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ABSTRACT  

Low-temperature Triode Plasma Nitriding (TPN) has been reported to increase the load-

bearing capacity of titanium alloys without compromising either core strength or fatigue 

resistance. It is known also that the effective adhesion between PVD hard coatings and 

titanium alloy substrates can be improved significantly following substrate diffusion pre-

treatment. In TPN treatment the diffusion of the nitrogen can be achieved more efficiently 

(than conventional nitriding techniques) at a comparatively low substrate temperature - and 

after relatively short treatment times. Moreover, there is evidence to suggest that the 

effectiveness of the triode-plasma diffusion treatment can be further increased by depositing a 

suitable thin PVD metallic layer on to the titanium alloy substrate before plasma nitriding 

treatment, to beneficially modify the diffusion kinetics. In this paper, both hcp-α and bcc-β 

titanium coatings (the latter stabilised by the addition of Nb) are applied to (α+β) Ti-6Al-4V 

and (β) Ti-4Al-10V-22Mo substrate materials; the effects of α Ti and β Ti-Nb PVD pre-

coating on the diffusion treatment efficiency (and nitride phase development) and the wear 

behaviour of each of the Ti alloy substrates after TPN treatment at 700
o
C is evaluated.  

1 Introduction 

Titanium is a very popular engineering metal due to its outstanding properties, such as low 

density and high specific strength. However, the wear resistance of titanium is very poor in 
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many practical contact conditions. Wear-resistant hard coatings can be used to increase the 

service lifetime of manufactured products, but the effectiveness of these coatings on titanium 

is often low due to the inadequate load-bearing capacity of the substrate. Therefore, titanium 

alloys can benefit significantly from the application of a substrate-strengthening 

thermochemical diffusion pre-treatment, prior to plasma-assisted Physical Vapour Deposition 

(PVD) of a ceramic hard coating [1]. To date, numerous examples relating to coating layers 

combined with diffusion hardening and/or hard coating treatments can be found in the 

literature for the light alloys. Examples are; PVD metal layers deposited on titanium alloy 

substrates prior to Triode Plasma Nitriding (TPN) thermochemical treatments, to decrease 

surface roughening during the TPN process [2], NiTi (superelastic) interlayers deposited 

between an aluminium alloy substrate and a CrN hard coating (to increase tribological 

performance of a stiff and wear-resistant coating on a compliant substrate) [3] and Cr or Ni 

interlayers deposited before TiN coating of 304 austenitic stainless steel to improve corrosion 

protection [4], [5]. 

Numerous types of nitriding techniques (such as plasma, ion-beam, laser or gas nitriding) can 

be used for the purpose of substrate-strengthening of pure titanium and titanium alloys in the 

temperature range between 400 
o
C to 1000 

o
C [6]. Due to the end products having different 

mechanical properties (different hardness and compound layer thickness), the nitriding 

technique should be chosen depending on the application area. Conventional plasma nitriding 

of titanium (which is applied at higher temperatures and for longer process times than TPN) 

often brings about a degradation of substrate properties such as an unacceptably higher 

surface roughness (for tribological applications), or significant grain growth (that reduces the 

core strength). The treatment temperature and time both need to be decreased if possible, to 

reduce or eliminate these problems but, in many cases, such measures will affect the diffusion 

kinetics, and it will not be possible to obtain sufficient diffusion treatment strength and/or 

depth to provide adequate load support. Therefore, different approaches need to be found to 
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accelerate the nitrogen diffusion rate. The literature suggests some attempts to achieve higher 

diffusion rates such as applying explosive shock treatment [7], or severe plastic 

deformationtreatment [8] before plasma nitriding, applying plasma-based ion implantation 

techniques [9], [10] or using low-pressure, high-intensity plasma nitriding treatments (such as 

the TPN technique applied in this work) [1], [11]. Moreover, the polymorphic nature of 

titanium could also provide some advantages in increasing the diffusion efficiency in TPN 

process. The literature suggests that nitrogen diffusion coefficients in β-Ti tend to be about 

three orders of magnitude higher than in α-Ti [12], [13] at equivalent temperatures. On the 

other hand, the rate of nitrogen diffusion in a surface nitride compound layer is claimed to be 

20-30 times lower than that of α-Ti [14]. In this context, pure α Ti and β Ti-Nb coatings were 

deposited on (α+β) Ti-6Al-4V (Ti-64) and (β) Ti-4Al-10V-22Mo (Ti-AVM) substrate 

materials (before nitriding) in order to observe their effects on diffusion treatment efficiency 

for each alloy type (ie. predominantly alpha and metastable beta, respectively). 

The high-temperature bcc beta polymorph of titanium can be stabilised to ambient 

temperatures by using suitable amounts of bcc alloying elements (such as Nb, V, Mo). 

