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9Konkoly Observatory, MTA CSFK, Konkoly Thege M. út 15-17, H-1121 Budapest, Hungary
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ABSTRACT

Faraday rotation measure (RM) at radio wavelengths is commonly used to diagnose large-

scale magnetic fields. It is argued that the length-scales on which magnetic fields vary in

large-scale diffuse astrophysical media can be inferred from correlations in the observed RM.

RM is a variable which can be derived from the polarized radiative transfer equations in

restrictive conditions. This paper assesses the usage of rotation measure fluctuation (RMF)

analyses for magnetic field diagnostics in the framework of polarized radiative transfer. We

use models of various magnetic field configurations and electron density distributions to show

how density fluctuations could affect the correlation length of the magnetic fields inferred from

the conventional RMF analyses. We caution against interpretations of RMF analyses when

a characteristic density is ill defined, e.g. in cases of lognormal-distributed and fractal-like

density structures. As the spatial correlations are generally not the same in the line-of-sight

longitudinal direction and the sky plane direction, one also needs to clarify the context of RMF

when inferring from observational data. In complex situations, a covariant polarized radiative

transfer calculation is essential to capture all aspects of radiative and transport processes,

which would otherwise ambiguate the interpretations of magnetism in galaxy clusters and

larger scale cosmological structures.

Key words: magnetic fields – polarization – radiation mechanisms: non-thermal – radiative

transfer – galaxies: clusters: intracluster medium – large-scale structure of Universe.

1 IN T RO D U C T I O N

Magnetic fields are present at all scales throughout the Universe,

from stars and substellar objects to galaxies, groups, clusters, and

large-scale structures such as filaments and voids (see e.g. Widrow

2002; Widrow et al. 2012, for reviews). Stellar magnetic fields

can be determined spectroscopically, e.g. by measuring Zeeman

splitting in the optical spectral lines for low-mass solar-like stars

and magnetic white dwarfs (e.g. Wickramasinghe & Ferrario 2000;

Reiners et al. 2013), from separations or locations of the cyclotron

⋆ E-mail: alvina.on.09@ucl.ac.uk (AYLO); y.chan.12@ucl.ac.uk (JYHC);

kinwah.wu@ucl.ac.uk (KW)

harmonic features in the optical/infrared spectra for accreting white

dwarfs (e.g. Wickramasinghe & Meggitt 1985; Wu & Wickramas-

inghe 1990), and from the X-ray spectra of neutron stars (e.g.

Nagase et al. 1991; Santangelo et al. 1999; Staubert et al. 2019).

Determination of magnetic field properties in larger astrophysical

systems is less direct. For magnetic fields in diffuse astrophysical

systems, such as the interstellar medium (ISM), intracluster medium

(ICM), and intergalactic medium (IGM), their properties are often

inferred from the polarized radiation traversing and/or emitted from

the media. Faraday rotation measure (RM)1 has been identified

1‘Faraday depth’ and ‘rotation measure’ can only be used interchangeably

in the case of a single point source along the line of sight.

C© 2019 The Author(s)
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as a diagnostic tool for magnetic fields in our Galaxy (see e.g.

Simard-Normandin & Kronberg 1980; Han, Manchester & Qiao

1999; Brown, Taylor & Jackel 2003; Gaensler, Beck & Feretti 2004;

Brown et al. 2007; Haverkorn et al. 2008; Oppermann et al. 2012;

Han et al. 2015; Han 2017), nearby galaxies (e.g. Gaensler et al.

2005; Beck 2009; Mao et al. 2010, 2017), and also some galaxy

clusters (e.g. Carilli & Taylor 2002; Vogt & Enßlin 2003; Clarke

2004; Govoni & Feretti 2004; Brentjens & de Bruyn 2005; Bonafede

et al. 2010; Kuchar & Enßlin 2011; Vacca et al. 2018).

Recently, there have also been studies utilizing the Faraday

rotation of distant polarized radio sources such as quasars (e.g.

Kronberg et al. 2008; Xu & Han 2014b) and fast radio bursts

(FRBs) (e.g. Xu & Han 2014a; Zheng et al. 2014; Akahori, Ryu &

Gaensler 2016; Ravi et al. 2016; Vazza et al. 2018; Hackstein et al.

2019), as a means to detect and probe cosmological magnetic fields.

These fields, permeating the cosmic web of filaments and voids,

are weak, and their properties are often inferred statistically (e.g.

Akahori, Gaensler & Ryu 2014; Vernstrom et al. 2019), or indirectly

constrained through the non-detection of GeV gamma rays (e.g.

Neronov & Vovk 2010; Dermer et al. 2011; Taylor, Vovk & Neronov

2011; Takahashi et al. 2013).

The statistical characterization of cosmological magnetic fields

can be improved with a denser all-sky RM grid from the

Square Kilometre Array (SKA), including its pathfinders, the

Low-Frequency Array (LOFAR), the Murchison Widefield Array

(MWA), the Expanded Very Large Array (EVLA), and its precur-

sors, the Australian SKA Pathfinder (ASKAP) and MeerKAT (see

e.g. Gaensler et al. 2010; Beck 2015; Johnston-Hollitt et al. 2015).

How to properly characterize magnetic fields beyond the scale

of galaxy clusters is a challenge in theoretical and observational

astrophysics.

Faraday rotation measure fluctuation (RMF) analysis is proposed

as a means to probe the structures of large-scale magnetic fields

(e.g. Akahori & Ryu 2010; Beck et al. 2013). RM and RMF

analyses are essentially based on the theory of polarized radiative

transfer under certain restricted conditions. It is therefore important

to have a proper understanding of the information we extract

from the analyses and under what conditions the analyses enable

unambiguous interpretations.

In this paper, we examine the RMF analyses in the context of

polarized radiative transfer. We clarify the conditions under which

the RMF method will give meaningful inferences and identify the

circumstances where we should be cautious when applying the

method. We organize the paper as follows. In Section 2, we present

the formal covariant polarized radiative transfer formulation and

show how it reduces to the standard RM under certain conditions. In

Section 3, we examine the RMF analysis in the context of polarized

radiative transfer. We also identify the mathematical and statistical

properties of the analyses. In Section 4, we construct model density

and magnetic field structures and use them to test the validity of the

RMF analyses. We also discuss their astrophysical implications. In

Section 5, we present our findings and warnings. Unless otherwise

stated, this work uses c.g.s. Gaussian units.

2 PO LARIZED RADIATIVE TRANSFER

2.1 Covariant transport in Stokes-parameter representation

Under the conservation of photon number and the conservation of

phase-space volume (see Fuerst & Wu 2004; Younsi, Wu & Fuerst

2012), the covariant polarized radiative transfer equation may be

expressed as

dIi

dλa

= −kαuα
∣

∣

∣

λa,co

{

−κij ,co

(

Ij

ν3
co

)

+
ǫi,co

ν3
co

}

(1)

(see Chan et al. 2019). Here, ν is the radiation frequency, Ii is

the Lorentz-invariant Stokes vector, λa is the affine parameter,

and −kαuα
∣

∣

λa,co
is the projection factor for a photon with a four-

momentum kα travelling in a fluid with a four-velocity uβ . The

subscript ‘co’ denotes that the quantity is evaluated in the reference

frame co-moving with the fluid. The transfer matrix, κ ij, co, accounts

for the absorption and Faraday propagation effects, while the

emission coefficients are defined by ǫi, co.

In a Friedmann–Robertson–Walker (FRW) universe, the dis-

placement s as a function of redshift z is given by

ds

dz
=

c

H0

(1 + z)−1
[

	r,0(1 + z)4 + 	m,0(1 + z)3 + 	
,0

]− 1
2 (2)

(see e.g. Peacock 1999), where H0 is the Hubble parameter, 	r, 0,

	m, 0, and 	
, 0 are the dimensionless energy densities of relativistic

matter and radiation, non-relativistic matter, and a cosmological

constant (dark energy with an equation of state of w ≡ −1),

respectively. The subscript ‘0’ denotes that the quantities are

measured at present (i.e. z = 0). As such, equation (1) becomes

d

dz

⎡

⎢

⎢

⎣

I

Q

U

V

⎤

⎥

⎥

⎦

= (1 + z)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−

⎡

⎢

⎢

⎣

κ q u v

q κ f −g

u −f κ h

v g −h κ

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I

Q

U

V

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

ǫ I

ǫ Q

ǫ U

ǫ V

⎤

⎥

⎥

⎦

1

ν3

⎫

⎪

⎪

⎬

⎪

⎪

⎭

ds

dz

(3)

(Chan et al. 2019), where κ, q, u, v are the absorption coefficients,

ǫ are the emission coefficients, f is the Faraday rotation coefficient,

and g and h are the Faraday conversion coefficients. The invariant

Stokes parameters are related to the usual Stokes parameters by

[I QU V ]T = [ I Q U V ]T/ν3 .

