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Abstract

The category of presheaves on a (small) category is a suitable semantic universe to study behaviour of
various dynamical systems. In particular, presheaves can be used to record the executions of a system and
their morphisms correspond to simulation maps for various kinds of state-based systems. In this paper,
we introduce a notion of bisimulation maps between presheaves (or executions) to capture well known
behavioural equivalences in an abstract way. We demonstrate the versatility of this framework by working
out the characterisations for standard bisimulation, ∀-fair bisimulation, and branching bisimulation.

Keywords: Presheaves, ∀-fair bisimulation, Branching bisimulation.

1 Introduction

The importance of formal semantics should not be underestimated, especially when

aimning to design reliable dynamical systems in heterogeneous environments. There-

fore, a variety of state based modelling frameworks at different levels of abstraction

have been proposed; to quote Goguen [16]: one person’s syntax is another person’s

semantics. Diversity in algorithms can be desirable; however, as argued in [1,16,34],

the proliferation of semantic theories indicates our scattered understanding of con-

current systems. Thus, we seek a framework that provides semantic structure de-

scribing the behaviour of a dynamical system and its refinement independently of

syntax.

This goal is shared to an extent by the theory of coalgebras [29]. In [6], we

abandoned state-based modelling in favour of describing behaviour as the set of
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executions (inspired by [10, 28]) because the branching structure of a state in the

presence of invisible actions is described by the set of executions (not states). This

situation further escalates when one is interested in infinite executions (e.g. fairness

properties [17, 25]) or dense executions which are omnipresent in hybrid systems

(e.g. [12]). The point is not that executions are inexpressible in a coalgebra, but

rather that we need a semantic framework where they are treated as first-class

citizens just as states are in a coalgebraic framework. Thus, our hypothesis is that

behaviour of a system is given solely by its executions.

We anticipate presheaves to be the “right” semantic structure to study execu-

tions without fixing a kind of dynamical system. Note that we are not the first in

proposing presheaves as the mathematical universe to studying behaviour. Winskel

and his colleagues [8,15,19,23,34] have already employed presheaves (among other

things) by giving a denotational semantics of process-algebraic terms supported

by characterisations of strong bisimulation and weak bisimulation relations us-

ing open maps in the context of transition systems. For a more modern treat-

ment, Hirschowitz and his colleagues [13, 14, 20] advocated game semantics using

(pre)sheaves.

The novelty of our work lies in refining the notion of open maps (which we

christened bisimulation maps) in a presheaf category and using it to characterise

∀-fair bisimulation [18, 24] and branching bisimulation [33] relations. In addition,

the prospect of having to specify notions of time and observation (which was absent

in the earlier works on presheaf semantics) leads to a clearer modelling, so explicitly

highlighting these two dimensions of system modelling is at the core of our contri-

bution (cf. Section 2). This distinction was in turn essential to capture branching

bisimulation in the presence of invisible actions τ .

Interestingly, unlike open maps, bisimulation maps are always retracts in the

category of presheaves (in turn, they are surjective at the level of executions). As

a slogan, presheaf maps are refinement maps, while bisimulation maps (which are

special presheaf maps) are complete refinement maps (Section 3). By moving to a

finer notion, we are still able to capture functional bisimulations without fairness.

However, in the context of fairness, we can show (Theorem 4.7) that the behavioural

equivalence induced by a bisimulation map coincides with ∀-fair bisimulation rela-

tion. Note that our ∀-fair bisimulations are equivalence relations by definition in

contrast to the existing definition [18, 24] (see the dicussion after Theorem 4.7 on

Page 10). This is an improvement with respect to the previous characterisation of

∃-fair bisimulation [18,24] (called extended bisimulation in [17]) obtained by Hilde-

brandt [19] using open maps, since any ∀-fair bisimulation relation is strictly finer

than an ∃-fair bisimulation relation [18] and our correspondence does not impose

any restrictions on the fairness predicates. These restrictions, originally from [17],

asserted that fairness predicates on infinite executions are closed under the removal

and the addition of finite prefixes.

Another practical aspect of the theory of presheaves is that it guides us in

finding the right semantic categories once a notion of time and observation is fixed.

Moreover, we can apply concepts (like, e.g., essential geometric morphism [27]) that
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transform a dynamical system from one observation space O to another space O′.

This way we can transform (see Section 5) a presheaf of executions (induced by a

given transition system) into a presheaf of minimal executions (i.e., executions in

which trailing τ -transitions are chopped off). This property is specific to branching

bisimulation, which may be the reason why this construction was not discussed

in [15] (their objective was to capture weak bisimulation).

Organisation of the paper.

In Section 2, we introduce our mathematical framework to model behaviour of a

dynamical system with a special focus on the aspects of time and observation. Then,

we introduce the notion of bisimulation maps in presheaves on an arbitrary (small)

category in Section 3. Turning our attention towards the first major example, we

characterise ∀-fair bisimulation relations in Section 4. The case of invisible actions

in Section 5 is based on a change of observation space. We first outline an obvious

(but ultimately failed) attempt to capture branching bisimulation, before giving the

correct (yet intuitive) construction that characterises branching bisimulation.

2 Our universe of discourse

The objective of this section is to describe our semantic framework in which one

can model behaviour of a dynamical system. By behaviour of a dynamical system,

we understand some phenomena that evolve over time. Our aim is to formalise this

intuition. We begin by modelling time as a small category T, whose objects are

points in time and arrows describe passing of time.

Notation 2.1 An object C (an arrow f) of a category C will be denoted by the

predicate C ∈ C (f ∈ C). Moreover, the codomain and domain of an arrow f ∈ C

are denoted as cod(f) and dom(f), respectively.

Invariably, dynamical systems come with a notion of observation. For instance,

a letter from a fixed alphabet may denote the assignment of model variables in a

computer program/controller. We assume that a system under study has a dis-

play unit together with the existence of a hypothetical ‘observer’ O who is watch-

ing/measuring behaviour of the system using this display unit over time. In addi-

tion, our observer O can remember its observations over time, i.e., earlier observa-

tions can be deduced from the later observations. Mathematically, this amounts to

saying that O is a contravariant functor T � Set.

Proposition 2.2 Let C be a small category. Then, the collection of functors of

type Cop � Set (i.e., presheaves on a category C) and natural transformations

between them form a category PSh(C).