Achache et al. [15] reported the deposition of β phase titanium alloy coatings (Ti-Nb) on glass 

substrates by sputtering of pure metallic targets. They found a fully hcp α-phased structure 

when the Nb concentration was between 3 and 9 at. %, but a mixture of α and β phases was 

seen above 17 at. % Nb. A fully β-stabilised structure appeared at 34 at. % Nb (and it was 

reported that there was no sign of the α″ martensitic phase). Gonzales et al. [16], [17] showed 

that the phase structure of sputtered Ti-Nb coatings (on AISI 316L stainless steel substrates) 

was fully beta-stabilised from only 15 at. %. Nb. Photiou et al. [18] however reported that 

sputtered Ti-Nb alloy coatings (on Si substrates) containing 15 at. % Nb showed the 

martensitic α″ phase, that was only fully converted to β above 20 at. % Nb. All of these 

examples related to Ti-Nb alloy coatings show how the phase structure of such coatings can 

vary, depending on either Nb concentration or substrate type.  
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Significant differences in the abrasive wear performance of the Ti-64 and Ti-AVM substrates 

compared to the untreated condition were seen after TPN treatment. The formation of a nitride 

compound layer on the surface of the Ti-64 substrate in particular, and the presence of a 

nitrogen-stabilised diffusion zone beneath it (which means a gradual mechanical property 

transition from surface to bulk) was observed by the cross-section nanoindentation hardness 

tests. This type of surface/cross-section structure for the Ti-64 substrate after 4 hours TPN 

treatment at 700 °C can be beneficial for some tribochemical applications such as adhesive 

wear and galling. The friction coefficient can be reduced when the TPN treated Ti alloy (with 

its improved mechanical properties which vary gradually from the surface to the bulk) is in 

tribological contact with another metallic or ceramic material [19]. It will also prevent the 

(soft and ductile) Ti alloy surface from being damaged whilst in contact with a harder surface. 

2 Experimental details  

The production sequence of the duplex plasma diffusion/coating system includes two main 

stages. The first part is Ti and Ti-Nb surface layer deposition on Ti-64 and Ti-AVM 

substrates. The second part is the triode plasma nitriding process which was applied to 

uncoated, Ti coated, and Ti-Nb coated titanium alloys. 

2.1 Ti and Ti-Nb coating deposition 

An unbalanced magnetron sputtering rig was used for deposition of pure Ti and Ti-Nb alloy 

coatings. The stainless steel substrate holder (300 mm x 130 mm) was placed in the middle of 

the chamber and positioned parallel to the sputter target (see Figure 1). It was possible 

therefore, to adjust the concentration of the coatings on the substrates (which were clamped 

on the holder) by changing their positions vertically. Three pieces (2 x Ti + 1 Nb) of metallic 

target segments (each of 127mm x100mm x 7mm) were used for Ti-Nb alloy coating 

deposition; on the other hand, a rectangular single-piece pure Ti target (380mm x100mm x 
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7mm) was used for the α-Ti coatings. A constant distance between target and substrate of 21 

cm was maintained. 

 

Figure 1 Schematic representation of the substrate holder and target materials (for Ti-Nb pilot coating 

run) with resultant coating compositions. 

The chamber was pumped down to approximately 2 x 10
-5

 mbar (0.002 Pa) base pressure with 

rotary and diffusion oil pumps. The deposition stage was started directly after finishing the 

substrate and target sputter cleaning processes. An argon flow rate of 12.5 sccm (working 

pressure of 0.5 Pa) was used for the deposition process. The power supplied to both the Ti and 

the Ti-Nb target was 1000 W. During deposition, the substrates were biased at −50 V with a 

plasma current density of ∼0.3 mA/cm
2
. The maximum substrate temperature was ∼200 

o
C. 

The deposition time was adjusted to 70 (and 60) minutes for Ti (and Ti-Nb) coatings 

(respectively), in order to produce approximately 1.25 μm thick coatings in each case.    

2.2 TPN treatment 

Uncoated, Ti coated, and Ti-Nb coated Ti-64, and Ti-AVM coupons (20 mm x12 mm) were 

TPN diffusion treated in a modified Tecvac IP70L PVD coating machine using the previously 

mentioned low-pressure d.c. triode configuration [1], [11]. The uncoated samples (mean 

surface roughness, Ra, about 0.02 µm) and Ti and Ti-Nb coated samples (taken from the 

magnetron sputtering system) were cleaned ultrasonically with acetone and isopropanol and 
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then dried by compressed air jet. Six samples (uncoated, Ti coated, and Ti-Nb coated Ti-64; 

uncoated, Ti coated, and Ti-Nb coated Ti-AVM) were mounted to the sample holder and were 

processed together in the same TPN treatment. The chamber was pumped down to less than 2 

x 10
-5

 mbar (0.002 Pa) base pressure to minimise undesirable residual gas (such as oxygen or 

hydrogen) inside the chamber. A working temperature of 700
o
C was chosen for the nitriding 

runs. When the desired temperature was reached (via combined radiant heating and Ar plasma 

bombardment), the nitrogen working gas was introduced to the system. The ratio of the Ar 

and N flow rates (gas partial pressures) was kept constant (70 %N and 30 % Ar). The total 

pressure was maintained at around 4 x10
-3

 mbar. The substrates were biased at −300 V during 

TPN and a constant substrate current density of ∼0.8 mA/cm
2
 was applied by adjusting the 

thermionic electron emission of the hot tungsten filament used to support the triode plasma. A 

nitriding time of 4 hours was selected, this being carefully chosen, so as to sputter-remove the 

pre-deposited PVD Ti and Ti-Nb metallic coatings from the Ti-alloy substrates shortly before 

the end of the TPN treatment (such that the coatings influenced the diffusion kinetics of the 

TPN treatment, but not the resulting surface phase composition (and/or mechanical 

properties).     