In a local frame, the covariant polarized radiative transfer

equation in (3) reduces to the standard polarized radiative transfer

equation:

d

ds

⎡

⎢

⎢

⎣

I

Q

U

V

⎤

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎣

κ q u v

q κ f −g

u −f κ h

v g −h κ

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

I

Q

U

V

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

ǫ I

ǫ Q

ǫ U

ǫ V

⎤

⎥

⎥

⎦

. (4)

The Stokes parameters [ I , Q, U, V ] are observables, and their

combination gives rise to different derived quantities, including

the total degree of polarization �tot =
√

Q2 + U 2 + V 2/I (≤ 1),

the degree of linear polarization �l =
√

Q2 + U 2/I , the degree

of circular polarization �c = V/I, and the polarization angle ϕ =
(1/2)tan −1(U/Q) (see e.g. Rybicki & Lightman 1979).

2.2 Derivation of rotation measure

In the absence of absorption and emission, we can set κ = q =
u = v = 0 and [ ǫ I, ǫ Q, ǫ U, ǫ V ] = 0, therefore imposing dI/ds =
0, and

d

ds

⎡

⎣

Q

U

V

⎤

⎦ = −

⎡

⎣

0 f −g

−f 0 h

g −h 0

⎤

⎦

⎡

⎣

Q

U

V

⎤

⎦. (5)

In situations where the circular polarization is insignificant and the

conversion between linear and circular polarization is negligible,

we may consider only two linearly polarized Stokes components in

MNRAS 490, 1697–1713 (2019)
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PRT, RM, and large-scale magnetic fields 1699

the polarized radiative transfer calculation. The polarized radiative

transfer equation then takes a simplified form:

d

ds

[

Q

U

]

= −
[

0 f

−f 0

][

Q

U

]

. (6)

The Faraday rotation coefficient f is the sole parameter in this

equation. It is determined by the properties of free electrons and

the magnetic field along the line of sight.

An astrophysical plasma may contain both thermal and non-

thermal electrons. If the fraction of non-thermal electrons is small,

the conversion between the two linearly polarized Stokes compo-

nents is determined mainly by the thermal electrons. With only

thermal electrons present, the Faraday rotation coefficient is

fth =
ω2

p cos θ

c ωB

(

ω2
B

ω2 − ω2
B

)

(7)

(Pacholczyk 1977), where ω = 2πν is the angular frequency of

radiation, ωp = (4πne, the2/me)1/2 is the plasma frequency, ωB =
(eB/mec) is the electron gyro-frequency, ne, th is the thermal electron

number density, B is the magnetic field strength, and θ is the angle

between the magnetic field vector and the line of sight. Here, c is the

speed of light, e is the electron charge, and me is the electron mass.

In the high-frequency limit (i.e. ω ≫ ωB), the Faraday rotation due

to only thermal electrons can be expressed as,

fth =
1

π

(

e3

m2
ec

4

)

ne,th B‖ λ2, (8)

where B‖ = |B| cos θ is the magnetic field along the line of sight

and λ = 2πc/ω is the wavelength of radiation. The corresponding

expression for Faraday rotation due to only non-thermal electrons

is

fnt =
1

π

(

e3

m2
ec

4

)

ζ (p, γi) ne,nt B‖ λ2, (9)

where the factor,

ζ (p, γi) =
(p − 1)(p + 2)

(p + 1)

(

ln γi

γi
2

)

, (10)

for p > 1, assuming an isotropic distribution of non-thermal

electrons with a power-law energy spectrum of index p (Jones &

O’Dell 1977). The number density of non-thermal electrons is ne, nt,

and γ i is their low-energy cut-off.

In a plasma consisting of thermal electrons plus non-thermal

electrons, the relative strength of their contributions to the Faraday

rotation is therefore

fnt

fth

≈ ζ (p, γi)

(

ne,nt

ne,th

)

, (11)

provided that neither ne, nt nor ne, th correlates or anticorrelates

significantly with B�.
2

From the restrictive polarized radiative transfer equation (6)

which only has two linear Stokes components, it can easily be

shown that the change in the linear polarization angle along the line

2A similar relation was given in Jones & O’Dell (1977) for the relative

contributions of relativistic and thermal electrons to the Faraday rotation.

Their relation is expressed in terms of the spectral index α of the optically

thin power-law synchrotron spectrum. The relation (11) here is expressed in

terms of the power-law index p of the electron energy distribution, which is

intrinsic to the magneto-ionic medium. Note that α = (p − 1)/2.

of sight is

dϕ

ds
=

1

2

(

1

U 2 + Q2

)(

Q
dU

ds
− U

dQ

ds

)

=
f

2
. (12)

With only thermal electrons in a sufficiently weak magnetic field

where ωB ≪ ω, a direct integration of equation (12) with f = fth

yields

ϕ(s) = ϕ0 +
2πe3

m2
e(c ω)2

∫ s

s0

ds ′ ne,th(s ′) B‖(s ′). (13)

Rotation measure (RM) is defined as

R = (�ϕ)λ−2 = (ϕ − ϕ0) λ−2. (14)

The polarized radiative transfer equations (4), (5), and (6) are linear,

and thus the contributions to the Faraday rotation coefficient by

a collection of thermal and non-thermal electrons are additive.

The RM for radiation traversing a magnetized plasma between an

interval s0 and s is therefore

R(s) =
e3

2πm2
ec

4

∫ s

s0

ds ′ ne(s ′) �(s ′) B‖(s ′), (15)

where ne is the total electron number density, and �(s) = 1 −
ϒ(s) [1 − ζ (p, γi)]

∣

∣

s
is the weighting factor of ne contributing to

the Faraday rotation effect, accounting for both thermal and non-

thermal electron populations, with ϒ(s) the local fraction of non-

thermal electrons. If only thermal electrons are present, ϒ(s) = 0

such that �(s) = 1, hence recovering the widely used formula in

RM analysis of magnetized astrophysical media (see e.g. Carilli &

Taylor 2002):

R(s) = 0.812

∫ s

s0

ds ′

pc

(

ne,th(s ′)

cm−3

)(

B‖(s ′)

μG

)

radm−2. (16)

3 ROTAT I O N M E A S U R E F L U C T UAT I O N S

3.1 Computing rotation measure in a discrete lattice

Practical calculations of polarized radiative transfer in an inhomo-

geneous medium often require sampling the medium into discrete

segments that have small internal variations in physical properties.

Suppose we divide the radiation propagation path-length L into N

intervals of lengths �s, i.e. L =
∑N

i=1 �s(i). Then the integral in

equation (15) can be approximated by summing contributions from

all segments

R(s) =
e3

2πm2
ec

4

N
∑

i=1

�s(i) ne(i) �(i) B‖(i), (17)

where ne, �, and B� are evaluated at the centre of each interval, si.

If the magnetic fields have uniform strengths and unbiased random

orientations, then B� will have a symmetric probability distribution:

P(B�) = P(− B�). With �s > 0, ne ≥ 0, and �∈ [ 0, 1 ], the symmetry

in the probability distribution of B� implies that the expectation

value of RM

〈R〉 =
e3

2πm2
ec

4

N
∑

i=1

〈�s ne � B‖〉
∣

∣

i
= 0, (18)

where 〈...〉 denotes the ensemble average of the variables.

Supposing that ne, �, and B� are incoherent among the intervals

�s, then ne, �, and B� are the only independent variables for

computing the RM of a cell defined by an interval. Moreover, if

the medium does not evolve during the radiation’s propagation, ne,

MNRAS 490, 1697–1713 (2019)
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1700 A. Y. L. On et al.

�, B�, and their products are also exchangeable variables. Under

the ergodic condition, the ensemble averages of independent and

exchangeable variables can be replaced by the averages of over the

path-length, i.e. for a sufficiently large N,

〈X〉 =
1

N

N
∑

j=1

X(sj ) = 〈X(sj )〉s . (19)

Thus,

〈R〉 =
e3

2πm2
ec

4
N〈�s ne � B‖〉s = 0. (20)

Moreover, if B, ne, and � do not correlate with each other, we have

〈R〉 =
e3

2πm2
ec

4
N 〈�s〉s〈ne〉s〈�〉s〈B‖〉s = 0. (21)

3.2 Rotation measure fluctuations as a restrictive

autoregression (AR) process

Note that an observable Õk on the lattice grid k in an AR(1)

(autoregression of order one) process on a 1D lattice is given by the

recursive relation:

Õk = ρ Õk−1 + εk

= ρ
(

ρ Õk−2 + εk−1

)

+ εk

· · · · · ·

= ρm Õk−m +
m−1
∑

j=0

ρj εk−j (22)

(see e.g. Anderson 1976; Box & Jenkins 1976; Grunwald, Hyn-

dman & Tedesco 1995), where ρ is a parameter, and εk is an iid

(independent, identically distributed) variable with an expectation

value E(εk) = 〈εk〉 = 0 and a variance Var(εk) = [σ (εk)]2. For a

finite or semi-infinite lattice, which is truncated at j = 0, at which

the observable Õ0 is well defined, we can rewrite equation (22) as

Õk = ρk Õ0 +
k

∑

j=1

ρk−j εj . (23)

For a polarized radiation’s propagation path consisting of N

segments with approximately coherent Faraday rotation properties,

the polarization angle at the end of the kth segment is given by

ϕk = ϕk−1 + �ϕk

= ϕk−2 + �ϕk−1 + �ϕk

· · · · · ·

= ϕ0 +
k

∑

j=1

�ϕj , (24)

where �ϕk is the rotation of the polarization angle in the kth

segment, and the polarization angle measured by the observer is

simply ϕN. Comparing equations (24) and (23) reveals that the

evolution of the polarization angle along the radiation’s propagation

is an AR(1) process with a constant parameter ρ = 1, provided that

〈�ϕj〉 = 0 and that Var(�ϕj) is well defined and computable. An

AR(1) process is a Markov process (see Anderson 1976), and an

AR(1) process with ρ = 1 is also known as a simple random walk.

