥) = 𝑝(𝑥)/𝑅′, so that 

only two quantities need to be known in order to practically compute 𝜆: the relative risk 

function 𝑅𝑅(𝑥) and the exposure distribution 𝐹(𝑥). 



𝜆 = 𝑃𝑟(𝐷) − 𝑃𝑟0(𝐷)𝑃𝑟(𝐷)  

= ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 + 𝐹(𝑥0) ⋅ 𝑅′ − 𝑅′∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 + 𝐹(𝑥0) ⋅ 𝑅′  

= ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 − (1 − 𝐹(𝑥0)) ⋅ 𝑅′𝑅′ + ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 − (1 − 𝐹(𝑥0)) ⋅ 𝑅′ 
= ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 − ∫ 𝑅′𝑑𝐹(𝑥)𝑥≥𝑥0𝑅′ + ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 − ∫ 𝑅′𝑑𝐹(𝑥)𝑥≥𝑥0  

= ∫ (𝑝(𝑥) − 𝑅′)𝑑𝐹(𝑥)𝑥≥𝑥0𝑅′ + ∫ (𝑝(𝑥) − 𝑅′)𝑑𝐹(𝑥)𝑥≥𝑥0  

= ∫ (𝑅𝑅(𝑥) − 1)𝑑𝐹(𝑥)𝑥≥𝑥01 + ∫ (𝑅𝑅(𝑥) − 1)𝑑𝐹(𝑥)𝑥≥𝑥0  (7) 

Note that Equation (7) is the continuous version of Levin’s formula from 1953.6  This 

formulation readily permits our two applications of interest: computation of attributable 

fractions under prospective exposure scenarios, and calculation of disease distribution 

among population subgroups defined by exposure levels.  

For the first application, we are interested in the new attributable fraction that would 

arise under a prospective exposure scenario, and that exposure scenario is represented by 

the distribution 𝐹∗(𝑥). The new distribution is still compared to the counterfactual of no 



exposure, so the new attributable fraction computation carries 𝐹∗ through to produce the 

scenario attributable fraction 

𝜆∗ = ∫ (𝑅𝑅(𝑥) − 1)𝑑𝐹∗(𝑥)𝑥≥𝑥01 + ∫ (𝑅𝑅(𝑥) − 1)𝑑𝐹∗(𝑥)𝑥≥𝑥0 (8)  
There is another wrinkle if we want to further apply the attributable fraction to observed 

counts of disease events: the disease events were observed under actual exposure levels, so 

an adjustment must be made to total number of disease events in order to estimate the 

number attributable to the risk factor under the prospective exposure scenario. We perform 

this adjustment by making the assumption that the number of non-attributable disease 

events is invariant under the prospective exposure scenario.  In other words, denoting by 𝑁 

the total number of observed disease events, the fraction 𝜆𝑁 is the number of events we 

estimate to be attributable to the risk factor, and its complement (𝜆 − 1)𝑁 is the number of 

events we estimate to be not attributable to the risk factor.  If 𝑁∗ denotes the total number 

of disease events under the prospective exposure scenario (a figure that is necessarily 

unobservable), then we expect the number of non-attributable events, given by (𝜆∗ − 1)𝑁∗, 

to be invariant under this change in exposure.  This is represented by the relation 

(𝜆 − 1)𝑁 = (𝜆∗ − 1)𝑁∗ (9) 



The metric we are trying to obtain for comparison is 𝜆∗𝑁∗, and that is obtained from 

Equation (9) as 

𝑁∗𝜆∗ = 𝑁 (1 − 𝜆)(1 − 𝜆∗) 𝜆∗ (10) 

Now that we have access to this quantity, we can meaningfully compare estimates of risk 

attributable disease among different exposure scenarios. 

The second application is realized by modifying the bounds of integration in the 

numerator of Equation (7).  If a subpopulation 𝑆1 is defined by exposure levels between 𝑥1 

and 𝑥2,  𝑥1 < 𝑥2, then the proportion of disease suffered by population 𝑆1 that is 

attributable to exposure is given by the quantity 

𝜆1 = ∫ (𝑅𝑅(𝑥) − 1)𝑑𝐹(𝑥)𝑥2𝑥11 + ∫ (𝑅𝑅(𝑥) − 1)𝑑𝐹(𝑥)𝑥≥𝑥0 (11) 