2.3 Characterisation 

Phase analysis was carried out using a PANalytical X’Pert3 X-ray diffractometer (Cu K-α 

radiation) for as-deposited PVD metallic coatings and for nitrided samples, with a step size of 

0.02
o
 and a step time of 3s in the 30

o
 to 80

o
 2θ range, with 2-degree glancing angle mode. 

Glancing angle mode was selected to suppress substrate reflection contributions to the 

diffraction data. 

A Philips XL 30 scanning electron microscope (field emission gun) was used to investigate 

the cross-sectional surface morphology of the substrates after Ti and Ti-Nb coating deposition 

and the TPN process.  It was operated at 10 and 20 kV, and the samples were placed at a 
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working distance of 5 to 10 mm for taking SEM micrographs. An Energy-Dispersive X-ray 

(EDX) spectrometer attached to the Philips XL 30 FEG-SEM was used for chemical 

composition analysis of the Ti alloy substrates after coating deposition and/or plasma 

nitriding. The microscope was operated at 20 kV and the samples were placed at a working 

distance of 5 mm for EDX analysis. The chemical composition of treated and untreated 

samples was calculated using INCA (Oxford Instruments) software.  

The hardness measurements were performed using a Hysitron Triboscope ® nano-indenter 

with Berkovich three-sided pyramidal diamond tip. The hardness measurements (which were 

applied from the surface of the coated samples) were performed using a matrix of 4 x 4 

indents. The 2 mN indentation load for pure Ti and  Ti-Nb coating surface hardness 

measurements was chosen in consideration of (particularly) the coating thickness, to minimise 

substrate contributions to measured coating hardness. A higher load of 5 mN was chosen for 

the diffusion treated samples’ surface hardness measurements because the surface roughness of 

the samples increased after the nitriding process thus requiring a larger indentation load (and 

depth) for reduced data scatter. 

A Veeco Dektak 150 stylus profilometer (with 12.5 μm radius diamond tip) was used to 

obtain surface roughness values, with a tip load of 3 mg. Six scans (randomly placed) were 

performed on each sample, and an average Ra value was calculated for all samples. The scan 

length was kept at 1mm, and the scan duration was set to 120 seconds. 

2.4 Abrasion resistance tests 

Micro-abrasion wear testing was performed using a Plint TE-66 micro-abrasion test rig. The 

abrasive slurry was prepared by using SiC particles (F1200, ~3–4 μm particle size) and 

distilled water. The concentration of the slurry was 80 g/100 ml for all experiments. A 25 mm 

diameter SAE52100 bearing steel preconditioned ball (running for at least five dummy 

abrasion runs with different orientations prior to testing) was used. The rotation of the ball 
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was adjusted at a tangential velocity of 0.1 ms
-1

 which corresponds to about 80 rpm. The time 

of the experiments was decided by the number of ball revolutions, and the applied load was 

selected as 0.1 N. Wear coefficients (K) of the untreated substrates (for comparison purposes), 

nitrided only substrates and duplex-treated (ie. coated, then nitrided) substrates were 

calculated. 

3 Results and Discussion 

3.1 Characterization of Ti and Ti-Nb coatings before nitriding 

The XRD diffraction patterns for PVD Ti coatings (average crystallite size: 9.7 nm) deposited 

on Ti-64 and Ti-AVM alloy substrates are shown in Figure 2. It can be seen that the coatings 

include only one phase in which all the XRD peaks were HCP structure (pure α-Ti). There is 

little or no change in the HCP α-Ti PVD coating texture for the Ti-AVM beta alloy substrate, 

compared to Ti-64.  

 

Figure 2 GAXRD (2
o
 angle of incidence) diffraction patterns for PVD Ti coatings 

On the other hand, the binary-alloy Ti-Nb BCC PVD metallic coatings required 

compositional optimisation. The elemental compositions of five different Ti-Nb pilot coatings 

deposited onto M2 tool steel substrates can be seen in Figure 1. The XRD diffraction patterns 
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for each of the five coatings are given in Figure 3. All coatings (the lowest Nb concentration 

is 18.1 at. %) showed a BCC structure, with the principal (110) peak is clearly visible. Other 

BCC peaks, (200) and (211) started to become apparent with Sample 4 which has a Nb 

content of 25.7 at. %. A fracture cross-section SEM image of the Ti-33 at. % Nb alloy coating 

is shown in Figure 4. It can be observed that the coating has a dense columnar structure. 