The rotation measure across the propagation path of the radiation

is R
∣

∣

N
= (ϕN − ϕ0)λ−2. Hence, from equation (20), we obtain

〈 N
∑

j=1

�ϕj

〉

s

= λ2 〈R〉s = 0. (25)

As the expectation value and the variance of (ϕN − ϕ0) are

E
[

ϕN − ϕ0

]

= 0; (26)

Var
[

ϕN − ϕ0

]

= N σ 2, (27)

respectively, with σ 2 = 〈�ϕj
2〉, the standard deviation of R in the

radiation’s propagation direction is therefore

σR =
√

N
[〈

�ϕj
2
〉]1/2

λ−2

=
e3

√
N

2πm2
ec

4

[〈

�s2 n2
e �2 B‖

2
〉]1/2

=
e3

√
N

2πm2
ec

4

[〈

�s2 n2
e �2 B‖

2
〉

s

]1/2
. (28)

Note that the RMF along a radiation propagation path consisting

of coherent segments is proportional to the square root of the

number of the segments (
√

N =
√

L/〈�s〉s), a characteristic of

a simple random-walk process, where the root-mean-square dis-

placement is proportional to the square root of the number of steps.

Here, the root mean square of properties within a step size is
[〈

�s2 n2
e �2 B‖

2
〉

s

]1/2
. In the specific condition that the interval

segments have equal length, �s, and (ne �) does not vary along the

line of sight, equation (28) becomes

σR =
e3

2πm2
ec

4

√

L

�s
�s ne �

[〈

B‖
2
〉

s

]1/2
. (29)

A similar but more rigorous expression can be obtained if there

is no correlation between electron number density and the magnetic

fields. In this case, equation (28) becomes

σR =
e3

2πm2
ec

4

√

L

�s
�s ne �

[〈

B‖
2
〉

s

]1/2
, (30)

with ne � denoting the mean value of (ne �). Additionally, in the

presence of only thermal electrons, then � = 1 uniformly, and

σR =
e3

2πm2
ec

4

√

L

�s
�s ne,th B‖rms

= 0.812

√

L

�s

(

�s

pc

) (

ne,th

cm−3

) (

B‖rms

μG

)

rad m−2. (31)

Most observational or numerical studies use either one of the

expressions given in equations (30), and (31) in their RM fluctuation

analysis. These include investigations of magnetic fields in galaxy

clusters or in large-scale structures (e.g. Sokoloff et al. 1998; Blasi,

Burles & Olinto 1999; Dolag et al. 2001; Govoni & Feretti 2004;

Subramanian, Shukurov & Haugen 2006; Cho & Ryu 2009; Sur

2019). Note that the two expressions above are not always explicitly

distinguished in studies of RM fluctuations. The σR derivations

from equation (28) to equations (29), (30), and (31) rely on subtly

different assumptions regarding the electron density spatial distri-

butions and their relation or correlation with the magnetic fields. For

instance, it matters whether local quantities are multiplied before

spatial averaging, or averaged separately then multiplied. Note also

that, in reality, the condition of constant electron number density,

or/and the condition of electron number density and magnetic field

being uncorrelated, are generally not satisfied. We should therefore

bear in mind which underlying assumptions have been used, and

they should be stated explicitly when interpreting the magnetic field

structures using the observed RM statistics. Furthermore, while σR

MNRAS 490, 1697–1713 (2019)
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PRT, RM, and large-scale magnetic fields 1701

Figure 1. Illustration of a case where σx, ⊥ �= σx, ‖, emphasizing that

polarizations are modified along the line of sight, but what we observe is only

the resulting angle on the orthogonal image plane. In this demonstration,

line of sight A exhibits two characteristic lengths of polarization fluctuation,

ℓc1, ‖ and ℓc2, ‖, as illustrated by the number of cells spanning a full rotation,

while for line of sight B, ℓc3, ‖. None of these coincides with ℓc, ⊥ on the

image plane.

is observed on the sky plane, it is calculated over the radiation’s

propagation path, with the application of a random-walk model

along the line of sight and invoking other explicit assumptions we

made above.

3.3 Fluctuations of density and magnetic fields in parallel and

in perpendicular directions

The polarization of radiation at a location on the sky plane, and

hence the celestial sphere, is determined by the magneto-ionic

properties of plasma along the line of sight (specified by the

propagation unit vector k̂). On cosmological scales, the transfer

of radiation along the line of sight is the transfer of radiation from

the past to the present. Consequently, the statistical properties of

the observed polarization signatures across a sky plane depend on

two factors: (i) the spatial variations of the magneto-ionic plasma

properties at different cosmological epochs, and (ii) the temporal

variations of the magneto-ionic plasma properties as the Universe

evolved. Note that these two factors are not always mutually

independent. It is their convolution that will determine the variations

of the observable variables along the ray as it propagates (i.e. in

k̂ direction, denoted by �) and the variations of the observable

variables among the collection of rays reaching the sky plane (i.e. in

directions ⊥ to k̂). More importantly, there is no guarantee that

these two types of fluctuations are statistically identical. In other

words, if we use a simple representation with two independent

orthogonal components, designated to be parallel and perpendicular

to k̂, we cannot simply assume that σx,⊥ = σx, ‖, where the quantity

x ∈ {Q, U, V , �ϕ, or R }. In general, we have two separate

correlation lengths, ℓ� and ℓ⊥, for each plasma quantity, e.g. the

electron number density ne (which is a scalar) and the magnetic

field B (which is a vector). See Fig. 1 for an illustration.

The question now is whether we can take a correlation length

derived from a polarization signature across the sky plane as the

characteristic correlation length-scale over which the cosmological

magnetic fields vary spatially or, alternatively, over time. First, the

polarized radiative transfer equation shows that the rotation of the

polarization angle only depends on the magnetic field parallel to the

line of sight, i.e. B‖. The perpendicular component of the magnetic

field B⊥ is irrelevant in this respect. Therefore, in each individual

Figure 2. Illustration of how different astrophysical conditions give rise

to different polarization fluctuations due to e.g. (i) the presence or absence

of bright background sources (lines of sight A and B), (ii) the presence or

absence of multiple sources with different Faraday depths (lines of sight

B and C), (iii) different positional orders of sources (lines of sight B and

D), and (iv) change of radiation frequency due to the Universe’s expansion,

and/or the presence of sources either at low or high redshift (lines of sight

E and F).

ray, the local polarization fluctuations are only caused by the

fluctuations of the parallel field component, B‖, and the fluctuations

of the electron number density ne and energy distribution.

Secondly, the fluctuations of polarization properties along indi-

vidual rays are not directly observable. Instead, observations reveal

a ‘polarization map’ on the celestial sphere, which represents the

polarization signatures of a collection of end-points of the path-

integrated polarized rays. If the rays are independent, we would

observe variations in the polarization signatures, such as the RM

fluctuations, even when the magneto-plasma is statistically spatially

uniform at any cosmological epoch. In this situation, the observed

RM fluctuations reflect the convolution of the fluctuations in |B‖|
and ne along the line of sight, i.e. not simply an effect arising from

the presence of spatial structures. Note that there are additional

subtleties in assessing the local variations of polarization signature

along a ray. Suppose that the electron number density and its energy

spectrum are uniform in both space and time, there still exists

an ambiguity in determining the fluctuation of the magnetic field

B, as the polarization angle rotates depending on value of |B‖|,
which equals to |B| cos θ , at an unknown angle θ = cos−1(k̂ · B̂).

