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Abstract 

This paper is concerned with the development of a composite index for the resilience 

of road transport networks under disruptive events. The index employs three resilience 

characteristics, namely redundancy, vulnerability and mobility. Two different 

approaches, i.e. equal weighting and principal component analysis, are adopted to 

conduct the aggregation. In addition, the impact of the availability of real-time travel 

information for travellers on the three resilience characteristics and the composite 

resilience index is described. 

The application of the index on a synthetic road transport network of Delft city 

(Netherlands) shows that it responds well to traffic load changes and supply variations. 

The composite resilience index could be of use in various ways including supporting 

decision makers in understanding the dynamic nature of resilience under different 

disruptive events, highlighting weaknesses in the network and in assisting future 

planning to mitigate the impacts of disruptive events. 

Introduction 

The transport sector plays a leading role in enhancing economic growth and societal 

welfare in addition to its influence on various types of human activities. However road 

transport networks can be exposed to a wide range of disruptive events that vary in 

their type, scale and consequences. Disruptive events are responsible for around 25% 

of the congestion experienced on motorways in England (Highways Agency, 2009) 

and are the largest single cause of journey unreliability (Hooper et al., 2014). In the 

USA, the estimated loss due to disruptive events is 1.3 billion vehicle-hours of delay 

every year, at a cost of almost US$10 billion (FEMA, 2008). 

An assessment of the resilience of a road transport network could cover several 

issues, some of which could be related to the configuration of the road transport 

network and available capacity (Lhomme et al., 2013). This may include the number 

of routes between origin-destination (OD) pairs and the road capacity under different 

scenarios (Ip and Wang, 2009). It may increase understanding of how management 

policies and/or technologies could improve the overall performance of the road 

network under disruptive events, or improve daily operation of the network. It could be 
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used, for example, to assess the effect of pre-trip travel information or en-route travel 

information on driver decisions during disruptive events. Furthermore, Rogers et al. 

(2012) suggested that new ways of engineering, managing and delivering resilient 

local infrastructure need to be developed. 

Several quantification approaches can be identified in the resilience literature. The first 

approach is based on identifying resilience characteristics (Bruneau et al., 2003; 

Murray-Tuite, 2006). These include redundancy, diversity, resourcefulness, efficiency, 

autonomous components, robustness, collaboration, adaptability, mobility, safety, 

vulnerability and the ability to recover quickly. The dependence of each of these 

characteristics on others and the complex relationship between them represents a 

barrier to designing a resilience index (Murray-Tuite, 2006). However, to the best of 

the authors’ knowledge, to date there is no resilience index utilizing all the above 
characteristics. 

This paper, therefore, presents a composite resilience index based on three resilience 

characteristics, namely redundancy, vulnerability and mobility, using equal weighting 

and principal component analysis. However, the proposed methodology could be 

extended to include further resilience characteristics. A synthetic Delft city road 

transport network is used to test the ability of the indices to show variations in the level 

of resilience under different scenarios. 

Resilience Characteristics 

In this paper, the resilience of road transport network refers to the ability of the road 

transport network to function to acceptable levels under disruptive events. A number 

of characteristics are used to quantify the resilience of road transport networks in line 

with the approach used by McManus (2008), Murray-Tuite (2006) and Bruneau et al. 

(2003), as presented in Table 1. 

Three of the characteristics in Table 1, namely redundancy, vulnerability and mobility 

are employed here. They have been chosen to reflect different aspects of road 

transport network resilience, as discussed in the following section. In reality, all these 

characteristics interact with each other and it may be difficult to investigate one in 

isolation. 
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In the following sections, the interdependence of the three resilience characteristics 

and the importance of each characteristic is explored, followed by the development of 

a composite resilience index. A case study to illustrate the use of the index is also 

presented. 

Indicators for the Characteristics of Resilience 

Indicators are used to quantify changes in (and the effectiveness of) the system 

elements. They should have the ability to reflect the impact of a certain policy or 

technology on the targeted system. In previous investigations, the authors developed 

indicators to assess the three resilience characteristics using various attributes and 

methodologies briefly described below, while the full details are available in EL 

Rashidy and Grant-Muller (2014, 2015 and 2016). These indicators of the 

characteristics of resilience are used as the basis for the composite resilience index 

developed in this paper. 