Considering the results of the optimisation run, a coating composition between sample 2 and 

sample 3 could be a good candidate for a Ti-Nb surface layer deposited before triode plasma 

nitriding. It was also reported in the literature that the phase constitution of sputtered Ti-Nb 

coatings was seen to be entirely BCC β with at least 34 at. % Nb concentration [15], in good 

agreement with our findings. 

 

Figure 3 GAXRD (2
o
 angle of incidence) diffraction patterns for Ti-Nb surface coating pilot study (1 

to 5 are sample positions in Figure 1) 
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Figure 4 SEM fracture cross-section of Ti-39.3 at. % Nb trial coating (deposited on M2 tool steel 

substrate). Dense and nanocolumnar microstructure (average crystallite size: 8.4 nm)  is typical for all 

pre-deposited metallic coatings used in this work. 

Following the optimisation run, a Ti-Nb alloy coating (with planned 2:1 Ti:Nb atomic ratio) 

was deposited on Ti alloy substrates before applying the triode plasma nitriding process. The 

required exact position of the substrate on the holder was predicted and a new Ti-Nb coating 

was deposited. The XRD diffraction patterns for the Ti-Nb coating (33 at. % Nb) deposited on 

Ti-64 and Ti-AVM substrates are shown in Figure 5.  It can be seen that the coating has a 

fully cubic structure on both substrate materials, with a slightly higher degree of coating 

crystallinity (average crystallite size: 10.1 nm)  apparent on the (predominantly cubic) Ti-

AVM substrate.  
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Figure 5 GAXRD (2

o
 angle of incidence) diffraction patterns of the Ti-Nb coating (33 at. % Nb) 

layers deposited on Ti-64 and Ti-AVM substrates 

 

3.2 Triode Plasma Nitriding at 700
o
C (TPN700) 

3.2.1 EDX and X-ray Diffraction phase analysis 

The near-surface EDX results after TPN700 process for uncoated, Ti coated (1.25 μm thick), 

and Ti-Nb coated (1.25 μm thick), Ti-64 and Ti-AVM substrates (for 4 hr TPN process 

duration) are presented in Table 1. The most immediate deduction from EDX results is that 

the atomic percentage of nitrogen on the surfaces is nearly the same for all samples. However, 

despite having similar overall nitrogen concentrations in their near-surface, the XRD results 

(see Figure 6 and 7)  showed that, after 4 hours nitriding, a Ti2N nitride phase is created on 

the uncoated Ti-64 substrate. On the other hand, there is no evidence of a nitride phase on the 

surface of the uncoated Ti-AVM substrate; due to the different crystal structure of beta 

titanium alloys, the nitriding behaviour is very different (it is much more difficult to reach a 

critical nitrogen concentration for Ti2N formation in Ti-AVM). XRD peak shifts can be seen 

for uncoated Ti-AVM alloy because nitrogen diffuses inside the substrate and alpha 
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stabilisation starts to occur (the formation of α-Ti peaks can be seen in Figure 7) because of 

the interstitial incorporation of nitrogen in the Ti lattice. 

Table 1 Near surface EDX results of the samples nitrided at 700
o
C for 4 hours 

Samples 
Ti 

(at. %) 

Al 

(at. %) 

V 

(at. %) 

Nb 

(at. %) 

Mo 

(at. %) 

N 

(at. %) 

Ti-64 Substrate 

(untreated) 
85.2 11.3 3.5 - - - 

TPN700, 4h, 

Uncoated Ti-64 
72.9 12.9 2.1 - - 12.1 

TPN700, 4h, 

Ti-coated Ti-64 
73.5 11.7 1.9 - - 12.9 

TPN700, 4h, 

Ti-Nb coated Ti-64 
74.8 11.1 1.3 0.0 - 12.8 

Ti-AVM Substrate 

(untreated) 
69.9 7.6 10.1 - 12.4 - 

TPN700, 4h, 

uncoated Ti-AVM 
61.3 6.4 8.6 - 11.2 12.6 

TPN700,4h, 

Ti-coated Ti-AVM 
61.4 6.4 8.9 - 11.1 12.2 

TPN700, 4h, 

Ti-Nb coated Ti-

AVM 

61.7 6.5 8.7 0.0 11.4 11.7 
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Figure 6 GAXRD (2
o
 angle of incidence) diffraction patterns of untreated (substrate only) and nitrided 

Ti-64 substrates at 700
o
C for 4 hours 
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Figure 7 GAXRD (2
o
 angle of incidence) diffraction patterns of untreated (substrate only) and nitrided 

Ti-AVM substrates at 700
o
C for 4 hours 

Furthermore, EDX analysis of the Ti-Nb coated substrates shows that the niobium 

concentration is zero after the TPN700 process. This can be explained by the nature of the 

plasma nitriding process, that “sputtered off” the 1.25μm thick coating after 4 hours of 
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sputtered off after plasma nitriding. It is easy to say (from the EDX data) that the Ti-Nb 

coating was sputtered off because both substrate alloys do not contain Nb which avoids any 

ambiguity or misunderstanding. It is seen in Figure 6 that the Ti-Nb coated Ti-64 substrate 

shows a similar XRD pattern to the uncoated Ti-64 substrate after TPN700 processing for 

4hrs. This indicates that the Ti-Nb PVD surface coating (1.25 μm thick) did not survive until 

the end of the process. It was sputter-removed completely (after approximately 190 to 200 

minutes, according to our calculations [20]), by energetic argon and nitrogen species, resulting 

in the same crystallographic structure of an uncoated substrate being observed after nitriding. 