Thus, there are two aspects in the magnetic field fluctuations: one

concerning the field magnitudes, and another concerning the field

orientations. Magnitude fluctuations and orientation fluctuations

can arise from different processes. For instance, the variations in

the magnetic field orientation B̂ may indicate the characteristic

size of the astrophysical system or the magnetic sub-domain of the

cosmic magneto-ionic plasma, while the variations in the magnetic

field magnitude |B| along the line of sight would inform us about

the changes in the global magnetic energy density as the Universe

evolves. Fluctuations of B̂ and those of |B| can arise from different

mechanisms and/or operate on different characteristic time-scales.

Thus, σ|B|
∣

∣

‖, or ⊥ = σB̂

∣

∣

‖, or ⊥ do not usually hold.

Fig. 2 illustrates some example scenarios that give rise to

different observational polarization signals .3 The types and number

3Inferring the magneto-ionic properties of the line-of-sight sources and the

intervening plasmas from the polarized sky data, which has a (2 + 1)D

structure, where the ‘+1’ corresponds to the time axis or cosmological

redshift, is an inverse problem. In forward theoretical modelling, the

MNRAS 490, 1697–1713 (2019)
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1702 A. Y. L. On et al.

of sources, and the magneto-ionic properties of the intervening

plasmas vary along each line of sight and vary among the lines

of sight across the sky. Magnetic fields are vectors, and therefore

possess two structural traits: one in the field strength (or energy

density), and another in the field orientation. Both aspects are

essential to determine the properties of all-sky polarization. Faraday

rotation also depends on the line-of-sight electron number densities,

and the electron number densities and the magnetic fields are

usually interdependent. Depending on what mechanisms generate

and/or amplify the magnetic fields, local and non-local correlations

between the two quantities could occur. As such, we cannot simply

take the face values of the correlation lengths obtained from RM

fluctuation analyses as they appear, without careful consideration.

In the analysis of cosmological-scale magnetism we also need

to consider effects due to cosmological expansion. Large-scale

magnetic fields would evolve with the cosmological structure

(see e.g. Dolag, Vogt & Enßlin 2005; Cho & Ryu 2009; Barnes,

Kawata & Wu 2012; Ryu et al. 2012; Marinacci et al. 2015; Barnes

et al. 2018; Katz et al. 2019). Covariant PRT calculations (Chan

et al. 2019) are therefore essential, if we wish to take full account

of all the magneto-ionic plasma effects throughout the evolutionary

history of the Universe, providing insights and theoretical bases for

proper interpretation of the statistical RM analyses of the observed

polarized sky.

4 R E S U LT S A N D D I S C U S S I O N : VA R I A N C E O F

R M F L U C T UAT I O N S

4.1 Assessing the rotation measure fluctuation approach

The formula in equation (31) is commonly used in RM fluctu-

ation analysis for probing the structures in large-scale magnetic

fields. Here we assess when the formula is justified and when

it deserves caution. The formula contains two variables related

to ne and B, and our assessment will focus on their spatial

distribution properties. We perform Monte Carlo simulations to

compute the RM fluctuations. We consider simulated cubes of

Mpc size with mock thermal electron number density (d) and

magnetic field strength (b) with uniform (U), Gaussian (G),

fractal (F), and lognormal (L) distributions. Each simulation is

specified by a four-letter label. For instance, ‘UdGb’ stands for

uniformly distributed densities and Gaussian-distributed magnetic

field strengths with random orientations. The Mersenne Twister

(MT, Matsumoto & Nishimura 1998) is implemented to generate

uniformly distributed pseudo-random numbers, Z ∈ (0, 1 ], which

transform into the G-, F-, and L-distributed variates according to the

specification.

The cubes are discretized into 2563 voxels, each having an equal

linear length �s on the three sides. The magnetic field and the

thermal electrons are specified according to the assigned distribu-

tions. Their values are normalized such that they are of a similar

order to those observed in galaxy clusters: 〈ne,th〉 = 10−3 cm−3,

Brms = 1µG, and L = 1 Mpc (e.g. Cho & Ryu 2009). The total

thermal electron number density and the total magnetic energy in

the whole simulation box, regardless of the magneto-ionic distri-

bution, are 2563 × 10−3 = 16777.216 cm−3 and |B|2 = 2563 =
16777216 (µG)2, respectively. This ensures uniformity between

polarization signals are, however, determined by the cosmological polarized

radiative transfer, which is in a (3 + 1)D format, where the line-of-sight

direction also aligns with the axis of cosmological time.

the model cubes, which enables direct comparisons between the

simulations.

To compute the RM, we sum the contributions along the lines of

sight, x, y, and z, using the discretized expression of equation (16)

in terms of lattice units (i, j, k),

R⊥ = 0.812
∑

‖

�s

pc

[(

ne,th(i, j , k)

cm−3

)(

B(i, j , k)

µG

)]

‖
rad m−2 .

(32)

The standard deviation ς
R⊥ across the simulated sky plane is then

computed and compared to the longitudinal standard deviation given

in equation (31).

4.1.1 Modelling magnetic fields

We consider magnetic fields with random orientations and no spatial

correlation. They are therefore unit vectors: B̂x = sin θ cos φ, B̂y =
sin θ sin φ, and B̂z = cos θ , with cos θ ∈ (− 1, 1 ] and φ ∈ (0, 2π ]

in a uniform distribution. The field strength on the other hand has a

uniform, non-solenoidal (Ub∗) or a uniform, solenoidal (Ub), or a

Gaussian (Gb) distribution. The normalization is such that the r.m.s.

value Brms = 1µG. Hence, we have B‖rms = Brms/
√

3 ≃ 0.577µG.

The Gaussian distribution is generated using the Box–Muller trans-

form in the usual Monte Carlo simulations. The simulated magnetic

fields are then cleaned in Fourier space with the application of a

divergence-free (∇ · B = 0) filter: Bi(km) = (δij − kikj/k
2) B̃j (km)

(Balsara 1998). As the process removes the field component parallel

to k, the total magnetic energy stored in the cube shrinks to 2/3

of its original value. To compensate for the energy loss by the

filtering process, the field components are rescaled by a factor of√
3/2. An inverse Fourier transform is then conducted to obtain the

divergence-free (‘solenoidal’) magnetic field in the configuration

space (see Appendix A).

We also note that the divergence-free filtering process introduces

a residual dipole, which has a preferred orientation, depending on

how the filtering process is executed. To suppress this dipole struc-

ture, we employ a quick-fix solution4 using a superposition of three

independent, orthogonal field realizations. We then renormalize the

resultant field from the superposition by a
√

1/3 scaling factor.

Since the realizations prepared as such are divergence free in real

(configuration) and Fourier space, their linear superpositions in real

and Fourier space5 will also be divergence free.

4In a more proper treatment, we would need a superposition of three

antiparallel pairs of independent, orthogonal field realizations in order to

completely remove the dipole. The process would then leave a residual

quadrupole. None the less the quick-fix solution that we employ to suppress

the dipole is sufficient for the purpose of this demonstrative study. In

reality, the divergence filtering is not always necessary before radiative

transfer, as the magnetic fields output by a detailed magnetohydrodynamic

simulation (see e.g. Marinacci et al. 2015, 2018; Barnes et al. 2018) should

be divergence free, at least in principle.
5Note that in the execution of Fourier transform process, we do not consider

an infinite span of the configuration space. The restriction of the electron

number density and magnetic field structure within a finite volume is

equivalent to the introduction of a cubic window function to an infinite

configuration space. Thus, the density distribution and the magnetic field

structure that we obtain in the Fourier representation are the convolutions

of the cubic window function with the electron number density distribution

and the magnetic field structure.
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PRT, RM, and large-scale magnetic fields 1703

4.1.2 Modelling free-electron number density

We consider four model electron number density distributions:

uniform (Ud), Gaussian (Gd), lognormal (Ld), and fractal (Fd).

For the uniform distribution, the electron number density is set to

be one unit in each cell. For the Gaussian distribution, we apply a

Box–Muller transform, setting the standard deviation to 0.2 times

the mean 10−3 cm−3, so that there are only a few negative numbers,

which can be converted to positives by simply taking the absolute.

The lognormal distribution is generated by taking the exponential

function of Gaussian-distributed random numbers. For a fractal

model, we generate random phases (kx, ky, kz) in Fourier space. We

then apply a power-law filter |k|−5/3 to mimic a Kolmogorov-like

turbulence spectrum (1941a, b). Simulations predict various kinds

of turbulence in clusters and cosmic filaments (e.g. Iapichino et al.

2011). Scaling laws originally derived for incompressible media

also turn out to be a good approximation for compressible turbulence

in subsonic regions of real observed or numerically simulated IGM

(see e.g. Schuecker et al. 2004; Miniati 2014; Nakwacki et al. 2016;

White et al. 2019).6 In our model, we apply frequency cut-offs as in

Saxton et al. (2005): we impose kmax = N/2 to prevent excessively

sharp contrasts at voxel scale, and kmin = 8 to prevent any

single density peak dominating. The inverse fast Fourier transform

yields a fractal-like spatial structure with normally distributed local

values N . Dimensionless positive densities are obtained by taking

exp(αN /Nmax), where the contrast factor α = 4 and Nmax is a

fiducial maximum fluctuation (Elmegreen, Seiden & Elmegreen

1989; Elmegreen 2002). Lastly we obtain the various astrophysical

configurations of thermal electron number densities by normalizing

〈ne, th〉 of each box to 10−3 cm−3.