Notably, this fraction is applied directly to the total number of disease events 𝑁, and direct 

comparisons can be made between subpopulations.  For example, 𝜆1𝑁 would be the 

estimated number of disease events suffered by the population 𝑆1 that are attributable to the 

risk factor, while 𝜆𝑁 would produce the estimated number of attributable disease events 

suffered by the whole population.  Then 𝜆1/𝜆 would be the proportion of attributable 



disease suffered by population 𝑆1. e.g. if 𝜆1 = 0.3 and 𝜆 = 0.4, then 75% of disease 

attributable to exposure to the risk factor would be felt by population 𝑆1.  This application 

is essentially a breakdown of the continuous attributable fraction into a categorical 

attributable fraction where we may directly compute variable components of the 

attributable fraction, in the language of Eide and Gefeller, Equation (4),1 and later Eide and 

Heuch, Equation (20).7 

 Let us now consider the case where the chosen disease is wholly attributable to the 

risk factor, i.e. where 𝐹(𝑥0) > 0, and 𝑝(𝑥) = 0 on [0, 𝑥0], so 𝑅′ = 0.  This occurs in 

practice in alcohol epidemiology, where there exists a population that is not exposed to 

alcohol and there exist diseases, such as alcoholic psychoses, that are not present among 

this unexposed population. In this case, the final line of Equation (7) is not achievable as it 

requires division by 𝑅′, so consider instead the representation of 𝜆 found one line up: 

𝜆 = ∫ (𝑝(𝑥) − 𝑅′)𝑑𝐹(𝑥)𝑥≥𝑥0𝑅′ + ∫ (𝑝(𝑥) − 𝑅′)𝑑𝐹(𝑥)𝑥≥𝑥0 (12) 

Here we see that 𝜆 collapses to 1 when 𝑅′ = 0 as expected: all of the disease is attributable 

to the risk factor because the disease is not found when the risk factor is absent.  

Furthermore, any alternate exposure scenario enacted by replacing 𝐹(𝑥) with a prospective 



exposure distribution 𝐹∗(𝑥) will also produce an attributable fraction of 1.  Our second 

application of categorizing subpopulations by exposure yields: 

𝜆1 = ∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥2𝑥1∫ 𝑝(𝑥)𝑑𝐹(𝑥)𝑥≥𝑥0 (13) 

Here we see that the expression for the categorical attributable fraction is a computable 

quantity if we have access to 𝑝(𝑥), the conditional probability of disease as a function of 

exposure level.  If we have access to such a function, then we can compute probabilities of 

disease directly from Equation (1).  Furthermore, our two desired applications are now 

available.  Estimation of disease incidence under a prospective exposure distribution is 

realized by replacing the exposure distribution 𝐹 with the prospective exposure distribution 𝐹∗, and estimating the burden of disease among subpopulations defined by exposure 

intervals is realized by varying the bounds of integration. This is the direction explored in 

the next section, where we present an example of our applications in the realm of alcohol 

epidemiology. 

 

Application in Alcohol Epidemiology 

 



The formulation of the attributable fraction presented above is well suited to alcohol 

epidemiology, where relative risk functions and exposure distributions are readily available.  

Continuous relative risk functions that produce the conditional probability of suffering a 

disease event as a function of mean daily alcohol exposure are typically produced by 

combining analyses of risks across different population strata, summarizing constituent 

studies regarding each disease into a single function.8  A comprehensive list of relative risk 

functions is compiled for the International Model of Alcohol Harms and Policies.4  

Prevalence of alcohol exposure is modeled by a scaled gamma distribution whose mean and 

standard deviation are linearly related,9 yielding an exposure distribution determined 

entirely by population mean daily alcohol exposure. 

Attributable fractions for diseases partially attributable to alcohol are therefore 

obtainable via the generalized attributable fraction, as are fractions for the two applications 

discussed in the previous section. For diseases wholly attributable to alcohol, we propose a 

different methodology that is based on the expression of expected value seen in Equation 

(1) and presented again below with exposure distribution determined by population mean 

alcohol exposure parameter 𝜇.  We also introduce an upper bound on our alcohol exposure 

distribution as a practical consideration in line with previous burden of disease estimates.5, 

10 The expected value expression is then given by Equation (14): 



𝑃𝑟(𝐷) = ∫ 𝑝(𝑥)𝑑𝐹(𝑥; 𝜇)𝑥1𝑥0 (14) 

If we assume that the risk among the unexposed for a given disease is zero, then all disease 

events are attributable to alcohol.  In this case we are primarily concerned with the total 

number of disease events 𝑁 in the population 𝑆, i.e. the incidence of disease 𝑁/|𝑆|, which 

is exactly 𝑃𝑟(𝐷).  To determine incidence in a prospective exposure scenario, we use the 

alternative mean daily exposure 𝜇∗ to generate the exposure distribution: 

𝑃𝑟∗(𝐷 ∩ 𝐶𝐷) = ∫ 𝑝(𝑥)𝑑𝐹(𝑥; 𝜇∗)𝑥1𝑥0 (15) 

To determine disease distribution among population subgroups defined by intervals of 

mean daily exposure, we change the bounds of integration. 