If there was any significant Ti-Nb coating remaining, it would give strong XRD peaks 

belonging to the cubic (beta) structure. A similar argument can be made for the Ti coating 
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which was deposited on the Ti-AVM substrate. It is seen in Figure 7 that the Ti coated Ti-

AVM substrate shows a similar XRD pattern to the uncoated Ti-AVM substrate after TPN700 

processing for 4hrs. If any Ti coating remained, it would give strong XRD peaks belonging to 

the HCP α-Ti structure (and/or titanium nitride phase peaks, due to conversion of the residual 

α-Ti coating layer); no such effects are visible in Figure 7. The Al and V concentrations were 

also found to be different for uncoated and coated Ti-64 substrates after the nitriding 

treatment. The concentrations of these alloying elements are decreasing from uncoated, 

through Ti coated to Ti-Nb coated. On the other hand, same elements do not show any 

difference after nitriding of Ti-AVM substrates (neither uncoated, nor Ti or Ti-Nb coated). 

Moreover, the concentrations of alloying elements (Al and V) in Ti-64 substrates after 

TPN700 process for 4h showed that aluminium diffused from the matrix to the nitrogen-rich 

area (near-surface) with the vanadium content decreases in the nitrogen-rich areas close to the 

surface. Although a thin Ti2N nitride compound layer formed on the uncoated Ti-64 substrate, 

the near-surface Al concentration was found to be higher (see Table 1) than for the untreated 

sample (substrate only). The different distribution of these alloying elements (compared to the 

untreated condition) can be related to the particular affinity of the elements with nitrogen [21] 

(ie. Al is a stronger nitride former than V). 

3.2.2 Surface morphology and topography 

Figure 8 shows the surface roughness data after nitriding of untreated, Ti coated, and Ti-Nb 

coated Ti-64 and Ti-AVM substrates. It can be observed from the results that the uncoated 

substrates were significantly rougher than the Ti and Ti-Nb coated substrates after TPN 

treatment. This demonstrates that PVD pre-coating helps to keep the roughness of the Ti-alloy 

substrate low [1]. The PVD layers (with dense nanocolumnar structure) act to protect the 

surface of the substrates (by suppressing preferential surface sputtering of the substrate 

grains)  until they are sputtered off completely by the TPN plasma bombardment in the later 

stages of TPN treatment. After the surface layer disappears, it is expected that the surfaces of 
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the pre-coated substrates would then behave as uncoated ones – but for no more than 40-50 

minutes, we estimate. Therefore, it can be said that the increase in the surface roughness of 

the coated substrates was significantly postponed by depositing a PVD metallic layer before 

nitriding – even though the thickness of the surface layer was not enough to survive the entire 

nitriding process duration. 

It was also found that uncoated Ti-AVM substrates were significantly rougher than uncoated 

Ti-64 after an identical 4 hour TPN treatment at 700
o
C. This can be explained in part by the 

diffusion anisotropy in the cubic structure (β phase) of the alloy, however, Ti-AVM also 

exhibits a much larger grain size than Ti-64 (that accentuates ‘’faceting’’ of the grain 

topography) dependent on the different crystallographic orientations of individual grains to 

the surface [2]. Optical microscopy images from the surfaces of the treated Ti-64 and Ti-

AVM substrates, shown in Figure 9, verify this effect. The as-received grain sizes for the two 

Ti alloy substrates were <5 µm (Ti-64) and 60-70 µm (Ti-AVM); as Figure 9 also reveals, 

these grain sizes did not increase significantly after TPN treatment. It is also interesting that 

there is some difference between the roughness data for coated Ti-64 and Ti-AVM substrates 

after 4 hours nitriding at 700
o
C, depending on whether the coating applied is β-TiNb or α-Ti. 

The surface roughness of the Ti-Nb coated Ti-64 substrate is lower than that of Ti coated Ti-

64 after TPN treatment. On the other hand, the roughness of the Ti-Nb coated Ti-AVM 

substrate is higher than that of Ti coated Ti-AVM. 
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Figure 8 Surface roughness data (Ra, µm) for uncoated, Ti- coated and Ti-Nb coated Ti-64 and Ti-

AVM substrates TPN-treated at 700
o
C for 4 hours 
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Figure 9 Optical microscopy images of the surface topography of samples treated at 700
o
C for 4 

hours. (a) untreated Ti-64 (b) uncoated Ti-64 (c) Ti coated Ti-64 (d) Ti-Nb coated Ti-64 (e) untreated 