Redundancy Indicator 

Redundancy has a significant impact on the resilience of road transport networks as it 

represents the spare capacity of road transport networks under different scenarios. 

The approach proposed by El Rashidy and Grant-Muller (2016) to quantify the 

redundancy characteristic will be adopted in the composite resilience index. A brief 

explanation of this approach is covered below, see (El Rashidy and Grant-Muller, 

2016) for full details. In this method, a junction redundancy indicator is first developed 

by taking into account both traffic flow variations and network topology using the 
concept of entropy. Various network parameters based on different logical 

combinations of link flow, relative link spare capacity and relative link speed were 

examined to identify the best system parameters that could be used to develop a 

junction redundancy index, reflecting junction topology and traffic flow conditions. 

Such an approach facilitates the identification of critical junctions within the network 

that have low redundancy indices. A network redundancy indicator, ܴܰܫ, was, then, 

obtained from an aggregation of all network junction redundancy indices, based on the 

junction flow compared with the total flow for all junctions. The range of ܰ  is between ܫܴ

0 and 1; where 0 indicates no redundancy in the network and 1 reflects the highest 

redundancy level of the network. 
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Vulnerability Indicator 

The aim of including a vulnerability assessment in the resilience composite index is to 

investigate the influence of disruptive events on the road transport network links. 

Barker et al. (2013) used vulnerability as the only resilience indicator during disruptive 

events, emphasising its importance. However, disruptive events have a wide spectrum 

in many dimensions, causing different scale impacts at various parts of road transport 

networks. 

El Rashidy and Grant-Muller (2014) proposed a vulnerability indicator for road 

transport network based on a number of link attributes, such as link flow, free flow 

speed, capacity and number of lanes as stated in Table 2. The set of link attributes 

were selected to capture as many features as possible of the impact of link closures 

on the network vulnerability and were as orthogonal as possible. In order to combine 

various link attributes into a single link vulnerability indicator, both fuzzy logic and 

exhaustive search optimisation techniques were adopted. A network vulnerabili ty 

indicator, ܸܰܫ, was also calculated based on the ratio of the link flow to the total flow 

for all links. ܸܰܫ ranges between 0 and 1; where 0 indicates no vulnerability in the 

network and 1 reflects the highest vulnerability of the network. 

Mobility Indicator 

Mobility is defined as the ability of road transport networks to provide connections to 

jobs, education, health service, shopping, etc., at an acceptable level of service 

(Hyder, 2010). As such, the variation in the level of mobility could be a direct indicator 

to measure the response of the road transport network to changes in conditions, e.g. 

deterioration of road capacity due to adverse weather conditions or an increase in 

demand. 

The technique proposed by El Rashidy and Grant-Muller (2015) for the quantification 

of the mobility characteristic is applied here to develop the composite resilience index. 

In this approach, two mobility attributes were proposed to account for the physica l 

connectivity and road transport network level of service. The physical connectivi ty 

attribute is used to evaluate the ability of road transport network to offer a route to 

connect OD, whereas the traffic condition attribute was considered as a measure of 

the road transport network level of service, based on traffic conditions. The relative 
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importance of the two mobility attributes was established through a fuzzy inference 

reasoning procedure in order to estimate an origin-destination mobility indicator. A 

network mobility indicator, ܰܫܯ, was also estimated based on the level of demand 

between each origin-destination pair. The range of ܰܫܯ is between 0 and 1; where 0 

indicates no mobility in the network and 1 reflects the highest mobility of the network. 