 These applications require the function 𝑝(𝑥), a continuous function that provides 

the conditional probability of disease event as a function of mean daily alcohol exposure.  

In alcohol epidemiology, such functions are not available in the literature at large, so 

proximate absolute risk functions are generated as needed in applications such as the 

Sheffield Alcohol Policy Model3, 11 and the International Model of Alcohol Harms and 

Policies4. 



For an example of generating an absolute risk functions, consider alcoholic 

psychoses, a condition that does not occur outside of current drinkers of alcohol.  We make 

two assumptions that provide a general form for the absolute risk function: 

1. Moderate to severe alcohol use disorder is a factor in diagnosis of alcoholic 

psychoses,12 so we assume that the disease does not occur below a fixed 

threshold parameter 𝑡. 

2. A common technique in estimating relative risk curves is the fractional 

polynomial technique13 and it is often the case that fractional polynomials 

collapse to loglinear curves.4, 14, 15  In short, the majority of relative risk curves 

for alcohol-related conditions are loglinear, so we assume that 𝑝(𝑥) increases 

exponentially in 𝑥. 

These assumptions lead to the following form that depends on the parameters 𝑘 and 𝑡: 

𝑝(𝑥; 𝑘, 𝑡) = 𝑃𝑟(𝐷|𝑋 = 𝑥) =   { 0, 𝑥 < 𝑡 exp(𝑘(𝑥 − 𝑡)) − 1 , 𝑥 ≥ 𝑡 (16)
Here 𝑡 is a fixed threshold parameter and 𝑘 is an unknown slope parameter.  The 

unconditional probability of a disease event is the incidence of events among the 

population, i.e. 𝑁/|𝑆|, so we have the following relation: 



∫ 𝑝(𝑥; 𝑘, 𝑡)𝑑𝐹(𝑥; 𝜇)𝑥1𝑥0 = 𝑁|𝑆| (17) 

The left hand side of the equation is an unbounded strictly increasing function in 𝑘, for 

which 

∫ 𝑝(𝑥; 0, 𝑡)𝑑𝐹(𝑥; 𝜇)𝑥1𝑥0 = 0 (18) 

Furthermore, 𝑁/|𝑆| is a positive value, thus Bolzano’s theorem16 guarantees a unique 

solution 𝑘 = 𝑘̂.  When a suitable  𝑘̂ is found, observe that the following integral is 

identically 1: 

|𝑆|𝑁 ∫ 𝑝(𝑥; 𝑘̂, 𝑡)𝑑𝐹(𝑥; 𝜇)𝑥1𝑥0 (19) 

Moreover the integrand is nonnegative on its domain of [𝑥0, 𝑥1].  Letting 𝐹′ = 𝑓, this 

allows us to interpret the following expression as a probability density function in 𝑥, 

describing the distribution of disease due to alcohol exposure: 

|𝑆|𝑁  𝑝(𝑥; 𝑘̂, 𝑡)𝑓(𝑥; 𝜇) (20) 

A change in the total exposure of alcohol among a given population also changes the rate of 

alcohol-attributable disease.  For our formulation of attributable disease estimation, observe 



that such a change is equivalent to changing the population mean daily exposure parameter 𝜇 in 𝑓(𝑥; 𝜇) to a new value 𝜇∗.  Swapping the resulting unconditional probability 

distribution 𝑓(𝑥; 𝜇∗) into the expectation integral with the calibrated conditional probability 

function produces an estimate for disease incidence under the new exposure scenario. 

To further illustrate the methodology, we present a worked example of calibrating 

and using an absolute risk function corresponding to the risk of hospitalization due to 

alcoholic psychoses by daily alcohol exposure among men aged 35-64 in Canada in 2014.  

The population of this group was 7,033,524, of which 81.26% were classified as current 

drinkers: persons who had consumed at least one 12g alcoholic drink in the past year.  This 

population consumed 29.54 grams-ethanol per day on average and suffered 5,865 recorded 

hospitalizations due to alcoholic psychoses.10 Because classification as a current drinker 

one to have consumed at least one 12g alcoholic drink in the past year, we set the lower 

bound of mean daily exposure to 0.03 grams/day.  We set the upper bound of mean daily 

exposure to 250 grams/day, which corresponds to the mean exposure levels observed 

among Canadian street-involved persons living with alcohol dependence.17 It is typical in 

estimates of alcohol attributable burden of disease to set an upper bound on alcohol 

exposure that is lower than the maximum observed in a given population5, 10, in part due to 

the need to extrapolate dose-response risk relationships for partially attributable disease 



beyond a mean daily exposure of 150 grams/day.  This, in turn, is due to the relatively 

small population and low follow-up rate of heavy drinkers18-20.  The upper bound of 250 

grams/day was therefore chosen to provide estimates that can be reasonably compared with 

those found in the Canadian Substance Use Costs and Harms10 study. 