4.1.3 RM dependence on the density and magnetic field structures

We calculate synthetic RM maps by integrating along lines of sight

x, y, and z using equation (32) through various distributions of

thermal electron number densities and magnetic field strengths.

The RM maps from the GdGb and UdUb∗ distributions are

indistinguishable from a simple eyeball test (see Fig. 3), even

though the maps are generated from distinct distributions of number

densities and magnetic field strengths. GdGb is commonly assumed

in astrophysical scenarios, whereas UdUb∗ is simply unrealistic

because the magnetic fields are non-solenoidal. The resulting RM

maps are similar across all lines of sight, implying that it is non-

trivial to characterize the thermal number densities and the magnetic

field strengths from the observed RM fluctuations alone.

We compare models quantitatively in Table 1. We calculate

the line-of-sight longitudinal dispersions using equation (31) and

obtain σ
xy

R
≃ σ xz

R
≃ σ

yz

R
≃ 29.3 rad m−2 in all cases, indicating that

this type of RM fluctuation formula cannot distinguish between

the different distributions of number densities and magnetic field

strengths. The tiny variations in the least significant figures of σ
xy

R
,

σ xz
R

, and σ
yz
R

are due to the numerical noise and random differences

in the generated realizations. Table 1 also shows that line-of-sight

and sky transverse fluctuations match reasonably well (σ
R

≃ ς
R

)

in the cases of UdUb∗, UdUb, and UdGb, indicating that the widely

used RM fluctuation formula is applicable for uniformly distributed

densities and magnetic field strengths with uniform distributions

and Gaussian distributions. However, for GdUb, GdGb, FdUb,

6The alternative extreme, of shock-compressed supersonic turbulence,

yields steeper spectra ∼k−2.1 (e.g. Lee, Lele & Moin 1991; Federrath 2013).

FdGb, LdUb, and LdGb σ
R

< ς
R

, meaning that the RM fluctuation

formula is inadequate in situations with Gaussian, fractal, or

lognormal density distributions. The disagreement between σ
R

and

ς
R

is at the level of ∼ 2 per cent, ∼ 25 per cent, and ∼ 40 per cent,

respectively, for G, F, and L density models. For a comparison,

we note that Bhat & Subramanian (2013) calculated the evolving

RM properties of the ICM in fluctuation dynamo simulations, and

found that ς
R

was ∼ 10 per cent–15 per cent above some statistical

indicators of RMF (≈ σ
R

). In their models, the evolving magnetic

features seemed to be more influential than the density variations.

Notably, both our RMS model and explicit RT simulation

cannot distinguish the difference between solenoidal and non-

solenoidal fields, as shown by σ
R

(UdUb∗) ≃ σ
R

(UdUb) ≃
29.3 rad m−2. Our calculations also show that the sky

planar fluctuations: ς
R

(UdUb∗) ≃ ς
R

(UdUb) ≃ ς
R

(UdGb),

ς
R

(GdUb) ≃ ς
R

(GdGb), ς
R

(FdUb) ≃ ς
R

(FdGb), and

ς
R

(LdUb) ≃ ς
R

(LdGb). The Fourier transform and inverse

Fourier transform are part of the divergence cleaning process. Note

that the Fourier transform of uniformly distributed fields in a finite

volume gives a 3D sinc function (in the Cartesian coordinate).

For a more detailed characterization of the RM distributions,

we calculate the histograms and cumulative distribution functions

(CDFs) of the RM maps from every line of sight through the

UdUb∗, UdUb, UdGb, GdUb, GdGb, FdUb, FdGb, LdUb, and LdGb

distributions. For each cube, the histograms and CDFs along lines

of sight x, y, and z coincide, confirming that isotropy is preserved

in each box (also demonstrated by the results in Table 1, where

σ
xy

R
≃ σ xz

R
≃ σ

yz

R
for all simulations). We set GdGb(z) as the basis

CDF and calculate its numerical difference from the CDFs of the

rest of the models. The CDFs at every line of sight are almost

indistinguishable in each case of GdGb, UdUb∗, UdUb, UdGb, and

GdUb, as shown by the tiny fluctuations in the zero line (Fig. 4).

The CDFs of FdUb, FdGb, LdUb, and LdGb deviate significantly

from the basis CDF.

Using the numerical CDF curves, we perform a Kolmogorov–

Smirnov (KS) test with the null hypothesis being that the two

RM samples, observed either in the x, y, or z direction, are

drawn from the same distribution. The KS test is non-parametric

and reports the maximum value of absolute (vertical) difference

between two CDFs (see e.g. Press et al. 2007). We calculate the

KS statistics which are summarized in Table 2. We obtain D ≪ 1

and p-value probabilities in the range of 0.2–0.6, favouring the null

hypothesis since p > 0.05. Our KS tests do not show evidence of

anisotropy.

In addition, we consider a fractal medium with two density phases

(hereafter referred to as cloudy models), mimicking the typical

environments in the ICM/ISM (see Appendix B). We consider

various cloud volume-filling factors f = 10−2, 10−3, 10−4, 10−5, and

10−6, corresponding to Cd2, Cd3, Cd4, Cd5, and Cd6, respectively.

Figs 5 and 6 show the log10 cross-sections and column densities

of Cd3 and Cd5, respectively. The cross-sections are a slice taken

from the cloudy models Cd3 and Cd5 at x = 128, y = 128, and

z = 128. The cross-sections and column densities show the non-

uniformity of the diffuse media and the cloud phases. The cloudy

models are fairly isotropic along every line of sight, with Cd3 being

more dense than Cd5, as indicated by the larger number of bright

specks embedded within the cloudy media. Fig. 7 shows that the RM

maps of the Cd2Gb and Cd2Ub∗ distributions are indistinguishable,

despite the distinction between the distributions of magnetic field

strengths, especially with Ub∗ being non-solenoidal and unphysical.

Moreover, our calculations in Table 3 show that the RMS statistics

are unable to tell the cloudy features apart, in spite of Cd2–6 having

MNRAS 490, 1697–1713 (2019)
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1704 A. Y. L. On et al.

Figure 3. Synthetic RM maps of one realization of GdGb (top) and UdUb∗ (bottom) in the xy (left), xz (middle), and yz (right) planes.

Table 1. The dispersion of RM, σ
xy

R
, σ xz

R
, and σ

yz

R
, calculated along lines of sight z, y, and x, respectively, as light travels through various

configurations of magnetized, thermal plasma. The transverse dispersion is calculated from the RM maps over the sky plane: ς
xy

R
, ςxz

R
, and ς

yz

R
.

The last three columns show the ratios of the longitudinal dispersion to the transverse dispersion. The realizations are normalized to the order of

magnitude typically found in galaxy clusters: 〈ne,th〉 ∼ 10−3 cm−3, Brms ∼ 1µG, and L ∼ 1 Mpc. The magnetic fields are strictly divergence free,

except for Ub∗.

Distribution Longitudinal (equation 31) Sky transverse (equation 32) Ratio

σ
xy

R
σ xz
R

σ
yz

R
ς

xy

R
ςxz
R

ς
yz

R
σ xy/ςxy σ xz/ςxz σ yz/ςyz

Ud Ub∗ 29.2971 29.2975 29.2962 29.2861 29.3151 29.3042 1.0004 0.9994 0.9997

Ud Ub 29.2962 29.2977 29.2970 29.3101 29.3198 29.3278 0.9995 0.9993 0.9990

Ud Gb 29.2965 29.2965 29.2979 29.3231 29.2934 29.3299 0.9991 1.0001 0.9989

Gd Ub 29.2982 29.2961 29.2966 29.9263 29.8972 29.8994 0.9790 0.9799 0.9798

Gd Gb 29.2970 29.2973 29.2966 29.9113 29.8854 29.8902 0.9795 0.9803 0.9801

Fd Ub 29.2987 29.2965 29.2956 39.1187 39.1392 39.1134 0.7490 0.7485 0.7490

Fd Gb 29.2975 29.2966 29.2968 39.1185 39.1357 39.1186 0.7489 0.7486 0.7489

Ld Ub 29.2969 29.2968 29.2972 48.3524 48.3218 48.3327 0.6059 0.6063 0.6062

Ld Gb 29.2975 29.2964 29.2970 48.3058 48.3017 48.3146 0.6065 0.6065 0.6064

different volume-filling factors. In particular, the RMS statistics for

various distributions of Cd and b are σ
R

≃ 29.3 rad m−2, which

is similar to the RMS statistics for various distributions of our

single-phase models in Table 1, indicating that the RMS method

cannot distinguish between a range of different clumpy (or smooth)

configurations of density and magnetic fields. We also calculate the

sky-transverse standard deviations and find that, with the exception

of the overcast model Cd2, the ς
R

decreases with decreasing

volume-filling factor. This is expected since the scatter should be

less with fewer clouds (and we approach the L lognormal models

as f → 0). Clumpiness always causes ς
R

> σ
R

, and often by large

multiples (with relative differences up to 94 per cent). Furthermore,

comparing the dispersions between the longitudinal direction and

the sky transverse direction, the cloudy models in Table 3 show a

greater scatter than the Ud, Gd, Fd, and Ld models did in Table 1.