Interdependence of the Resilience Characteristics 

Figure 1 illustrates the relationship between road transport network resilience, the 

three characteristics and their attributes using the bottom-up level of the attributes for 

each characteristic. For example link flow changes affect the redundancy 

characteristic by increasing or decreasing the spare capacity on the link and several 

attributes of vulnerability characteristic, as shown in Figure 1. Variations in traffic flow 

can result in a change to the travel speed on a link, affecting the level of mobility by 

increasing or decreasing the traffic condition attribute. However changes in mobility 

could also vary under the same level of traffic flow due to the network configuration, 

measured by the physical condition attribute. Similarly, a decrease in network capacity 

due to the closure of one or more links (e.g. due to an accident, floods or adverse 

weather conditions) could also influence the three characteristics, as shown in the 

case study later. Table 2 summarises the attributes used to quantify the three 

resilience characteristics, the level of measurement and importance of each 

characteristic. The level at which the redundancy and vulnerability indicators are 

calculated (i.e. junction level and link level respectively) suggests that both 

characteristics reflect resilience from the perspective of planners, decision makers and 

stakeholders. However as mobility is calculated at OD level it could be considered to 

be a reflection of resilience from the travellers point of view (see Table 2). Given that 

the proposed indicators are calculated at different levels, each indicator has finally 

been aggregated to the network level. 

The three characteristics represent three interconnected capabilities of road transport 

networks, as presented in Table 2. Redundancy can be considered as the ability of 

the network to adapt to a change in demand or supply, e.g. the availability of several 

routes to a junction under different scenarios. A high level of network redundancy 

could result in links being less vulnerable given there is the possibility for traffic to be 

distributed more widely over the network links, rather than congestion being 
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concentrated on certain routes. The vulnerability characteristic indicates the ability of 

the network to recover as it captures the interaction between the distribution of traffic 

and the capacity of the road transport network. Mobility is also essential to fulfil the 

resilience concept as it assesses the main function of the road transport network. 

The three characteristics could be influenced by some common factors, as will be 

shown using the principal component analysis. However the magnitude of the impact 

of these common factors on the characteristics can vary from one characteristic to 

another, as demonstrated in the case study. Moreover, the type of impact (i.e. positive 

or negative), may change from one period of time to another for the same 

characteristic, reflecting the complex relationships inherent in the road transport 

network under different conditions. As an example, the reassignment of traffic due to 

an accident could, in some cases, lead to a decrease in the level of vulnerabili ty 

compared with the ‘no accident’ scenario. This set of dependencies and levels of 

measurement provides the rationale for a composite resilience index. 

A Composite Resilience Index for Road Transport Networks 

Despite the importance of measuring the level of each characteristic separately, it 

could be useful to estimate the overall level of resilience using a composite resilience 

index. Smith (2002) outlined the advantage and disadvantages of a composite index 

in general. The advantages focus on its role as a communication tool that offers an 

overall rounded assessment of performance and in giving an indication of the 

behaviour of the system under consideration. It can be used to summarize multi -

dimensional issues and include more information, allowing a comparison between 

different scenarios or places (Saisana and Tarantola, 2002). Despite the advantages 

of a composite index, a number of disadvantages also have to be taken into account. 

For example the use of a composite index only may lead to simplistic policy 

conclusions and may not be adequate to identify the changes required for 

improvements (Saisana and Tarantola, 2002). Consequently, it might be useful to 

consider both aggregate and disaggregate levels, (i.e. indicators for individual 

resilience characteristics in addition to a composite resilience index) in the 

assessment. In order to produce an aggregate index it is necessary to consider the 

method of aggregation and in particular the potential use of weights. 
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In the following section, a number of aggregation methods are briefly reviewed. 

Subsequently, two methods (namely equal weighting and principal component 

analysis) are implemented to develop the composite resilience index. 

Aggregation Approaches 

Aggregation often involves the use of weights on individual components rather than 

simple addition. According to Saisana and Tarantola (2002), weighting techniques can 

be classified into three main categories, statistical methods (e.g. principal component 

analysis), methods based on experts’ opinions (e.g. analytical hierarchy processes) or 

equal weighting amongst variables. In the resilience literature, several weighting 

approaches have been adopted to obtain a composite index. Briguglio et al. (2009) 

used a simple average (i.e. equal weighting) to obtain a composite economic resilience 

index, whilst Stolker (2008) used analytical hierarchical process to estimate the overall 

operational resilience of an organization. In McManus (2008), the estimated values of 

the resilience characteristics are multiplied together to obtain the relative overall 

resilience for an organization. Hyder (2010) added the number of “Low” scores for ten 

characteristics to estimate a vulnerability index for each link as a method to estimate 

the resilience of road transport networks. 