Ti-AVM (f) uncoated Ti-AVM (g) Ti coated and (h) Ti-Nb coated Ti-AVM 

3.2.3 Cross-sectional morphology 

SEM cross-sectional images were taken for all six substrate/treatment combinations 

investigated, as can be seen in Figure 10. The compound layer which formed after the 

nitriding process for uncoated Ti-64 is approximately 850 ± 42 nm thick, for Ti coated Ti-64 

it is about 650 ± 60  nm thick and for Ti-Nb coated Ti-64 it is about 1100 ± 75 nm thick. It 

was already verified from XRD patterns that all these layers are composed of Ti2N. The Ti-

AVM substrate (with a fully β phase structure) has very different final features than the Ti-64 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

  

19 

 

substrate. It was already verified from XRD patterns that Ti-AVM substrates do not show any 

evidence of compound layer formation after nitriding. The cross-sectional images for 

diffusion treated Ti-AVM alloy (Figure 10 d, e, f) show nitrogen stabilised layers (α phase 

formation) with acicular (needle-like) features [1]. Although the near-surface EDX results 

(after TPN700 process for 4h) indicated around 12 at. % N content for both types of substrate, 

the final structures/morphologies are clearly very different from each other. It appears that 

this level of nitrogen content is not enough to create a nitride compound layer on the surface 

of the (beta) Ti-AVM alloy (but it is expected to produce Ti2N precipitates in the sub-

surface). 
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Figure 10 SEM cross-sectional images of the samples treated at 700
o
C for 4 hours. (a) uncoated Ti-64 

(b) Ti coated Ti-64 (c) Ti-Nb coated Ti-64 (d) uncoated Ti-AVM (e) Ti coated and (f) Ti-Nb coated 

Ti-AVM 

3.2.4 Surface and cross-sectional hardness measurement 

The cross-sectional indentations were applied about 2μm away from the surfaces (see the 

indentation traces in Figure 11) to avoid damage to the nano-indenter. The indents lie in 

parallel rows from 2μm to approximately 42 μm depth (relative to the surface), with the 

hardness values on each row indicative of the local diffusion zone hardenability.  

 

Figure 11 SEM cross-sectional image of the uncoated Ti-64 TPN-treated at 700
o
C for 4 hours, 

showing the nanoindentation traces 

The cross-section hardness results (see Figure 12) for Ti-64 substrates show that the TPN 

hardening effect below the surface is higher for the Ti-Nb pre-coated sample than for the Ti 

pre-coated sample. The hardness values for all samples show a similar trend, with hardnesses 

approaching that of the untreated substrate core at around 18 μm depth. Ten repeats used for 

each data point plotted in Figure 12 gave about ± 0.3-0.4 GPa standard deviation (error bars 

are not shown, for clarity of presentation and curve fits generated by using regression method 

were inserted). The superior hardening effect for the Ti-Nb coated Ti-64 substrate can be 

explained by the higher diffusion rate of nitrogen (in the beta phase coating) than in the 

substrate. Nitrogen can diffuse to the substrate faster and the Ti-Nb layer suppresses 
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compound layer formation (that would hinder N-diffusion) until its final sputter-removal in 

the late stages of TPN treatment.  

 

Figure 12 Cross-Sectional Nanoindentation data for bare and pre-coated Ti-64 substrates treated at 

700
o
C for 4h. (each data point is an average from 10 indentation measurement at the selected treatment 

depth) 

Results for the TPN-treated Ti-AVM substrates indicate that the hardening effect under the 

surface is higher for the α-Ti coated sample. It is shown (in Figure 13) that the uncoated Ti-

AVM substrates exhibit a similar hardness trend to the untreated samples (ie. negligible 

surface hardening occurs; despite the clear evidence of significant nitrogen content from EDX 

results). It has been discussed before that 4 hours of nitriding at 700
o
C is not enough to harden 

the surface of the Ti-AVM alloy. The Ti-Nb coated sample is also not showing a significant 

hardening effect (if anything, the performance in terms of diffusion-hardening kinetics is 

marginally worse than uncoated) because the coating and substrate have predominantly the 

same crystallographic structure (ie. bcc β-Ti phase). The superior hardening effect for the α-Ti 

coated Ti-AVM substrate can be explained by a lower diffusion rate of nitrogen (in the alpha 

phase coating) than in the β-phase of the substrate (and/or indeed a Ti-Nb coating). It allows 

the rapid inward diffusion of interstitial nitrogen in the substrate β-phase to be slowed down, 
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thereby generating a significant hardening effect by allowing the nitrogen concentration (nb. a 

much higher solubility limit of N in β compared to α) in the near-surface of the beta alloy to 

increase to a significant level, to obtain a stronger solution hardening effect (and also some 

partial α-phase stabilisation). 

 

Figure 13 Cross-Sectional Nanoindentation data for bare and pre-coated Ti-AVM substrates treated at 

700
o
C for 4h. (each data point is an average from 10 indentation measurements at the selected 

treatment depth) 

Figure 14 shows surface hardness measurement results for the uncoated and coated Ti alloy 

substrates. The values are higher than the cross-section hardness data (due to nitride 

compound layer formation - particularly in the case of Ti-64 substrates) and both Ti alloys 

showed a significant hardness increase (after TPN treatment) compared to their untreated 

condition (this is indicated by the horizontal black lines in Figure 14). The somewhat lower 

hardness values for TPN-treated Ti-AVM substrates can be attributed to a lack of nitride 

compound layer formation on the surface; however, although difficult to detect, a little nitride 

precipitation in the substrate near-surface diffusion zone is nevertheless expected – according to 

the substantially higher surface hardness values of >9 GPa after treatment (which cannot be 
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explained by nitrogen interstitial solution strengthening and partial α-phase stabilisation 

alone).  