Notation 2.3 Given a presheaf F ∈ PSh(C), we follow [27] in writing x · f to

denote the restriction of x ∈ FC along C ′ f� C, i.e., Ff(x) = x · f . In case C is

a poset (viewed as a category) C, we write x ·C ′ to denote the restriction of x ∈ FC
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along C ′ � C. Note that we use calligraphic letters for specific presheaves, whereas

arbitrary ones are denoted by capital letters as above.

Example 2.4 In this example, we fix the notion of time T and observation O

associated with a (labelled) transition system. For time T we take the set of natural

numbers N viewed as a category (arrows are the less-than-equal-to relations). For

the given alphabet A, we now define a presheaf A ∈ PSh(N):

A(n) = {σ ∈ A⋆ | |σ| = n} (for every n ∈ N),

together with the action on A given by σ ·n = σ|n (for every σ ∈ A(n′) and n ≤ n′).

In other words, A(n) is the set of those finite words σ ∈ A⋆ whose length is n

(denoted by |σ| = n), while the action · n simply maps a word σ of length n′ to

its unique prefix of length n (denoted by σ|n). Note that A(0) is a singleton set

containing the empty word which we denote by ε.

Remark 2.5 In modelling some dynamical systems, like, e.g., those arising from

control theory [28], O may have even more structure in that global observations can

be constructed by gluing the local observations (smaller neighbourhoods). In such

situations, the category of sheaves Sh(C, J) equipped with a Grothendieck topology

J on C is more suitable (cf. [30]) for semantic purposes. Moreover, sheaves equipped

with discrete Grothendieck topology are exactly presheaves (cf. [27]), so our math-

ematical universe is actually the category of sheaves (rather than presheaves). But

due to the discrete nature of dynamical systems considered in this paper, we restrict

ourselves to presheaves. Nevertheless, we will state our definitions so that they are

applicable on sheaves (see, e.g., Remark 3.2).

Once a notion of time T and an observation O ∈ PSh(T) is fixed, then a sys-

tem essentially describes the runs (also known as trajectories or executions) of the

system and the observation associated with each run. To answer both, we envisage

that a dynamical system is nothing but an object in the slice category PSh(C)/O.

In other words, a dynamical system corresponds to a presheaf F modelling the runs

of the system and a natural transformation F
α� O modelling the observation

associated with each run of the system. More importantly, a system homomorphism

ϕ between two systems (F, α) and (G, β), denoted (F, α)
ϕ� (G, β), is a natural

transformation F
ϕ� G preserving the observations, i.e., β ◦ ϕ = α. Intuitively,

a system homomorphism (F, α)
ϕ� (G, β) says that the system (F, α) is a refine-

ment of (G, β) (i.e., every observable behaviour of F is also part of the observable

behaviour of G).

2.1 Refining our framework by unifying time and observation

Although the slice category PSh(T)/O is close to our system theoretic intuition,

its presentation can be further simplified. Recall the category of elements of a

presheaf F ∈ PSh(C), denoted EC(F ) (we drop the subscript C whenever clear
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from the context), has as objects the tuples (x,C) with C ∈ C, x ∈ FC and as

arrows (x,C)
f� (x′, C ′) the morphism C

f� C ′ ∈ C such that x′ · f = x.

Theorem 2.6 ([27, Exercise III.8(a)]) For a presheaf F over a small category

C, there is an equivalence of categories PSh(C)/F ∼= PSh(E(F )).

Note that a similar result also holds in the setting of sheaves (cf. [27, Exercise III.8(b)]).

In other words, time can be made inherent with observation and, thus, we can

work in a simpler setting without worrying about the bookkeeping associated with

slice categories. To see this, recall Example 2.4 and the poset of finite words A⋆

(a.k.a. free monoid) generated by a set A, which is ordered by the prefix relation

� ⊆ A⋆ × A⋆. Notice that the categories E(A) and A⋆ are isomorphic: since the

length of a word is redundant in the objects of E(A) dropping the length results in

the elements of A⋆. Thus, we obtain

Corollary 2.7 There is an equivalence of categories PSh(N)/A ∼= PSh(A⋆).

As a result, the category of presheaves on A⋆ can serve as the semantic universe

to study behaviour of a transition system (cf. Example 2.8). More generally, by

giving the semantics to a ‘syntactic’ category of a computational model M, we

mean identifying the notion of time T and observation O ∈ PSh(T) together with a

faithful functorM
� �� PSh(ET(O)), called the semantics functor. By interpreting

an arrow M
f� M ′ in M as M is an implementation of M ′ witnessed by f , then

faithfulness of � � asserts: if an implementation is witnessed by two semantically

same morphisms �f� = �g�, then f = g must be the same syntactically.

Example 2.8 Consider a transition system (X,A,→) where X is the set of states,

A is the set of actions, and →⊆ X × A ×X is the transition relation 3 . Then the

collection of transition systems together with simulation functions form a category

denoted LTS. Note that a simulation function is a function X
f� Y satisfying:

∀x,x′∈X,a∈A x
a
−→ x′ =⇒ f(x)

a
−→ f(x′). (1)

As usual, we write x
a
−→ x′ to denote (x, a, x′) ∈→. Let ↓ σ = {σ′ ∈ A⋆ | σ′ � σ}

be the prefixes of σ. Next, define a presheaf �X� ∈ PSh(A⋆) which records all the

executions whose trace is σ at �X�(σ):

�X�(σ) =
{

↓ σ
p� X | ∀σ′,a

(

σ′a � σ =⇒ p(σ′)
a
−→ p(σ′a)

)

}

,

p · σ′ = p↓σ′

(

for any σ′ � σ and p ∈ �X�(σ)
)

.

Moreover, any function X
f� Y induces a family of maps �f�σ(p) = f ◦ p (for

each σ ∈ A⋆).

Thus, we obtain the following result; wherein, the result that presheaf maps

encode simulation maps is well known from the early work of Joyal et al. in [23].

3 Transition systems without initial states are standard in process algebraic literature (see [3]).
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Proposition 2.9 The map � � defined in Example 2.8 is a faithful functor. More-

over,

• if �f� is a presheaf map for any f ∈ LTS, then f is a simulation function.