The equal weighting method is widely used in many disciplines (Estoque and 

Murayama, 2014; Briguglio et al., 2009) due to its simplicity and transparency. 

However, the equal weighting method suffers from potential double counting effects in 

the final index. In addition, it does not necessarily reflect the relative priorities of 

different indicators (Saisana and Tarantola, 2002).  

Statistical methods such as principal component analysis have been widely used in 

many applications, including the development of a transport sustainability index (e.g. 

Reisi et al, 2014). It has many advantages as it does not involve any manipulation of 

weights through subjective process, unlike methods based around experts’ opinions 

and overcomes the double counting effect inherent to the equal weighting method. 

However, the method is sensitive to the dataset used, as the weights may change 

according to the dataset from which the indicators have been derived. 



9 

A wide range of further methods can be used to develop a composite index using 

many indicators, such as regression, conjoint analysis, benefit of the doubt and data 

envelopment analysis (see Saisana and Tarantola, 2002). However, the choice of an 

appropriate weighting method could be a challenge as no agreement on the ideal 

aggregation method has been reached so far. To construct a composite resilience 

index based on the three proposed characteristics in this research, two methods of 

weighting are adopted i.e. equal weighting, and principal component analysis. The 

equal weighing method was chosen due to its simplicity and transparency, which could 

facilitate its use in practice. Principal component analysis has also been implemented 

as it allows the elimination of interdependence among the indicators for the 

characteristics. 

Equal Weighting Method 

In line with the approach taken by Briguglio et al. (2009), the equal weighting method 

(EWM) is used here to combine redundancy, vulnerability and mobility indicators into 

a composite resilience index (ܫܴܥ௘௤). The method is based on allocating equal weights 

to all the indicators considered, as given by Eq. (1) below: 

௘௤ܫܴܥ  ൌ ሺሺଵିே௏ூሻାேோூାேெூሻଷ  (1) 

where ܸܰܫܴܰ ,ܫ and ܰܫܯ are the vulnerability, redundancy and mobility indicators for 

the road transport network respectively. As vulnerability is inversely proportional to 

resilience, the value ሺͳ െ  .ሻ is usedܫܸܰ

However the use of the EWM could result in double counting with implications for the 

value of the composite index (as previously discussed). In order to avoid this 

weakness, principal component analysis is also implemented as a second approach 

and a comparison is, then, made with use of the EWM. 

Principal Component Analysis 

The main aim of the principal component analysis (PCA) approach is to convert a set 

of data of possibly correlated variables into a set of values of linearly uncorrelated 

variables, called principal components (Tabachnick & Fidell, 2007). The principal 

components calculated are still able to capture all the information present in the 



10 

original variables. However, the first principal component accounts for the largest 

possible variance whilst the last component accounts for the least variance. It should 

also be noted that each principal component is orthogonal to the preceding one 

(Tabachnick & Fidell, 2007). 

The applicability of PCA is based on the correlation (positive or negative) among the 

original variables. The first step in PCA is therefore to measure the sample adequacy 

using the Kaiser-Meyer-Olkin1 measure (Reisi et al., 2014), with high values between 

0.6 and 1.0 required in order to apply PCA. The second step is concerned with the 

extraction of a number of principal components to fully represent the original variables: 

௝ܥܲ  ൌ  σ ܽ௜௝௡௜ୀଵ ܺ௜   (2) 

where ܲܥ௝ is the principal component ݆, ܺ௜ represents the original variables (e.g. ܸܰܫܴܰ ,ܫ and ܰܫܯ) and ܽ௜௝ is the weight for the jth principal component and the ith indicator ܺ௜. As vulnerability is inversely proportional to resilience in this context, the 

corresponding variable is assumed to be 1 minus the vulnerability index (as explained 

for the EWM). The mobility and redundancy indicator values are input directly. The 

number of principal components could be as many as the number of original variables, ݊. The weights ܽ௜௝ are calculated from the eigenvectors of the covariance matrix of the 

original data. ܽ௜௝ is given by Eq. (3) below (Reisi et al, 2014): 