 Following Kehoe et al.,9 we use a scaled gamma distribution to model the 

distribution of alcohol exposure.  Under this gamma model, we assume a linear relationship 

between the mean and standard deviation with 𝜇 = 1.171𝜎.  We determine the gamma 

distribution shape 𝜅 and scale 𝜃 parameters from mean daily exposure by the relations 𝜇 =𝜅𝜃 and 𝜎 = √𝜅𝜃2, so the distribution itself is determined entirely from the mean daily 

exposure 𝜇.  We require that the exposure distribution 𝐹(𝑥; 𝜇) satisfies 

∫ 𝑑𝐹(𝑥; 𝜇)𝑥1𝑥0 = ∫ 𝑑𝐹(𝑥; 29.54)250
0.03 ≈ 0.8126 ≡ 𝑃𝐶𝐷 (21) 

To that end, we rescale the density function of the gamma distribution with mean 𝜇 =29.54 and standard deviation 𝜎 = 29.541.171, denoted by 𝛾(𝑥; 𝜇 = 29.54, 𝜎 = 𝜇1.171), by a factor 

of 

𝑟 = 0.8126∫ 𝛾 (𝑥; 𝜇 = 29.54, 𝜎 = 𝜇1.171) 𝑑𝑥2500.03 (22) 



This yields a continuous exposure distribution of 

𝑓(𝑥; 29.54) = 𝑟 ⋅ 𝛾 (𝑥; 𝜇 = 29.54, 𝜎 = 𝜇1.171) (23) 

The associated cumulative distribution function is defined by 

𝐹(𝑥; 29.54) = ∫ 𝑓(𝑥; 29.54)𝑑𝑥𝑥
0.03 (24) 

Our project team sets the threshold parameter 𝑡 to be the minimum value for which all 

persons with mean daily exposure at least 𝑡 are classified as binge drinkers.  This value is 67.25 grams-ethanol/day, as binge drinking for Canadian men is defined as exposure of 

five Canadian standard drinks (at 13.45 grams-ethanol per drink) within a single drinking 

event. 

 Recall that our assumed form for absolute risk of alcoholic psychoses 

hospitalization is 

𝑝(𝑥; 𝑘, 𝑡) = 𝑃𝑟(𝐷|𝑋 = 𝑥) =   { 0, 𝑥 < 𝑡 exp(𝑘(𝑥 − 𝑡)) − 1 , 𝑥 ≥ 𝑡 (25)
We have already set 𝑡 = 67.25, so we need to determine a value of 𝑘.  This is done by ensuring that 

the following relation holds: 



∫ 𝑝(𝑥; 𝑘, 67.25)250
0.03 𝑑𝐹(𝑥; 29.54) = 5,8657,033,524  (26) 

 

Solutions are found in the InterMAHP package4 by local, derivative free constrained optimization 

by linear approximations21 and is implemented via the nloptr R package.22  In our example, 

we calibrate and plot absolute risk, disease density, and cumulative disease functions.  Our 

exposure distribution estimates that approximately 25% of the population in question 

consumes more than six Canadian standard drinks per day (6 × 13.45 = 80.7 grams-

ethanol), and we provide an estimate of the proportion of disease due to alcoholic psychosis 

this population subgroup suffers. The ggplot2 R package23 is used to produce all plots. 

 First, let us examine the loglinear slope.  Solving Equation (26) yields a loglinear 

slope of 𝑘̂ ≈ 2.96 × 10-4, and the corresponding absolute risk curve 𝑝(𝑥; 2.96 ×10-4, 67.25) is presented in Figure 1.  Note that a loglinear slope of this scale produces 

nearly linear behaviour on the interval [0.03,250]. 
 The disease probability density function and cumulative distribution functions 

displayed in Figures 2 and 3 show a fairly significant skew towards lower levels of alcohol 

exposure in the density of disease. Near-linearity of the absolute risk function indicates that 

this shape is largely influenced by the gamma distribution describing exposure. 



Finally, we estimate the proportion of hospitalizations due to alcohol psychoses 

within a particular population subgroup.  The accumulation of disease up to a mean daily 

exposure of 80.7 grams-ethanol is approximately 5.4%, or 318 hospitalizations.  This 

leaves the vast majority of disease (94.6%, or 3,547 hospitalizations), which is suffered by 

only 25% of this drinking population. 