• if a function f between the underlying state spaces induces a presheaf map �f�,
then f is a simulation map.

As a result, the category of transition systems LTS has presheaf semantics on

A⋆. In the subsequent sections, we will show the applicability of our semantic

framework by giving presheaf semantics to different computational models; namely,

transition systems with fairness predicates and invisible transitions.

3 Bisimulation maps: towards complete refinement

Consider a category of computational models M together with its semantics over a

presheaf category PSh(C), i.e., M
� �� PSh(C). As mentioned earlier, an arrow

between any two images of the semantics functor as a refinement map from the

modelling point of view. In particular, we interpret �M� �f�� �M ′� (induced by an

arrow M
f� M ′ ∈ M) as the information that �M� is an implementation of �M ′�

witnessed by the refinement map �f�. Note that this is a straightforward generali-

sation of Proposition 2.9 since simulation maps encode the refinement of behaviour

in the case of labelled transition systems. Therefore, to study bisimulation maps

at the level of presheaves (executions), we will restrict ourselves to those presheaf

morphisms that represent ‘complete’ refinement of behaviour in the following sense.

Theorem 3.3 expresses this in a more formal manner.

• Every observable behaviour in �M ′� is also observable in �M� (thus, �M� is a

refinement of �M ′�).
• Moreover, every observable behaviour in �M� can be retracted onto an observable

behaviour in �M ′�.
One possibility is to use the open maps of Joyal et al. [23], which gave a unified

definition of functional bisimulations over the range of computational models. In

particular, when invoked in a presheaf category, open maps correspond to natu-

ral transformations whose naturality squares are the weak-pullback squares in Set

(see [8, Proposition 2.3]). Nevertheless, an open map falls short in capturing the

complete refinement point of view since an arbitrary open map may not even be

a surjective map at the level of executions; i.e., our implementation may not even

implement or cover all the behaviour present in the specification.

In [5], open maps [23] were refined to embedding-open maps in the setting of

concrete categories. An important difference to the classical definition of open maps

is that the parametric notion of path extensions can be replaced by embeddings

(see [2, Definition 8.6(2)] for a formal definition). Moreover, embedding-open maps

are always retracts under some mild restrictions on concrete categories (cf. [5]).

Now, if a category is concrete over itself, then an embedding corresponds to simply a

monomorphism. Consequently, we propose the following definition of an embedding-
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open map, which we simply call a bisimulation map.

Definition 3.1 A map F
f� G ∈ PSh(C) is a bisimulation if, and only if, for

every commutative square depicted in (2) with a mono P ⊂
g� Q and maps m,n in

PSh(C), there is a map Q
k� F ∈ PSh(C) such that the two triangles commute,

i.e., k ◦ g = m and f ◦ k = n.

Q
n � G

P

g

∪

�

m
� F

f

�
k

�

(2)

Intuitively, (2) states that every extension of behaviour observable in G can be

reflected as an extension observable in F through the witnesser f .

Remark 3.2 It is interesting to note that a similar definition for sheaves can be

derived from the definition of embedding-open maps as given in [5]. First, note

that Sh(C, J) is concrete over PSh(C) due to the forgetful functor i, which is fully

faithful. Moreover, embeddings in this concrete category are actually monomor-

phisms. This is because any mono is a regular mono in Sh(C, J) and the faithful

functor i preserves regular monos (since i is right adjoint to the associated sheaf

functor a [27]). Lastly, every regular mono is an embedding whenever the faithful

functor preserves regular monos [2, Proposition 8.7.3]. Thus, we have the exact

same definition of bisimulation maps in Sh(C, J).

Theorem 3.3 Every bisimulation map in a (pre)sheaf category is a retract.

We end this section by capturing functional bisimulations in terms of bisimu-

lation maps whose proof can be extracted from the proof of Theorem 4.3. Note

that a similar theorem was proven earlier in the seminal paper [23] for functional

bisimulation; however, the difference is that we use bisimulation maps (not open

maps) in our characterisation.

Theorem 3.4 Given a simulation function X
f� Y , then �f� is a bisimulation

map in PSh(A⋆) if, and only if, the function f is a surjection satisfying:

∀x∈X,y∈Y

(

f(x)
a
−→ y =⇒ ∃x′∈X (x

a
−→ x′ ∧ f(x′) = y)

)

. (3)

4 The case of fairness

When considering infinite, rather than finite, behaviour of systems, it is common to

take fairness into account. There are various notions of fairness [18] but the general

idea for fair (bi)simulation is to demand that fair executions are matched by fair

executions, in addition to classical (bi)simulation properties. In this section, we give

H. Beohar, S. Küpper / Electronic Notes in Theoretical Computer Science 347 (2019) 5–24 11



a presheaf semantics to fair transition systems and outline how ∀-fair bisimulation

can be captured via bisimulation maps.

Let Aω = {σ | N
σ� A} be the set of infinite words generated from A and

fix A∞ = A⋆ ∪ Aω, which is ordered by the prefix relation �. The object of study

are fair transition systems (X,A,→,FairX), where (X,A,→) is a transition system

and FairX is a fairness predicate on infinite executions. An infinite execution is a

function ↓ σ
p� X ∪ {Ω} whose domain is the history of an infinite word σ ∈ Aω

such that p(σ) = Ω and ∀σ′,a (σ′a ≺ σ =⇒ p(σ′)
a
−→ p(σ′a)). Here, Ω is the

chaos state which the system enters once it has executed an infinite execution. Let

FExec(X) = FairX ∪Exec(X) be the set of all fair executions ordered by the prefix

relation �, i.e., p � p′ ⇐⇒ p′|dom(p) = p (for p, p′ ∈ FExec(X)). The set of

(finite) executions Exec(X) is defined as earlier, i.e., Exec(X) = {↓ σ
p� X | σ ∈

A⋆ ∧ ∀σ′a∈↓σ p(σ′)
a
−→ p(σ′a)}.

Definition 4.1 A chaos preserving extension X ∪{Ω}
fΩ� Y ∪{Ω} (i.e., fΩ(x) =

f(x) for x ∈ X and fΩ(Ω) = Ω) of a function X
f� Y is a fair simulation between

(X,A,→,FairX), (Y,A,→,FairY ) if, and only if, f satisfies (1) and ∀p∈FairX fΩ ◦p ∈

FairY . Henceforth, we do not distinguish between fΩ and f .