The variability of standard deviations may be attributed to the

random shapes and orientations of the clouds.

We also calculate histograms (not shown) to characterize

the RM distributions from every line of sight through the

Cd2Ub∗, Cd2Ub, Cd2Gb, Cd3Ub∗, Cd3Ub, Cd3Gb, Cd4Ub∗,

Cd4Ub, Cd4Gb, Cd5Ub∗, Cd5Ub, Cd5Gb, Cd6Ub∗, Cd6Ub, and

Cd6Gb distributions. For each cube, the histograms along lines

of sight x, y, and z coincide, confirming that isotropy is pre-

served in each box, which is also shown by ς
xy
R

≃ ςxz
R

≃ ς
yz
R

in

Table 3.

The results from the KS tests are summarized in Table 4. The

KS statistics do not show evidence of anisotropy. Using GdGb(z)

as the basis CDF, we calculate its numerical difference from the

CDFs of the cloudy, magnetized models in Fig. 8. These panels

are almost indistinguishable between different configurations of

magnetic fields, e.g. the numerical difference trends for Cd3Ub∗(x,

y, z), Cd3Ub(x, y, z), and Cd3Gb(x, y, z) look similar to each

other. This suggests that the RMs are more dependent on the cloudy

structures, rather than the magnetic field configurations since the

MNRAS 490, 1697–1713 (2019)
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PRT, RM, and large-scale magnetic fields 1705

Figure 4. Top-left panel showing the CDF of GdGb(z) as a reference to calculate the numerical differences with the CDFs of GdGb(y), GdGb(x) as well as

UdUb∗, UdUb, UdGb, GdUb, FdUb, FdGb, LdUb, and LdGb for every line of sight. The CDFs are almost identical in all cases, except for models with fractal

and lognormal density distributions.

density variations are of orders of magnitude within each cube, while

the dynamic variation of the magnetic field is relatively smaller.

Notably the CDFs of Cd2 show the largest deviation from the basis

CDF, whereas the CDFs for the rest of the models, apart from

Cd3, are almost indistinguishable. This may be a consequence of a

scarcity of clouds in Cd4, 5, and 6.

Hence, from our results above, the widely used RM fluctuation

formula (RMS statistics) is valid when all of the following con-

ditions hold: (i) a random field produces random Faraday rotation,

(ii) there exists a meaningful characteristic thermal electron number

density, (iii) there exists a uniform or Gaussian distribution of

magnetic field strengths, (iv) the field is isotropic, and (v) the

density and the magnetic field are not correlated. In situations where

some of these criteria are not met, the RMS statistics would be

inadequate to be used to interpret the magnetic field properties from

the RM analyses. Discrepancies could in principle be large in some

environments such as cluster cores where multiphase features are

obvious in other wavebands (e.g. Conselice, Gallagher & Wyse

2001) or faint cluster outskirts where clumpiness is conjectured

(e.g. Urban et al. 2014).
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1706 A. Y. L. On et al.

Table 2. The KS statistics D and p-value probabilities corresponding to various configurations in Table 1.

Distribution D p-value

xy and xz xy and yz xz and yz xy and xz xy and yz xz and yz

Ud Ub∗ 0.0044 0.0048 0.0045 0.5707 0.4763 0.5460

Ud Ub 0.0052 0.0047 0.0052 0.4272 0.5502 0.4364

Ud Gb 0.0052 0.0055 0.0057 0.4255 0.3654 0.3712

Gd Ub 0.0052 0.0048 0.0052 0.4240 0.5123 0.4509

Gd Gb 0.0050 0.0051 0.0051 0.4696 0.4359 0.4275

Fd Ub 0.0047 0.0072 0.0072 0.5110 0.1549 0.1421

Fd Gb 0.0049 0.0068 0.0071 0.5052 0.1696 0.1658

Ld Ub 0.0050 0.0050 0.0050 0.4833 0.4662 0.4644

Ld Gb 0.0049 0.0045 0.0049 0.4806 0.5550 0.4865

Figure 5. Cross-sections of Cd3 (top) and Cd5 (bottom) at x = 128 (left), y = 128 (middle), and z = 128 (right).

4.2 Interpreting magnetic field properties from polarization

analyses

4.2.1 Ambiguity in the polarization angle

The inference of RM from observations of linear polarization is

subjected to an nπ ambiguity in its direction (Ruzmaikin & Sokoloff

1979). For a clean line of sight with a single point source, the

polarization angle ϕ and the wavelengths λ satisfy a relationship:

ϕ = ϕ0 + Rλ2, fitting the observation for the intrinsic polarization

angle ϕ0 and the slopeR gives the rotation measure. The foreground

magnetic field structure can be inferred from the RM if the emission

measure is known. In practice, the measured polarization angle

ϕ can only be constrained between 0 and π , hence there is an

ambiguity of ±nπ , where n is an integer, thus causing a problem in

determining ϕ0 and R.

Early efforts were taken to resolve this ambiguity by imposing

a search limit for the best RM from an astrophysical perspective

and carrying out observations in several frequencies so to obtain

the best fit using a chi-squared minimization (see e.g. Simard-

Normandin, Kronberg & Button 1981; Rand & Lyne 1994). This

method assumed that no nπ ambiguity occurs between two closely

spaced wavelengths, such that |�ϕ| < π /2 is fulfilled (Ruzmaikin &

Sokoloff 1979). The source is observed across a radio broad-

band with sparsely sampled wavelengths, and near each observed

wavelength, combinations of (ϕ ± nπ ) are considered in the fitting

process. While this method can be applied to Faraday-thin media

with a bright background point source, it sometimes gives multiple

acceptable solutions. It does not work well for faint sources. In

the Faraday-thick regime, the method will break down because the

linear relation above does not hold. It is also problematic when

there are multiple sources along a line of sight or when Faraday

depolarization occurs (see e.g. Vallee 1980; Sokoloff et al. 1998;

Farnsworth, Rudnick & Brown 2011).

Recently, alternative methods have been developed, e.g. the

circular statistical method (Sarala & Jain 2001), the PACERMAN

algorithm (Dolag et al. 2005; Vogt, Dolag & Enßlin 2005), the RM

synthesis/RMCLEAN method (Burn 1966; Brentjens & de Bruyn

2005; Heald, Braun & Edmonds 2009), Stokes QU-fitting (e.g.

Farnsworth et al. 2011; O’Sullivan et al. 2012), and the dependence

on RM of neighbouring sources (Taylor, Stil & Sunstrum 2009; Ma
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PRT, RM, and large-scale magnetic fields 1707

Figure 6. Column densities of Cd3 (top) and Cd5 (bottom) in the x (left), y (middle), and z (right) directions.

Figure 7. Synthetic RM maps of Cd2Gb (top) and Cd2Ub∗ (bottom) in the xy (left), xz (middle), and yz (right) planes.

et al. 2019). The nπ ambiguity is one of the obstacles that must be

overcome when analysing large-scale magnetic fields using the RM

information. On the other hand, we may bypass our reliance on the

RM statistics by carrying out a proper (covariant) polarized radiative

transfer, which can directly track the evolution of polarization along

a line of sight to resolve the nπ ambiguity without having to make

an a priori assumption on the Faraday complexity (see Chan et al.

2019).

4.2.2 Issues in analyses of polarization associated with

large-scale astrophysical structures

FRBs and quasars as diagnostics: FRBs and quasars are exception-

ally bright, polarized radio sources, observable across cosmological

distances. They are therefore useful probes of the intergalactic

magnetic fields (see e.g. Xu & Han 2014b; Zheng et al. 2014;

Akahori et al. 2016; Ravi et al. 2016; Vazza et al. 2018; Hackstein

MNRAS 490, 1697–1713 (2019)
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1708 A. Y. L. On et al.

Table 3. The standard deviations of RM, σ
xy

R
, σ xz

R
, and σ

yz

R
, calculated along lines of sight z, y, and x, respectively, as light travels through various

configurations of magnetized, two-phase fractal plasma. The realizations are normalized to the order of magnitude typically found in galaxy clusters:

〈ne,th〉 ∼ 10−3 cm−3, Brms ∼ 1µG, and L ∼ 1 Mpc. The magnetic fields are strictly divergence free, except for Ub∗. The volume-filling factors for

Cd2, Cd3, Cd4, Cd5, and Cd6 are 10−2, 10−3, 10−4, 10−5, and 10−6, respectively.