 

Figure 14 Surface nanoindentation hardness (GPa) for Ti-64 and Ti-AVM substrates prepared under 

different coating conditions and TPN treated at 700
o
C for 4h 

3.2.5 Micro-abrasion wear tests 

The wear coefficient values for the uncoated, Ti coated, and Ti-Nb coated Ti-64 substrates 

treated at 700
o
C for 4 hours can be found in Table 2. 

               Table 2 Micro-abrasion wear coefficients of uncoated, Ti coated, and Ti-Nb coated Ti-64 

surfaces subjected to 4 hours TPN700 treatments 

Ti-alloy Sample 

Wear coefficient 

(K) 

(x10
-4

 mm
3
/Nm) 

Δ K, % (compared 

to the untreated 

substrate) 

Ti-64 

Untreated 10.87 --- 

Uncoated 

TPN700-4h 
9.97 -8.3 

Ti coated 

TPN700-4h 
9.60 -11.7 

Ti-Nb coated 

TPN700-4h 
9.18 -15.5 

 

The abrasive wear resistance of the Ti-64 substrate showed some enhancement after 4hrs TPN 

treatment at 700
o
C; the wear coefficient was approximately 8% less compared to untreated. 

Although the surface hardness values were found to be significantly higher after the TPN 
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treatment, the wear performance of the uncoated Ti-64 substrate was not so remarkable after 

nitriding. It appears that surface hardness alone is not responsible for improved abrasive wear 

performance but a gradual change in mechanical properties from surface to core is particularly 

beneficial.  

The highest surface roughness after TPN treatment was found for the uncoated Ti-64 

substrate, compared to Ti or Ti-Nb coated Ti-64 substrates. As mentioned previously, the 

PVD metallic coatings deposited before the nitriding process led to a significant decrease in 

the final surface roughness values. The higher surface roughness could result in higher local 

contact pressures at the surface asperities while applying the micro-abrasion test, and this may 

accelerate the detachment of these (nitride) asperities. Having a lower initial surface 

roughness appears to give some advantage for the Ti, and Ti-Nb coated Ti-64 substrate, based 

on the observed wear performance. Moreover, the Ti-Nb coated Ti-64 substrate (which 

showed deeper cross-sectional hardening from the effect of the higher diffusion rate of 

nitrogen in the beta phase coating) yielded the best wear performance between the different 

Ti-64 substrate treatment strategies. This shows the importance of a functionally graded 

change in the mechanical properties with depth, imparted the nitriding process. In the light of 

all these findings, the higher surface hardness, lower surface roughness and more gradual 

hardness change from surface to bulk (compared to the uncoated and Ti coated candidates) 

appears to make the Ti-Nb coated Ti-64 substrate more effective in application areas requiring 

abrasion resistance. 

The response of the Ti-AVM substrates after TPN700 processing was completely different 

from the Ti-64 substrates. The wear coefficient values for the uncoated, Ti coated, and Ti-Nb 

coated Ti-AVM substrates treated at 700
o
C for 4 hours can be found in Table 3.  
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Table 3 Wear coefficients of uncoated, Ti coated, and Ti-Nb coated Ti-AVM surfaces subjected to 4 

hours TPN700 treatments 

Ti-alloy Sample 
Wear coefficient 

(x10
-4

 mm
3
/Nm) 

Δ 𝜿, % (compared 

to the untreated 

substrate) 

Ti-AVM 

Untreated 8.13 --- 

Uncoated 

TPN700-4h 
6.11 -24.8 

Ti coated 

TPN700-4h 
5.63 -30.7 

Ti-Nb coated 

TPN700-4h 
5.72 -29.6 

The uncoated Ti-AVM substrate showed about 25% reduction in wear after a 4-hour TPN 

treatment. It should be mentioned that the changes in surface chemistry of the Ti-AVM 

substrate were insubstantial (see Figure 7); however, it was seen that some α-Ti peaks 

appeared on the surface of the Ti-AVM substrate after TPN treatment. The inability to form a 

nitride compound layer on the surface of the Ti-AVM substrate resulted in lower surface 

hardness values (see Figure 14) after the nitriding treatment; however, better wear 

performance was measured for the Ti-AVM substrates (compared to Ti-64 substrates). 