Note that an infinite, but fair, execution can be seen as the limit of a mono-

tonically increasing sequence of finite executions in FExec(X). Since this limiting

sequence is part of behaviour, we should reflect it. Thus, we say a fair bisimula-

tion X ∪ {Ω}
f� Y ∪ {Ω} is a surjective fair simulation f satisfying (3) and the

following condition for any increasing sequence of finite executions (pi)i∈N in X:

⊔

i∈N

f ◦ pi ≈ f ◦
⊔

i∈N

pi. (4)

Here, ≈ is the Kleene equality used to equate the partially defined terms above.

To the best of our knowledge, the above notion of fair bisimulation is novel; how-

ever, below we will establish its connection with the literature after characterising

it in terms of presheaf morphisms. So let FTS be the category of fair transition

systems and fair simulation between them. In addition,

• Time: Since infinite executions are allowed in a fair transition system, we take

T = N ∪ {∞} to be the category of natural numbers extended by a number

representing infinity (i.e., ∀n∈N n ≤ ∞).

• Observation: Using the definition of A in Example 2.4, we define: O(∞) = Aω

and O(n) = A(n) (for n ∈ N).

Clearly, the categories E(O) and A∞ are isomorphic and by applying Theorem 2.6

we obtain PSh(E(O)) ∼= PSh(A∞). So, we take the category PSh(A∞) as the

semantic universe to study fair transition systems. Just as in Example 2.8, for a

given fair transition system (X,A,→,FairX), we define a presheaf

�X�(σ) = {p ∈ FExec(X) | maxdom(p) = σ} (for each σ ∈ A∞),
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and the action is given by restricting the domain of an execution. Moreover, for any

fair simulation function f , we let �f�σ = f ◦ (for each σ ∈ A∞); thus, resulting in

a presheaf semantics to fair transition systems.

Proposition 4.2 The above map FTS
� �� PSh(A∞) is a faithful functor.

Invoking the bisimulation map definition between any two presheaves generated

by fair transition systems results in the characterisation of fair bisimulation.

Theorem 4.3 A fair simulation function f is a fair bisimulation if, and only if,

the underlying map �f� is a bisimulation map in PSh(A∞).

Remark 4.4. It should be noted that fair bisimulation maps are stronger than the

open maps studied by Hildebrandt [19] in PSh(A∞) to characterise the extended

bisimulation of Hennessy and Stirling [17] for pointed systems, i.e. systems with

explicitly initial states. To demonstrate this, recall that an Inf⊥-open map of Hilde-

brandt [19, Proposition 25] is a fair simulation function (not necessarily surjective)

X ∪ {Ω}
f� Y ∪ {Ω} satisfying (3) and the property:

∀x∈X,q∈FExec(Y )

(

q(ε) = f(x) =⇒ ∃p∈FExec(X) (p(ε) = x ∧ f ◦ p = q)
)

. (5)

Consider the two systems drawn on the right with a function f between the states

depicted by dashed lines.

x x′ ya
a

a

a

In the left system, the infinite executions visiting x′ infinitely often are considered

fair, whereas the only infinite execution in the right system is fair. Clearly, f is a fair

simulation satisfying (5). But f is not a fair bisimulation because the sequence of

finite executions (pi)i∈N formed by unfolding the self-loop on x has a fair execution
⊔

i∈N f ◦pi (looping on y) as the limit in the right system. Yet, (pi)i∈N has no limit,

thus, violating (4).

Remark 4.5 In [19], (separated) presheaves with sup topology are used because

an increasing sequence of finite executions induced by a fair transition system has

at most one limit point. Unlike [19], we are not interested in one-to-one semantic

representation of our syntactical models, so we work with arbitrary presheaves.

This is because the choice whether the semantic universe should be (separated)

presheaves or sheaves depends on observations, i.e., how O is modelled. This is also

why we do not require our semantic functor � � to be full.

Next, we relate fair bisimulation maps with ∀-fair bisimulation relations.

Definition 4.6 A ∀-fair bisimulation on (X,A,→,FairX) is an equivalence relation

R ⊆ X ×X satisfying the following transfer properties:

(i) ∀x,y,x′,a

(

(x
a
−→ x′ ∧ xRy) =⇒ ∃y′ (y

a
−→ y′ ∧ x′Ry′)

)

, and
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(ii) ∀p,q
(

(p =R q ∧ p ∈ FairX) =⇒ q ∈ FairX
)

.

Here, p =R q is an abbreviation for dom(q) = dom(p) ∧ ∀σ∈dom(p)∩A⋆ p(σ)Rq(σ).

Theorem 4.7 Two states x and x′ are related by a ∀-fair bisimulation relation if,

and only if, there is a fair bisimulation function f such that f(x) = f(x′).

The requirement of equivalence relations in the above definition may look super-

fluous at first glance. This is because, traditionally (i.e., when fairness predicates

are empty sets), a strong bisimulation relation by definition is not necessarily an

equivalence relation on the set of states. Moreover, bisimilarity which is defined as

the union of all strong bisimulation relations turns out to be both an equivalence

relation and a strong bisimulation relation. However, such closure results do not

hold in general for ∀-fair bisimulation relations. ∀-fair bisimulation relations are not

closed under union and the relational composition (even if we relax Definition 4.6

by replacing ‘an equivalence relation’ for ‘a symmetric relation’) 4 . Thus, ∀-fair

bisimilarity may, in general, neither be an equivalence relation nor a ∀-fair bisim-

ulation; in other words, ∀-fair bisimilarity is not a coinductive definition (like how

strong bisimilarity is). Nevertheless, we deemed all ∀-fair bisimulation relations to

be equivalences because: first, the main use of a ∀-fair bisimulation relation is to

equate two systems that have the same behaviour sensitive to fair executions; sec-

ond, the mathematics tells us that the kernel of a (fair bisimulation) function is an

equivalence relation.

5 The case of invisible actions

The behaviour of a specification and its implementation is often spread over different

levels of abstraction. The standard process algebraic way to relate the behaviour

of an implementation with its specification is by delineating the effect of actions in

lower levels of abstraction as invisible. For instance, removing a message from a

buffer is considered unobservable in a rendezvous between communicating processes.