Distribution Longitudinal (equation 31) Sky transverse (equation 32) Ratio

σ
xy

R
σ xz
R

σ
yz

R
ς

xy

R
ςxz
R

ς
yz

R
σ xy/ςxy σ xz/ςxz σ yz/ςyz

Cd2 Ub∗ 29.2976 29.2984 29.2949 280.6983 280.0177 280.4870 0.1044 0.1046 0.1044

Cd2 Ub 29.2922 29.2979 29.3008 280.5404 279.4889 281.2761 0.1044 0.1048 0.1042

Cd2 Gb 29.2968 29.2986 29.2956 279.8605 281.7843 280.9985 0.1047 0.1040 0.1043

Cd3 Ub∗ 29.2976 29.2984 29.2949 471.8747 483.3400 473.8896 0.0621 0.0606 0.0618

Cd3 Ub 29.2922 29.2979 29.3008 478.3895 479.4463 476.4639 0.0612 0.0611 0.0615

Cd3 Gb 29.2968 29.2986 29.2956 466.7194 480.4994 475.2179 0.0628 0.0610 0.0617

Cd4 Ub∗ 29.2976 29.2984 29.2949 267.1094 271.5542 265.8259 0.1100 0.1079 0.1102

Cd4 Ub 29.2922 29.2979 29.3008 276.8559 266.4851 267.9559 0.1058 0.1099 0.1093

Cd4 Gb 29.2968 29.2986 29.2956 257.7923 271.5684 268.0812 0.1136 0.1079 0.1093

Cd5 Ub∗ 29.2976 29.2984 29.2949 93.4944 86.3299 89.4997 0.3134 0.3394 0.3273

Cd5 Ub 29.2922 29.2979 29.3008 98.3658 88.2455 97.2471 0.2978 0.3320 0.3013

Cd5 Gb 29.2968 29.2986 29.2956 83.6243 83.0571 89.1919 0.3503 0.3528 0.3285

Cd6 Ub∗ 29.2976 29.2984 29.2949 44.5203 43.3651 43.0838 0.6581 0.6756 0.6800

Cd6 Ub 29.2922 29.2979 29.3008 46.9690 43.8330 45.7565 0.6236 0.6684 0.6404

Cd6 Gb 29.2968 29.2986 29.2956 42.4488 40.6938 44.7132 0.6902 0.7200 0.6552

Table 4. The KS statistics D and p-value probabilities corresponding to the configurations in Table 3.

Distribution D p-value

xy and xz xy and yz xz and yz xy and xz xy and yz xz and yz

Cd2 Ub∗ 5.7068E-03 1.9516E-02 1.9180E-02 2.3559E-01 2.7937E-11 6.5523E-11

Cd2 Ub 6.3782E-03 2.0584E-02 2.3743E-02 1.3851E-01 1.6807E-12 1.7189E-16

Cd2 Gb 4.2114E-03 1.7532E-02 2.0309E-02 6.0557E-01 3.4726E-09 3.5123E-12

Cd3 Ub∗ 4.5929E-03 7.0648E-03 8.1940E-03 4.9313E-01 7.5602E-02 2.4407E-02

Cd3 Ub 6.5002E-03 5.8136E-03 6.1188E-03 1.2494E-01 2.1739E-01 1.7129E-01

Cd3 Gb 3.6011E-03 8.2855E-03 7.5684E-03 7.8844E-01 2.2106E-02 4.6618E-02

Cd4 Ub∗ 3.1281E-03 4.2267E-03 5.7831E-03 9.0517E-01 6.0094E-01 2.2247E-01

Cd4 Ub 4.6844E-03 3.0975E-03 6.0120E-03 4.6754E-01 9.1125E-01 1.8646E-01

Cd4 Gb 3.4027E-03 6.3477E-03 6.3019E-03 8.4190E-01 1.4208E-01 1.4758E-01

Cd5 Ub∗ 3.0823E-03 4.3945E-03 5.8289E-03 9.1421E-01 5.5062E-01 2.1488E-01

Cd5 Ub 4.7150E-03 3.2654E-03 6.3171E-03 4.5916E-01 8.7535E-01 1.4573E-01

Cd5 Gb 3.3112E-03 6.0883E-03 5.3864E-03 8.6457E-01 1.7552E-01 2.9698E-01

Cd6 Ub∗ 3.0060E-03 4.5624E-03 5.9357E-03 9.2823E-01 5.0180E-01 1.9792E-01

Cd6 Ub 4.8370E-03 3.2043E-03 6.2866E-03 4.2644E-01 8.8908E-01 1.4945E-01

Cd6 Gb 3.3112E-03 5.9357E-03 5.2948E-03 8.6457E-01 1.9792E-01 3.1644E-01

et al. 2019) and their evolution (see e.g. Xu & Han 2014b), if their

redshifts and dispersion measures are known (see e.g. Kronberg &

Perry 1982; Blasi et al. 1999; Kronberg et al. 2008; Xu & Han

2014a; Petroff et al. 2016). Circular polarization was detected

in some quasars (see e.g. Roberts et al. 1975; Saikia & Salter

1988; Rayner, Norris & Sault 2000; O’Sullivan et al. 2013) and

FRBs (see e.g. Petroff et al. 2015, 2017), indicating that Faraday

conversion (see e.g. Gruzinov & Levin 2019; Vedantham & Ravi

2019) or scintillation-induced variations (Macquart & Melrose

2000) might occur. As the number of detections of FRBs and

quasars increases (see e.g. Keane 2018), the polarization properties

of their signals can be used to better constrain large-scale magnetic

field properties. Apart from the effects of Faraday conversion

and scintillation, it is also important to distinguish between the

RM contributions from multiple sources along the line of sight,

consider the effects of traversing multiphase media, as well as

taking into account of the structural evolution and stretching of

radiation wavelength in an expanding Universe (see e.g. Han 2017).

In these situations, RM is no longer sufficient to fully characterize

the changes in polarization and hence a covariant cosmological

polarized radiative transfer treatment is necessary (see Chan et al.

2019).

Direct radio emission from large-scale structure: An emissive

and Faraday-rotating medium will result in a net depolarization

due to differential Faraday rotation (e.g. Sokoloff et al. 1998; Beck

1999; Shukurov & Berkhuijsen 2003; Fletcher & Shukurov 2006).

This effect is particularly important in extended sources such as

emitting filaments in the cosmic web. A simple Faraday screen

with a bright source behind a Faraday-rotating medium would be

insufficient to capture this effect properly. A covariant polarized

radiative transfer calculation is therefore essential to evaluate the

line-of-sight depolarization effect from all radiation processes at

different redshifts (see Chan et al. 2019).

Contamination in the power spectrum: The power spectrum of

the observed polarized intensity may be contaminated by emissions

from the medium and embedded sources. Contributions from these

sources would lead to apparent higher power in fluctuations at

small scales. It is important to assess whether these signatures

due to spatially separated sources can be distinguished from those

imparted due to the true structures of magnetic fields. In addition

MNRAS 490, 1697–1713 (2019)
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PRT, RM, and large-scale magnetic fields 1709

Figure 8. Top-left panel showing the CDF of GdGb(z) as a reference to calculate the numerical differences with the CDFs of GdGb(y), GdGb(x) as well as

Cd2Ub∗, Cd2Ub, Cd2Gb, Cd3Ub∗, Cd3Ub, Cd3Gb, Cd4Ub∗, Cd4Ub, Cd4Gb, Cd5Ub∗, Cd5Ub, Cd5Gb, Cd6Ub∗, Cd6Ub, and Cd6Gb at every line of sight.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
0
/2

/1
6
9
7
/5

5
7
5
2
0
4
 b

y
 E

d
w

a
rd

 B
o
y
le

 L
ib

ra
ry

 u
s
e
r o

n
 1

6
 M

a
rc

h
 2

0
2
0



1710 A. Y. L. On et al.

Figure 9. An illustration of how higher redshift structures can contaminate

the observed power spectrum at a fixed νobs (dashed line), which differs

from considering the theoretical power spectra P(k)|z from all sources at a

single redshift.

to these, the interpretation of the power spectrum is complicated by

the contributions at various cosmological redshifts. Consider a radio

observation of the sky at a fixed frequency νobs. The observed power

spectrum Pk is the result of contributions from sources at different

redshifts. Hence, at each k, the power spectrum is contaminated

by different levels of emission from various sources at higher

redshifts (see Fig. 9), which differ from the power spectrum of

the Universe at every redshift, P(k)|z. Local P(k)|z does not contain

any contribution from the higher redshifts, whereas observationally,

different components at higher k are picked up at νobs.