In our study, improved (reduced) surface roughness results were obtained depending on the 

chosen (coating, nitriding) process parameters. The method of pre-depositing a metallic PVD 

coating (prior to TPN treatment) provided more significant changes in the final properties of 

the Ti-AVM substrates, not least because the surface roughening of the uncoated Ti-AVM 

(due primarily to a large substrate grain size) was found to be almost double that of uncoated 

Ti-64 substrates after an identical TPN treatment. The wear coefficients of the Ti and Ti-Nb 

coated Ti-AVM substrates were found to be about 5% less compared to the uncoated Ti-AVM 
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substrate after a 4-hour TPN treatment. The enhancement of the wear performance of the Ti 

and Ti-Nb coated Ti-AVM substrates can be closely related to the reduced surface roughness 

because the surface morphologies were found to be similar for all three Ti-AVM substrate 

conditions after a 4-hour TPN treatment.  

4 Conclusions 

 Metallic Ti and Ti-Nb coatings (the latter with Nb concentrations in a range from 18 to 

88 at. %.) were produced successfully on M2 tool steel substrates by magnetron 

sputter PVD. In order to obtain fully β stabilised Ti-Nb coatings on Ti-alloy 

substrates, it was decided to select at around 33 at. % Nb, to balance the phase stability 

of the Ti-Nb alloy coating and the (in principle) higher nitrogen diffusion efficiency of 

‘pure’ unalloyed β-Ti during plasma nitriding. It is known that alloying elements 

(whether beta-stabilising, alpha-stabilising, or neutral) will tend also to reduce the 

interstitial diffusion coefficient in the parent phase. 

 The hardening effect for Ti-Nb coated Ti-64 substrate was found to be higher than that 

of other Ti-64 substrates (after 4-hour TPN700 process) which is related to the higher 

local diffusion rate of nitrogen (in the β phase coating). Nitrogen can reach the 

underlying substrate faster and this promotes a higher nitrogen concentration (thicker 

diffusion-hardened zone) under the surface. It also suppresses Ti2N/TiN compound 

layer formation at the near-surface, to maximize nitrogen uptake in the early stages of 

TPN treatment. The hardening effect for an α-Ti coated Ti-AVM substrate was found 

to be higher than for the other (uncoated and β-Ti-Nb coated) Ti-AVM substrates after 

a 4-hour TPN treatment at 700
o
C. This is explained by a lower diffusion rate of 

nitrogen (in the alpha phase coating) slowing down inwardly-diffusing nitrogen 

interstitials, to permit the build-up of a stronger solution hardening effect (and some 

alpha phase stabilization) in the Ti-AVM (beta phase) substrate by increasing the local 

nitrogen content in the near-surface, rather than dissipating inside the substrate at a 
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lower level of concentration (due to the much higher diffusion coefficient of nitrogen 

in the BCC beta phase compared to HCP alpha phase). 

 The 1.25 μm thick Ti and Ti-Nb surface coatings (deposited before plasma nitriding) 

were sputtered off completely (after about 190-200 minutes, we estimate) during the 

4-hour (240 minute) TPN 700 treatment. The sacrificial effect of the fine-columnar 

PVD surface coatings, however, led to a significant reduction in the final surface 

roughness of both Ti alloy substrates, compared to their uncoated equivalents. The 

post-nitrided surface roughness value for the Ti-Nb coated Ti-64 substrate was found 

to be 52% less than that of the uncoated Ti-64 substrate and a somewhat greater 

improvement was seen for the Ti-coated Ti-AVM substrate, with a 67% decrease 

(compared to the uncoated substrate). Therefore, it is suggested that the thickness of the 

PVD metallic surface coating should be selected by considering both nitriding duration 

(to select coatings of sufficient thickness that they remain present for the entire TPN 

treatment duration) and sputter removal effects, that will be coating composition 

dependent, to obtain smoother surfaces after plasma nitriding – whilst also controlling 

the diffusion kinetics during treatment.  

 Micro-abrasion wear performance was found to be lower for the TPN treated Ti-64 

substrate/coating combinations (compared to the Ti-AVM equivalents), which can be 

attributed in part to the formation of brittle nitride phases at and/or near the surface. 

The Ti and Ti-Nb surface coatings provided a noticeable benefit in abrasion resistance, 

with approximately 12 % and 16 % enhancement (compared to the untreated 

substrate) seen respectively after a 4-hour TPN treatment. On the other hand, the wear 

performance of the Ti and Ti-Nb coated Ti-AVM substrates yielded an approximate 

30 % reduction in wear (compared to the untreated beta-alloy substrate); however, this 

seemed to be more as a consequence of a significant reduction in surface roughness 

than improved nitrogen solution strengthening – since the wear reductions afforded by 
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α Ti and β Ti-Nb pre-coating of the substrate were very similar, despite the enhanced 

nitrogen diffusion-hardening of the substrate obtained from our HCP α-Ti pre-coating 

strategy for the (predominantly beta-phased) Ti-AVM substrate.  
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Highlights 

 To obtain fully β-phase of Ti-Nb coatings, it is selected at around 33 at. % Nb 

 The hardening effect for Ti-Nb coated Ti-64 substrate was found to be higher 

 The hardening effect for Ti coated Ti-AVM substrate was found to be higher 

 The 1.25μm thick surface coatings were sputtered off completely after 4hr nitriding 

 The Ti and Ti-Nb surface coatings provided a noticeable benefit in abrasion 
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