This is made formal by reinterpreting the notion of (bi)simulation functions in the

presence of the invisible action τ .

5.1 Branching bisimulation

Notation 5.1 Henceforth, τ �∈ A will denote the invisible action and Aτ = A∪{τ}.

Furthermore, Exec(X,σ) is the set of executions p having trace σ, i.e., max dom(p) =

σ and −։ ⊆ X × A⋆ ×X is the weak reachability relation on (X,Aτ ,→) given as

the smallest relation satisfying the following conditions:

x
ε
−։ x

x
τ
−→ x′

x
ε
−։ x′

x
ε
−։ x′ ∧ x′

ε
−։ x′′

x
ε
−։ x′′

x
σ
−։ x′ ∧ x′

a
−→ x′′

x
σa
−։ x′′

.

4 This is how ∀-fair bisimulation relations are defined in [24] on the states of Kripke structures. In regards
to the above closure properties, we are only aware of [21] who showed that ∀-fair simulation relations are
not closed under union.
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Definition 5.2 A branching simulation function f between systems (X,Aτ ,→)

and (Y,Aτ ,→) is a function X
f� Y satisfying the following properties:

(i) Simulation of observable transitions, i.e., ∀x,x′∈X,a∈A x
a
−→ x′ =⇒ f(x)

a
−→

f(x′), and

(ii) (Possible) simulation of invisible transitions, i.e., ∀x,x′∈X x
τ
−→ x′ =⇒

(

f(x) =

f(x′) ∨ f(x)
τ
−→ f(x′)

)

.

(iii) Stuttering of τ -transitions, i.e., for any x1, x2, x3 we have

(

x1
ε
−։ x2

ε
−։ x3 ∧ f(x1) = f(x3)

)

=⇒ f(x1) = f(x2). (6)

A branching bisimulation f is a branching simulation surjection f satisfying the

‘weak’ reflection of transitions, i.e., for any x ∈ X, y ∈ Y , and a ∈ Aτ we have

f(x)
a
−→ y =⇒ ∃x′,x′′∈X (x

ε
−։ x′

a
−→ x′′ ∧ f(x′) = f(x) ∧ f(x′′) = y). (7)

Definition 5.3 Given a labelled transition system (X,Aτ ,→), then a symmetric

relation R ⊆ X × X is a branching bisimulation [33] if, and only if, the following

transfer property is satisfied

∀x1,x2,y1,a∈Aτ

(

(x1
a
−→ x2 ∧ x1Ry1) =⇒

(a = τ ∧ x2Ry) ∨ ∃y,y2
(

y1
ε
−։ y

a
−→ y2 ∧ x1Ry ∧ x2Ry2

)

)

.

Two states x, x′ ∈ X are branching bisimilar if there exists a branching bisimulation

R such that xRx′.

We work with branching bisimulation functions (not relations) because of the fol-

lowing result (Theorem 5.4), which is similar in spirit to Lemma 2.7 proved by

Caucal in [9]. The difference is that Caucal’s branching bisimulation functions

(which he calls reduction in [9]) do not respect the stuttering of invisible steps

(6). Nevertheless, we are still able to obtain the following correspondence since

the largest branching bisimulation relation satisfies the so-called stuttering lemma

of [33]. In particular, any reduction X
f� Y in the sense of Caucal can be ex-

tended to a branching bisimulation function by composing it with the quotient map

Y
q� Y/R, where R ⊆ Y × Y is the largest branching bisimulation relation on

Y .

Theorem 5.4 Two states x, x′ ∈ X of a transition system (X,Aτ ,→) are branch-

ing bisimilar if, and only if, there are a transition system (Y,Aτ ,→) and a branching

bisimulation function X
f� Y such that fx = fx′.

5.2 The setup

Our first step towards the characterisation of branching bisimulation is the presheaf

representation of executions induced by a transition system with invisible actions.

Since a transition system evolves in a step-based manner, it is sufficient to model the
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time by the set of natural numbers N. The only difference, when compared to the

strong case (cf. Example 2.4), is in the notion of observation. Instead of recording

words from A⋆, our hypothetical ‘observer’ now records words from A⋆
τ . So, consider

a presheaf Nop Aτ� Set in the spirit of A as defined in Example 2.4. Recall that

the slice category PSh(N)/Aτ is equivalent to the category of presheaves on the

category of elements E(Aτ ), which is isomorphic to the category A⋆
τ . Thus, for a

given transition system (X,Aτ ,→), we define a presheaf FX ∈ PSh(A⋆
τ ) as follows:

FX(σ) = Exec(X,σ), (for every σ ∈ A⋆
τ ). (8)

The action on FX is given by the restriction of the domain of an execution.

Incidentally, a branching simulation function X
f� Y between (X,Aτ ,→)

and (Y,Aτ ,→) does not induce a system homomorphism between the underlying

dynamical systems (presheaves) FX and FY because a branching simulation function

does not necessarily preserve the length of the executions. For example, a sequence

of transitions •
τ
−→ •

a
−→ • may get mapped to a transition •

a
−→ •.

Thus, we need a procedure that transforms a given presheaf on A⋆
τ to a presheaf

on A⋆. It turns out that there already is a general result in category theory for this

purpose, which we explain next. In particular, recall the cocompletion of a category

C through the Yoneda embedding C
YC� PSh(C).

Theorem 5.5 (see [27]) For any functor C
h� D, when C is small and D is

cocomplete, there is a colimit preserving functor PSh(C)
Lh� D satisfying Lh ◦

YC
∼= h. Moreover, Lh has a right adjoint Rh given by: RhD(C) = D(hC,D), for

each C ∈ C, D ∈ D.

Using the language of Kan extensions, Lh is the left Kan extension of h along

the Yoneda embedding YC. Moreover, using the notion of a coend [26], we have:

LhF ∼=

∫ C∈C

FC ⊙ hC,

where D
S⊙� D is the copower functor given by S ⊙ D =

∐

s∈S D (taking S

disjoint copies of D). If we replace C
h� D in the above diagram by a map

C
h� D

YD� PSh(D), then we obtain the so-called essential geometric mor-

phism [27] between PSh(C) � PSh(D). In full, this means that the composi-

tion functor h∗ not only has a right adjoint Πh, but also a left adjoint Σh (see, for

instance, [27] for a formal definition of a geometric morphism). Below, the compo-

sition functor h∗, its left adjoint Σh, and its right adjoint Πh are given by (up to

isomorphism) RYDh, LYDh, and Rh∗YD
, respectively.