 ܽ௜௝ ൌ ఌ೔ೕమఒೕ  (3) 

where ߝ௜௝ represents the factor loadings and ߣ௝ is the corresponding eigenvalue of the 

covariance matrix for the data. The above weights are normalised with respect to the 

sum of weights in order to scale them between 0 and 1. The method developed by 

Nicoletti et al. (2000) is then adopted to calculate a composite index of road transport 

network resilience from the principal components obtained using the original data for 

                                                 

1 The Kaiser-Meyer-Olkin measure is a ratio of the sum of squared correlations to the 
sum of squared correlations plus the sum of squared partial correlations (Tabachnick 
& Fidell, 2007). 
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the three characteristics. The aggregated ܲܥ௝ (based on its eigenvalues) can then be 

used to calculate the composite resilience index, ܫܴܥ௣௖  as presented in Eq. (4) below: 

௣௖ܫܴܥ  ൌ σ σ݆ߣ ೘ೕసభ௠௝ୀଵ݆ߣ  ௝ (4)ܥܲ

Further discussion on PCA is given in Tabachnick & Fidell (2007). 

Case Study 

In this section of the paper, the variation of the proposed composite resilience index 

will be explored for a road transport network under different demand-variation 

scenarios. It will also allow a comparison between the proposed composite resilience 

index using the two aggregation techniques, namely equal weighting and principal 

component as explained above. 

As a traffic data set related to road transport networks under disruptive events is not 

currently available, road transport network modelling has been adopted as an 

alternative technique. It also introduces an effective way to understand traffic flow 

characteristics and dependence relationships among various parameters. 

Furthermore, it has been generally used by decision makers and planners to evaluate 

the effectiveness of various strategies and plans. 

A synthetic road transport network of Delft city is used below to investigate the impact 

of real-time travel information on the variation in the three resilience characteristics 

and estimation of the resilience composite index. The synthetic Delft road network 

model is supplied for use with OmniTRANS software (Ver. 6.1.2) and deviates from 

the real network for the city of Delft. The Delft case study was chosen due to the 

availability of the data needed to illustrate the methodology but it is not possible to 

make direct validation of the link traffic data provided as the network is synthetic. There 

is also a limitation of the road transport network modelling approach in general, as 

only a limited number of attributes/parameters can be changed in the simulation, 

decreasing a potentially significant number of combinations with case-based 

reasoning. Consequently, some relevant combinations could be ignored. It is to be 

noted that the main objective of this research is to develop a generic methodology for 

the estimation of road transport network resilience. Thus, intensive calibration studies 
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(as part of the modelling of a road transport network) are beyond the scope of this 

paper but are possible as part of future development. 

The Delft road transport network consists of 25 zones; two of which are under 

development (24 & 25), and 1142 links; 483 links are two-way whilst 176 are one-way 

including connectors and different road types. In the OmniTRANS software (Version 

6.1.2) a four step modelling software for road transport networks was used for the case 

study. Although OmniTran software allows the user to control the four steps of road 

transport network modelling, namely trip generation, trip distribution, mode choice and 

trip assignment stages, the trip assignment is the only stage altered in this research 

as traffic demand is assumed to be deterministic during the morning peak. The 

OmniTRANS software is able to take into account the impact of road transport network 

conditions on travellers’ behaviour by implementing a route choice model within the 

dynamic traffic assignment (DTA) framework. The DTA framework has a number of 

blocks such as route generation, route choice behaviour, a dynamic network loading 

model (including a propagation model and junction model), in addition to traffic 

management controls. Full details are available in other sources, for example Dijkhuis 

(2012). To simulate the influence of real-time travel information, a number of route 

choice stages are included where travellers choose their routes during the simulation 

period, assuming dynamic user equilibrium (DUE) is achieved at every route choice 

stage. This simply means that at every route choice stage, travellers can reduce their 

travel cost by switching routes, assuming that they have real-time travel information 

enabling them to make a better route selection. The percentage of travellers who may 

consider changing their route should be identified in the simulation as it could influence 

the impact of operating the information system. However, it has been assumed that all 

travellers consider real-time travel information in selecting their routes in the current 

simulation. 