 

Figure 1: The absolute risk function of the form in Equation (16) 

with threshold 67.25 and calibrated k of 2.96e-4. 



 

Figure 2: The probability density function of the form in Equation (20). 

Median value of approximately 127:7g/day indicated by dashed line. 

Figure 3: Cumulative distribution function of the density function in Figure 2. Median 

value of approximately 127.7g/day indicated by dashed line. 



Discussion 

 

The approach described in this paper provides a clear, reproducible method for researchers 

to estimate absolute risk curves of conditions that are wholly-attributable to exposure to a 

particular epidemiological risk factor. Further, the method can be used to estimate the 

portion of disease suffered by particular exposure groups and the change in the burden of 

disease, which would result from a change in population exposure. These methods can be 

used in isolation or incorporated into more extensive models, similar to InterMAHP or 

SAPM, to produce more comprehensive estimates of the burden of disease of the chosen 

risk factor and/or the extent to which this may be modified by changes in exposure.  We’ve 

presented a form for an absolute risk function in the field of alcohol epidemiology, but how 

well does this generalize?  Outside of alcohol epidemiology, at minimum the following 

relation still holds: 

∫ 𝑝(𝑥)𝑑𝐹(𝑥)ℝ = 𝑁|𝑆| (27) 

Assuming one knows the incidence 𝑁/|𝑆| and the exposure distribution 𝐹(𝑥), the main 

obstruction to producing an absolute risk function 𝑝(𝑥) is assuming an appropriate form for 



the function.  For example, the main considerations in setting the form for the alcohol 

psychoses absolute risk function above were: 

1. Plausibility.  The relationship prescribed by the function 𝑝(𝑥; 𝑘, 𝑡) is plausible 

due to its similarity to relative risk functions for partially alcohol attributable 

conditions4 and due to the restrictions imposed on diagnosis of alcohol 

psychoses.12 

2. Existence. Set 

𝐼(𝑘) = ∫ 𝑝(𝑥; 𝑘, 𝑡)𝑑𝐹(𝑥; 𝜇)𝑥1𝑥0 (28) 

Observed values of 𝑁 tend to be far smaller than |𝑆|.24 Existence of a positive 

solution to 𝐼(𝑘) = 𝑁|𝑆| is guaranteed because the form chosen for 𝑝(𝑥; 𝑘, 𝑡) 

guarantees 𝐼(0) = 0, 𝐼(𝑘) > 0 for 𝑘 > 0, and lim𝑘→∞ 𝐼(𝑘) → ∞. 

3. Uniqueness.  The function 𝐼(𝑘) is strictly increasing in 𝑘, i.e. 
𝑑𝐼𝑑𝑘 > 0 for all 𝑘, 

so a solution is guaranteed to be unique if it exists. 

Many problems and considerations in choosing an epidemiological model are discussed in 

Greenland25 and will not be rehashed here. Some concerns are independent of methodology 

but essential to application, and we address these now. 



There are two temporality concerns. The first regards the period of observation used 

to collect event data, and the second regards application of this methodology to change-in-

exposure scenarios. 

1. The event count in the worked example was aggregated over the calendar year 

2014, so the calibrated absolute risk function as presented must be interpreted as the 

yearly conditional probability of an event given average daily exposure over the 

course of a year. If aggregation of events is over a different period or represented as 

a rate, the methodology still applies, but the result must be interpreted in kind. 

2. A change in exposure due to a change in policy occurs over time. Moreover, there 

may be a fundamental lag between the change in exposure and the change in risk. 

Modeling that attempts to estimate future changes in disease incidence due to 

changes in policy must take these lag effects into account, cf. Holmes et al.26 

In the general mathematical derivation, we made simplifying assumptions regarding 

the form of the absolute risk function, and we optimized over a single parameter. These 

assumptions serve the context of alcohol epidemiology where (i) there are several exposure 

models to choose from and (ii) it is reasonable to assume that risk of disease increases 

exponentially with respect to exposure. In practice, weaker assumptions are possible and 



more parameters may be optimized over as long as existence and uniqueness of the solution 

can still be demonstrated. 

This article was motivated by asking ‘How does disease caused by wholly-

attributable conditions distribute over levels of exposure?’ and ‘How does total exposure 

affect rates of wholly-attributable conditions?’ Whilst we provide a worked example to 

demonstrate the methodology with alcohol-related applications in mind, this method is 

readily generalizable to other contexts and may be of use to those working in the fields of 

other health behaviors such as tobacco or diet. 
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