Corollary 5.6 (see [27]) Given a functor C
h� D between small categories,

then the inverse image functor PSh(D)
h∗

� PSh(C) given by h∗G = G ◦ hop (for
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each G ∈ PSh(D)) has both left and right adjoints:

Σh ⊣ h∗ ⊣ Πh.

So, in principle, there are two ways to land in PSh(A⋆) from PSh(A⋆
τ ) whenever

there is a functor between A⋆
τ

� A⋆. Nevertheless, since our aim is to characterise

branching bisimulation functions, we will choose the left adjoint (over the right

adjoint) of the composition functor for this task. This is because to reflect (recall

(7)) an observable transition – say, of the form •
a
−→ • –, we only need minimal

executions which are of the form • −։ •
a
−→ • (cf. Definition 5.9). In particular,

we will show (cf. Theorem 5.11) that the left adjoint Σh (induced by a suitable h)

transforms a presheaf of executions into a presheaf of minimal executions (or those

executions in which trailing τ -transitions are chopped off).

5.3 An obvious, but failed attempt

There is an evident functor A⋆
τ

h� A⋆ which treats the letter τ as an empty word.

It is then natural to investigate whether the bisimulation maps in PSh(A⋆) between

any two induced presheaves ΣhFX ,ΣhFY characterise the branching bisimulation

map. Unfortunately, the answer is no! We explain this extensively, as this lays the

formal foundation for the desired characterisation given in the next subsection.

So, consider the hiding function Aτ
h� A⋆ which treats τ as the unit of A⋆

(i.e., h(τ) = ε) and treats an action a ∈ A as observable (i.e., h(a) = a when a ∈ A).

This lifts to an order-preserving function A⋆
τ

h� A⋆ (denoted again as h by abuse

of notation). Thus, we have a functor A⋆
τ

h� A⋆.

Proposition 5.7 The categories A⋆
τ , A

⋆ have binary products.

Remark 5.8 It is worthwhile noting that h does not generally preserve finite limits

(or infimum ⊓ in this case). Consider the words aτb, ab ∈ A⋆
τ . Then, h(aτb ⊓ ab) =

h(a) = a; however, h(aτb) ⊓ h(ab) = ab ⊓ ab = ab.

Furthermore, S⊙X ∼= S×X (for any two sets S,X) and the (co)limit in any presheaf

category is computed point-wise. Thus, using these observations, we calculate ΣhF

(for F ∈ PSh(A⋆
τ )) at ̺ ∈ A⋆ as follows:

ΣhF (̺) ∼=

∫ σ∈A⋆
τ

F (σ)× YA⋆(h(σ))(̺) ∼= lim
−→

σ∈A⋆
τ
op,̺�h(σ)

F (σ). (9)

Note that the reason for the last isomorphism is that every colimit can be encoded

as a coend (see [26, p. 224–225] for a dual statement). In addition, (9) is the colimit

of A⋆
τ
op F� Set when ̺ = ε. Notice that A⋆

τ
op is directed; thus, the colimit of the

filtered diagram is
∐

ε�h(σ) Fσ/∼, where ∼ ⊆
∐

ε�h(σ) F (σ) ×
∐

ε�h(σ) F (σ) is the

equivalence relation defined as follows:

(σ, p) ∼ (σ′, p′) ⇐⇒ ∃σ′′

(

σ′′ � σ ∧ σ′′ � σ′ ∧ p · σ′′ = p′ · σ′′
)

. (10)
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It turns out that from a system theoretic viewpoint, the set lim
−→ε�h(σ)

FX(σ) is

nothing but the set of minimal executions whose observable trace is an empty ob-

servation. Theorem 5.11 states this result in full generality.

Definition 5.9 Given a transition system (X,Aτ ,→) and a word ̺ ∈ A⋆, we say

an execution p has an observable trace ̺ if h(max dom(p)) = ̺. Furthermore,

MExec(X, ̺) is the set of all minimal executions w.r.t. the prefix order � on execu-

tions whose observable trace is ̺. Formally, p � p′ ⇐⇒ p′|dom(p) = p and

MExec(X, ̺) =
{

p | ↓ p ∩ {q ∈ Exec(X) | h(max dom(q)) = ̺} = {p}
}

.

Before we prove Theorem 5.11, we need a category theoretic result (which is

probably folklore; see [26, Exercise IV.2.7] for a dual statement), namely, that the

colimit of a diagram can be decomposed into the coproducts of the colimits of

diagrams with smaller shapes under certain restrictions.

Lemma 5.10 Given a set J and a small category C =
∐

j∈J Cj with injections

ιj, then for any functor F from C to a cocomplete category D, we have lim
−→C

F ∼=
∐

j∈J lim−→Cj
F ◦ ιj .

Theorem 5.11 For a given transition system (X,Aτ ,→) and ̺ ∈ A⋆, we have

ΣhFX(̺) ∼= MExec(X, ̺).

Next, we explore the action of the presheaf ΣhFX from a system theoretic view-

point. Firstly, it is defined by the universal property of the colimit. Let ̺′ � ̺

and let σ be a minimal word such that h(σ) = ̺. Then, there is a unique min-

imal word σ̺′ =
�
{σ′ � σ | h(σ′) = ̺′}. Note that this infimum exists since

the history of a word in A⋆
τ is a finite totally ordered set of words. Therefore,

the family of arrows depicted by the dotted arrows in (11) forms a cone, where

A⋆
τ,̺ = {σ ∈ A⋆

τ | ̺ � h(σ)} is a sub-forest of A⋆
τ . Thus, the universal property of

the colimit gives a map ΣhFX̺ � ΣhFY ̺
′, which we denote by Σh(̺, ̺

′).

FXσ ........................� FXσ̺′

(11)

lim
−→

σ∈A⋆
τ,̺

FXι̺σ
�

� lim
−→

σ∈A⋆
τ,̺′

FXι̺′σ
�

................