Scenarios Implemented 

Six scenarios were used to investigate the variation in ܴܰܫܯܰ ,ܫܸܰ ,ܫ and ܫܴܥ during 

the morning peak (i.e. 7:00am to 9:00am). The scenarios were divided into two groups 

according to the availability of real-time travel information. For each group of 

scenarios, three demand increases were used with the same departure rates. Table 3 

presents the scenarios according to travel time updating conditions and percentage 
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increase in demand, whilst Figure 2 shows departure rates used. It is to be noted that 

the departure rates selected in Fig. 2 are synthetic due to the limitation of OmniTRANS 

as higher variations in departure rates produced unreliable results. The three 

scenarios (i.e. S1_a, S1_e and S1_h) have the same travel time updating schedule of 

every 900 seconds, whilst traffic demand increases from 0% to 50%. The remaining 3 

scenarios (S2_a, S2_e and S2_h) have similar demand increases to the first group, 

but no real-time travel information is provided. 

For each of the 9 scenario reports (a 15 minute aggregated report for the time period 

between 7:00 to 9:00am) are produced from the OmniTRANS, including link travel 

time, speed and load, in addition to the number of lanes, direction, length, free flow 

speed, capacity, and upstream and downstream junctions. An OmniTRANS task was 

written to obtain the full set of routes for each OD pair, with the fraction of the demand 

used for each route for each time period under different scenarios (22760 routes for 

every scenario). The data obtained from OmniTRANS were then implemented in 

MATLAB code to calculate the network redundancy indicator ܴܰܫ, vulnerabi li ty 

indicator ܸܰܫ and mobility indicator ܰܫܯ using the methodologies detailed in EL 

Rashidy and Grant-Muller (2014, 2015 and 2016). 

Results and Discussion 

The use of real-time travel information (updating every 900 seconds) generally leads 

to an improvement in ܴܰܫ as shown in Figure 3. This is as intuitively expected and in 

line with the M42 (Junction 3a) motorway case study results presented in EL Rashidy 

and Grant-Muller (2016). However, the level of improvement varies according to 

different departure rates in each scenario as explained below: 

 Between 7:00am and 7:15am, ܴܰܫ has responded inversely to the increase in 

demand but with no notable changes arising from the use of real-time travel 

information (e.g. ܴܰܫs for scenarios S1_a and S2_a have almost the same value,ൎ ͲǤͺ͹ at 7:15am). This could be attributed to the fact that the traffic has been 

allocated based on the dynamic user-equilibrium technique in all scenarios, which 

could offset the advantage of real-time travel information in less-congested network 

conditions, as concluded by Mahmassani and Jayakrishnan (1991). 



14 

 However at 7:30am where the loading of the network increases, the use of real-

time travel information has a positive impact in all three scenarios due to a better 

route choice by all travellers owing to level of information received, leading to less 

congestion on particular routes. 

 The positve impact continues in the following time period (starting at 7:45am) for 

both normal demand and a 20% increase in demand (S1_a and S1_e compared 

with S2_a and S2_e, respectively). However there is no significant impact under 

the 50% demand increase scenario (e.g. ܴܰܫ ൌ ͲǤͺͲ for S1_h compared with ܴܰܫ ൌͲǤ͹ͻ  for S2_h at 7:45am). This could be related to the ability of the road network to 

offer alternative uncongested routes to accommodate the network loading under 

scenarios S1_a and S1_e. In contrast, the use of real-time travel information may 

not offer improvements in S1_h due to the congested conditions that can result from 

residual traffic, as suggested by other literature (Yang and Jayakrishnan, 2013). 

 Conditions in the subsequent time periods (i.e 8:00 - 8:30am) confirm the previous 

justification, given the road transport network has lower loading in S1_a and S1_e 

where the impact of real-time travel information is minimum (i.e. minor change 

under normal conditions and a 20% demand). Moreover, congestion could be 

relieved under a low departure rate and reduced residual traffic, leading to a 

significant improvement in the case of S1_h. 