5 C O N C L U S I O N S

Faraday RMF analysis at radio wavelengths is considered as a

diagnostic tool for cosmic magnetism. Most of the current methods

in RMF analyses rely on a random-walk model in which the

standard deviation of RMF provides a statistical measure of the

field correlation length. Our objective is to assess the validity of

the conventional random-walk method as a cosmic magnetic field

probe. We simulate various configurations of density and magnetic

field fluctuations in astrophysical plasmas to calculate the dispersion

of RM. We calculate and compare the line-of-sight longitudinal

dispersion with the sky transverse dispersion.

Our results are as follows: (i) Numerically, the divergence filter-

ing also creates a residual dipole, as a result of IDL’s (Interactive

Data Language) preferential direction in its Fourier transform

function. This can be removed by taking a linear superposition of

three orthogonal field realizations. (ii) The conventional random-

walk model applies in some but not all astrophysical situations.

More specifically, it is valid when the density fluctuations are uni-

formly distributed or Gaussian distributed. The model breaks down

for densities with fractal and lognormal structures. (iii) Density

fluctuations can obscure the effect of magnetic field fluctuations, and

therefore affect the correlation length of magnetic fields determined

by the conventional random-walk model. Our results show that

it is difficult to disentangle the signals from density and field

fluctuations based on the value of the standard deviation of the RM,

σ
R

, itself. More specifically, our demonstration models show that

different statistical indicators can potentially mislead, σ
R

< ς
R

,

by tens of per cents or by factors of a few (if there is unrecognized

cloudiness).

Even without degeneracy between the signals from density

and field fluctuations, radiative processes such as absorption and

emission can confuse and ambiguate the interpretation of the

RM. Moreover, in addition to the thermal electrons, non-thermal

electrons can also contribute to the Faraday rotation. We conclude

that the random-walk approach is not universally valid and a more

proper treatment based on (covariant) polarized radiative transfer in

spatially detailed models is necessary to develop solid theoretical

models and predictions in preparation for the SKA.
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APP ENDIX A : D IVERGENCE-FREE FILTER

FOR THE MAGN ETIC FIELD

Consider a vector k (= ki), defining a reference axis in a vector

space. Any other arbitrary vector X can be decomposed into two

components, one parallel to and another one perpendicular to k:

X = X
(k)
‖ + X

(k)
⊥ , with

∣

∣ k · X
(k)
‖
∣

∣ ≥ 0 and k · X
(k)
⊥ = 0. Now intro-

duce a projection operator P(k), such that X ′ = P(k) X = X
(k)
⊥ .

This projection operator eliminates the longitudinal component of

X , ensuring that k · X ′ = 0 for any given X . A non-trivial example

of P(k) is (I − k̂k̂), where I is an identity operator and k̂ = k/|k|,
such that

k ·
[

(

I − k̂k̂
)

· X
]

= ki

(

δij −
kikj

k2

)

Xj = 0. (A1)

Magnetic fields in vacuum are solenoidal, i.e. divergence-free,

satisfying ∇ · B = ∂ iBi = 0. In Fourier space, the divergence-free

relation is expressed as k · B(k) = kiBi = 0, which requires that

the field component parallel to k must vanish. Thus, we may

apply the filter (I − k̂k̂) in Fourier space to prepare a divergence-

free magnetic field (with designated structural properties) from a

generic initial simulated random vector field (with otherwise the

same structural properties). The procedures are as follows:

(i) Construct a random field B̃(k) (= B̃i(km)) according to the

specified structural properties in Fourier space.

(ii) Apply the divergence-free filter, i.e. carry out the projection

operation: Bi(km) = (δij − kikj/k
2)B̃j(km).

(iii) Use an inverse-Fourier transform on Bi(km) to obtain Bi(xm)

in configuration space.

As the filtering process removes the longitudinal part of the

magnetic field in Fourier space, it reduces the total magnetic energy

stored in the system. The Parseval’s (energy) theorem,
∫

Vx

d3x
∣

∣B(x)
∣

∣

2 =
∫

Vk

d3k
∣

∣B(k)
∣

∣

2
, (A2)

requires that the total magnetic energy is reduced by the same

amount in configuration space as in Fourier space. With the

divergence-free magnetic field given by B(k) = (I − k̂k̂) B̃(k), the

energy density of the magnetic field is

1

8π
|B|2 =

1

8π

[(

δij −
kikj

k2

)(

δim −
kikm

k2

)

B̃jB̃m

]

=
1

8π

[

B̃iB̃i −
1

k2

(

kiB̃i

)2

]

=
1

8π

∣

∣B̃
∣

∣

2
(1 − μ2), (A3)

where μ = k̂ · B̃/|B̃|. For a randomly oriented magnetic field in

Fourier space,

〈

1 − μ2
〉

=
1

2

∫ 1

−1

dμ
(

1 − μ2
)

=
2

3
. (A4)

Hence, one-third of the magnetic energy density is filtered out.

This is the expected amount when there is equipartition between

the energies in the longitudinal component and the two orthogonal

perpendicular components (the solenoidal components) of the initial

‘magnetic’ field B̃. To recover the energy loss in the divergence-free

filtering process, we may renormalize the resulting divergence-free

magnetic field, either in configuration space or in Fourier space, by

a multiplicative factor
√

3/2 .

A P P E N D I X B: PR E PA R AT I O N O F T H E M O D E L

T WO - P H A S E FR AC TA L C L O U D S

Starting from even the most minute inhomogeneities, astrophysical

plasmas are susceptible to form substructures through a variety of

thermal, magnetic, and buoyancy instabilities (e.g. Field 1965; Shu

et al. 1972; Balbus & Soker 1989; Quataert 2008; McCourt et al.

2012; Sharma et al. 2012; Wareing et al. 2016). An optically thin

plasma of nearly solar composition has a temperature-dependent

radiative cooling function that incurs thermal instability over an

interval 104 K � T � 107 K. An initially homogeneous medium

can spontaneously self-segregate into a quasi-equilibrium of two

coexisting phases: the original hot diffuse medium and a minor

component of cooler dense clouds. Externally imposed isobaric

conditions imply a density ratio � 103 between the phases, in the

absence of any further gravitational collapse. Thermally condensed

clouds are endemic in otherwise hot extragalactic media, and can

stretch into filaments in upflows and downflows associated with

active galaxies (e.g. Ford & Butcher 1979; Conselice et al. 2001;

Saxton, Sutherland & Bicknell 2001; McDonald et al. 2010; Voit

et al. 2017; Combes 2018; Olivares et al. 2019).

As a test of RMF due to strong density inhomogeneities, we

build two-phase toy models capable of approximating the knotty

medium of a galaxy cluster core, or the ISM of an elliptical

galaxy that acquired clouds (either via thermal instability or a

wet–dry merger). Initially we generate a Gaussian distribution of

pseudo-random complex numbers, and apply an amplitude filter to

obtain a Kolmogorov-like power spectrum. This cube is transformed

according to the Elmegreen recipe for imitating lognormal density

fluctuations in a turbulent medium, which will represent the diffuse

phase. We prescribe a volume-filling factor of clouds (0 < f ≪ 1)

and select the densest-ranked voxels, down to a suitable threshold.

Their densities are multiplied by a uniform constant, set to ensure

a mean density ratio of 103 between the cloud and non-cloud

phases. Assuming that the clouds are condensing from the hot

medium, we normalize the mean of the entire cloudy block to
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Table B1. Summary of cloudy model properties: volume-filling factors f;

cloud mass fraction, area covering factors for the three orthogonal views.

Before radiative transfer calculations, all models are normalized to the same

total mass or mean density.

Model log f mc/M ax/A ay/A az/A

Cd2 −2.01 0.912 0.713 0.752 0.749

Cd3 −3.01 0.495 0.150 0.155 0.155

Cd4 −4.02 0.0877 0.0188 0.0190 0.0189

Cd5 −5.12 0.00746 0.00171 0.00172 0.00169

Cd6 −6.32 0.000477 0.000122 0.000122 0.000122

10−3 cm−3, matching the standard for our single-phase density

models.

We create and test models ranging from a negligible smattering

of clouds (f ≈ 10−6) to a heavily obscured overcast case (f ≈ 10−2)

where a majority (� 0.7) of RM map pixels or rays traverse at

least one dense cloud. Table B1 presents basic global properties of

these models. In area terms, the cloud coverage factors decrease

with f, and vary with orientation due to the clouds’ random fractal

shapes. Clouds account for only a tiny fraction of the total mass

in Cd4–Cd6, or just under half the mass in Cd3. The overcast case

Cd2 is dominated by the mass of the dense cold phase, making it

unrealistic for the filament-infused core of a galaxy cluster (where

the cold fraction is at most a few tens of per cents), but perhaps more

like the primordial medium of a hypothetical wet protogalaxy. The

mean densities of the cubes vary by factors of a few before their

normalizations into fiducial ICM units.
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