ΣhFX̺ ∼=� MExec(X, ̺)

(12)

ΣhFX̺′

Σh(̺, ̺
′)

�
∼=� MExec(X, ̺′)

mpast(̺, ̺′)

�

Secondly, for any ̺′ � ̺ with ̺, ̺′ ∈ A⋆, we define a map:

MExec(X, ̺)
mpast(̺,̺′)� MExec(X, ̺′) given by p �→ p|↓σ̺′

,

where σ = maxdom(p). Now we can establish that the isomorphism in Theo-

rem 5.11 is natural in ̺ ∈ A⋆.

Theorem 5.12 For any ̺, ̺′ ∈ A⋆ with ̺′ � ̺, the square in (12) commutes.
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Now that we know what Σh does to a presheaf, we use the category PSh(A⋆)

as our semantic universe to handle invisible actions. Thus, for a given (X,Aτ ,→),

we let �X� = ΣhFX . In addition, for a branching simulation function X
f� Y ,

we use the isomorphic view of minimal executions and let �f�̺(p) = pf (for each

̺ ∈ A⋆), where pf is an execution defined inductively using the following rules.

• If dom(p) = ε then dom(pf ) = ε and pf (ε) = f(p(ε)).

• If p
a
−→ p′, pf

a
−→ q, last(q) = f(last(p′)), and a ∈ A then p′f = q.

• If p
τ
−→ p′ and f(last(p)) = f(last(p′)) then p′f = pf .

• If p
τ
−→ p′, f(last(p)) �= f(last(p′)), pf

τ
−→ q, last(q) = f(last(p′)) then p′f = q.

Here, p
a
−→ p′ ⇐⇒ dom(p′) = dom(p)a ∧ p ≺ p′; the function last(p) returns the

last visited state by the execution p, i.e., last(p) = p(max dom(p)).

Lemma 5.13 For a given branching simulation function X
f� Y and a minimal

execution p ∈ MExec(X, ̺), we have pf ∈ MExec(Y, ̺).

Next let LTSτ be the category of transition systems with possible invisible steps,

which comprises of transition systems as objects and morphisms are the collection

of identity functions and branching simulation functions. Thus, we can now give a

presheaf semantics for the category LTSτ .

Theorem 5.14 The mapping LTSτ
� �� PSh(A⋆) is a faithful functor.

Finally, we can invoke the bisimulation maps in PSh(A⋆) but the characteri-

sation of branching bisimulation functions fails to hold. The mismatch is in the

reflection (7) of invisible steps (not with the reflection of observable transitions),

which we explain next in the following example.

Example 5.15 Consider the two transition systems and the branching simulation

f depicted below with dashed lines. Note that f is not a branching bisimulation

function (even though it is surjective) because it fails to reflect the transition y1
τ
−→

y3.

x1

x2 x3

y1

y3y2

a
τa

Yet �f� is a bisimulation map in PSh(A⋆). For this consider a given commutative

square (2) in PSh(A⋆). The crucial case in defining the functions k̺ is when ̺ ∈

{ε, a}.

• Let q ∈ Q(ε). If nε(q) = εyi then we let kε(q) = εxi
(for i ∈ {1, 2, 3}).

• Let q ∈ Q(a). Then, na(q) is the minimal execution witnessing y1
a
−→ y2 since

there are no other minimal executions in MExec(Y, a). Thus, we let ka(q) to be

the minimal execution witnessing the transition x1
a
−→ x2.
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5.4 Characterisation of branching bisimulation

Unfortunately, all the information related to silent transitions is lost by transforming

a presheaf using the functor Σh because all the executions with empty observations

get fused into their corresponding empty (minimal) executions. In retrospect, the

problem lies in our specification of observation since our hypothetical ‘observer’ O

is unable to differentiate between empty observation due to no system move and

empty observation due to zero or more system moves. Therefore, to model this

latter observation, we introduce a constant τ̄ which can be observed anytime after

0. So for this section, we define O in the next page as follows:

O(0) = Aτ (0) and O(n) = Aτ (n) ∪ {τ̄} (for every n > 0);

σ ·m =

⎧

⎪

⎨

⎪

⎩

σ|m, if σ �= τ̄

ε, if m = 0 ∧ σ = τ̄

τ̄ , if m > 0 ∧ σ = τ̄ .

(

for any m ≤ n and σ ∈ O(n)
)

.

Put differently, τ̄ is ‘really’ a constant observation over time except at 0. The

introduction of τ̄ is new and inspired from the constant η [4] which can be viewed

as an empty observation due to at least one system move.

Proposition 5.16 The above mapping N
op O� Set is a presheaf.

Moreover, the categories PSh(N)/O and PSh(E(O)) are equivalent (Theorem 2.6).

So, consider the category of elements E(O) whose objects are tuples (n, σ) (for

n ∈ N, σ ∈ O(n)) and whose arrows are given by the rule:

(n, σ) −→ (n′, σ′) ⇐⇒ n ≤ n′ ∧ σ′ · n = σ.

Just as the category E(Aτ ) has a simpler description in terms of A⋆
τ , we simplify

E(O) by defining a set A⋆
τ τ̄ = A⋆

τ ∪ {(n, τ̄) | n > 0} ordered by the smallest relation

�⊆ A⋆
τ τ̄ ×A⋆

τ τ̄ satisfying the following rules:

(|σ|, σ) −→ (|σ′|, σ′) ∈ E(Aτ )

σ � σ′

(m, τ̄) −→ (n, τ̄) ∈ E(O)

(m, τ̄) � (n, τ̄)

n > 0

ε � (n, τ̄)
.

Note that the leftmost rule is concerned with the elements of A⋆
τ . Thus, the slice

category PSh(N)/O is equivalent to the category PSh(A⋆
τ τ̄ ) since E(O) ∼= A⋆

τ τ̄ .

Using the presheaf FX (cf. (8)) induced by a given transition system (X,Aτ ,→),

define a presheaf F̄X ∈ PSh(A⋆
τ τ̄ ) as follows:

F̄X(σ) =

{

FX(σ), if σ ∈ A⋆
τ

∐

n∈N FX(τn), otherwise
, where

τ0 = {ε}

τn+1 = τn ∪
∏

n+1{τ}
.

The executions based on invisible steps are seen stretchable in time by O, i.e., a

system may perform invisible executions of length independent of time instants.
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This is encoded in the second clause of F̄X . To complete the definition of F̄X as a

presheaf, we define, for any p ∈ F̄X(σ) and σ′ � σ in A⋆
τ τ̄ , the action of F̄X as:

p · σ′ =

⎧

⎪

⎨

⎪

⎩

p|↓σ′ , if σ ∈ A⋆
τ ∧ σ′ ∈ A⋆

τ

p|{ε}, if σ �∈ A⋆
τ ∧ σ′ = ε

p, if σ �∈ A⋆
τ ∧ σ′ �∈ A⋆

τ .

Notice how the above formulation closely follows the three defining clauses of O.

Proposition 5.17 The mapping F̄X defined above is a contravariant functor.

To characterise branching bisimulation, define a structure A⋆
τ̄ similar to A⋆ and

a structure preserving map A⋆
τ τ̄

� A⋆
τ̄ similar to h (Section 5.3). To this end,

our semantic category for branching bisimulation will be A⋆
τ̄ = A⋆ ∪ {τ̄} ordered by

the relation �⊆ A⋆
τ̄ ×A⋆

τ̄ consisting of prefix relation and the pairs (ε, τ̄), (τ̄ , τ̄). We

consider A⋆
τ τ̄

h̄� A⋆
τ̄ given by: h̄(σ) = h(σ), if σ ∈ A⋆

τ ; and h̄(n, τ̄) = τ̄ (for all

n ∈ N).

Next, we aim to compute the presheaf Σh̄F̄X at ̺ ∈ A⋆
τ̄ . At this stage, we

can take the advantage of similarity between the structures A⋆
τ , A

⋆
τ τ̄ and A⋆, A⋆

τ̄ to

compute the colimits, similar to (9) where A⋆
τ
op is replaced by A⋆

τ τ̄
op as the indexing

category. In lieu of Theorems 5.11 and 5.12, we obtain

Theorem 5.18 For a given transition system (X,Aτ ,→), we find that Σh̄F̄X(τ̄) ∼=
∐

n∈N Exec(X, τn) and Σh̄F̄X(̺) ∼= MExec(X, ̺) (for any ̺ �= τ̄). Moreover, the

above isomorphisms are natural in ̺ ∈ A⋆
τ̄ . I.e., for any ̺′ � ̺ with ̺, ̺′ ∈ A⋆, the

square in (12) and the following square commute.

Σh̄FX(τ̄) ∼= �
∐

n∈N

Exec(X, τn)

ΣhFX(ε)

Σh̄(τ̄ , ε)

�
∼= � MExec(X, ε)

|ε

�

Note that the definition of the maps Σh̄(̺
′, ̺) (for ̺′ � ̺) is similar to the maps

Σh(̺
′, ̺) defined by the universal property of colimits (see (11)). Just like in the

previous subsection, we utilise the isomorphic view of minimal executions to define

our semantic map LTSτ
� �� PSh(A⋆

τ̄ ):

• For a given transition system, we let �X� = Σh̄F̄X .

• For a given branching simulation function X
f� Y , we let �f�̺(p) = pf .

Lemma 5.19 The above mapping � � is a faithful functor.

Finally, we have obtained the desired result of this section.

Theorem 5.20 A branching simulation function f is a branching bisimulation

function iff �f� is a bisimulation map in PSh(A⋆
τ̄ ).
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6 Related work and Conclusion

The core idea of Goguen’s sheaf semantics [16] is: systems are diagrams of

sheaves, behaviour (interconnection) of systems is their limit (colimit). In retro-

spect, Goguen gave a sheaf semantics of nondeterministic automata by constructing

presheaves on the Alexandroff topology induced by the downward closed subsets of

A⋆ (in contrast to presheaves over A⋆). However, it is well known that the category

of sheaves on Alexandroff spaces induced by a poset (X,�) is equivalent to the

category of presheaves on X (a consequence of the so-called comparison lemma in

topos theory; see [27, Corollary 3 on Page 590]). In short, we use simpler structures

to represent executions and focused on defining bisimulations abstractly which were

absent in [16].

Relational presheaves [31] generalise transition systems that are labelled by

words from the free monoid A⋆. The idea was to accommodate the earlier presheaf

approaches [23,34] with algebraic structure on labels. The most insightful observa-

tion of [31] was the well-known ‘saturation’ construction on transition systems can

be captured using a 2-adjunction induced by a homomorphism between A⋆
τ , A

⋆. Un-

like [31], our left adjoint Σh records the minimal executions induced by a transition

system with silent steps. We expect this to be relevant for probabilistic systems,

where minimal executions are used to define a probability measure (cf. [6]).

Open maps between presheaves as defined in [23] are instances of the open maps

in a topos as introduced in [22]. This is because open maps between presheaves (as in

[23]) are natural transformations whose naturality square is a weak pullback in Set

(cf. [22, Example 1.1]). We discarded the open maps between presheaves because

they are incapable of establishing complete refinement between an implementation

and its specficiation; though it is still interesting to assert whether the bisimulation

maps (Def. 3.1) satisfy the axioms given in [22].

Prefix orders are generalisations of trees proposed in [10] to study executions

of dynamical systems in an order theoretic manner. In [5], the authors defined

functional bisimulation between prefix orders by reinterpreting the definition of

open maps in concrete categories. Our bisimulation maps are an instance of this

general definition (Section 3). It is unclear, though, how to enrich prefix orders with

observations so that we can model labelled executions in a uniformly. This question

lead us to model observations as presheaves.

To sum up, bisimulation maps between presheaves are versatile enough to cap-

ture different notions of behavioural equivalence. We demonstrated this by charac-

terising ∀-fair bisimulation and branching bisimulation, two notions that are notori-

ously difficult to capture with a coalgebraic approach. The clear distinction between

time and observation proved fruitful in dealing with silent actions, but we also ex-

pect our framework to lend itself well to modelling hybrid systems. For instance,

sheaves over the translation-invariant interval domain IR/⊲ were introduced in [30]

to model hybrid systems. It will be interesting to explore whether bisimulation maps

between such sheaves (Remark 3.2) coincides with stateless bisimulation [7, 11, 32].
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