This reflects the complex relationship between increase in demand and the level of 

real-time travel information, as real-time travel information does not necessarily 

increase ܴܰܫ for each scenario and under different network loadings. 

The vulnerability indicator, ܸܰܫ, shows variations under different departure rates when 

calculated for the six scenarios, as depicted in Figure 4. For example, using real-time 

travel information leads to a reduction in ܸܰܫ at 7:30am and 8:15am under the normal 

demand scenario, and at 7:45am and 8:45am for a 20% increase in demand. It also 

leads to a decrease in ܸܰܫ under a 50% demand increase scenario at 8:00am and 

8:15am, as shown in Figure 4. 

The variation in ܸܰܫ may be related to that of ܴܰܫ. For example, when the use of real-

time travel information has a positive impact on ܴܰܫ, it could be assumed that 

travellers have a better route choice, resulting in less vulnerable links in some cases, 

such as at 7:30am and 7:45am for the S1_a and S1_e scenarios, respectively. 
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However, the use of real-time travel information could also lead to a negative impact 

on ܸܰܫ (i.e. increase in ܸܰܫ) in some cases. For example, ܸܰܫ value for S1_a scenario 

is higher than that of ܸܰܫ for S2_a scenario at 7:45am, as depicted by Figure 4. 

For the mobility indicator, ܰܫܯ, the importance of real-time travel information updates 

increases with the increase in demand, as shown in Figure 5. ܰܫܯ has a similar trend 

to ܴܰܫ but with different values. However, at 7:45am for S1_a, ܰܫܯ does not show 

any improvement with the use of real-time travel information in contrast to ܴܰܫ, 
indicating the impact of the increase in ܸܰܫ. 
Before calculating the composite resilience index, the Kaiser-Meyer-Olkin (KMO) 

measure was estimated for the three characteristic indicators to examine sampling 

adequacy and the applicability of PCA. For the 6 scenarios, the values of KMO was 

found to be between 0.63 (S1_a) and 0.76 (S1_e), indicating the suitability of this 

approach. The values of loading factors, eigenvalues and eigenvectors were 

calculated using the PRINCOMP function available in MATLAB. ܽ௜௝ and ܫܴܥ௣௖  were 

then calculated based on Eqs. 3 and 4. The weighting of each characteristics varies 

for each scenario, as depicted from Table 4. For example, for PC1 (accounting for a 

maximal amount of total variance in the characteristics indicators), the vulnerabil i ty 

indicator has the highest values for scenarios S1_a, S1_e and S2_a, whereas, for 

scenario S2_e, both vulnerability and mobility indicators have nearly the same weight 

(0.43 and 0.41). In contrast, the mobility has the highest influence on PC1 for scenarios 

S1_h and S2_h. Overall, the redundancy characteristic has the lowest influence on 

PC1 compared with the other two characteristics as the network considered is a road 

transport network of a city where alternative routes are normally available. It should 

be noted these findings are valid for the synthetic road transport network of Delft city 

under the different scenarios considered. 

Figure 6 presents the composite resilience index ܫܴܥ௣௖  calculated using PCA under 

different scenarios. In general, the variation in ܫܴܥ௣௖  due to demand increase reflects 

the ability of ܫܴܥ௣௖  to respond to variations in departure rates and demand increase as 

listed below: 
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 At 7:00am, all scenarios have equal ܫܴܥ௣௖  values, reflecting the network ability to 

recover with the increase in demand where the departure rate is low, with no or 

minimum residual effect. 

 ܫܴܥ௣௖  has the lowest values for a 50% increase in demand in both with and without 

real-time travel information scenarios (S1_h and S2_h), compared with its value 

under normal demand and other demand increases. 

 Interestingly, for the period between 7:15am and 7:30am, ܫܴܥ௣௖  increases in 

response to decreasing departure rates under normal demand. It has almost the 

same value with a 20% increase in demand, with a slight reduction in value for a 

50% increase in demand, reflecting the ability of the road transport network to 

bounce back to its performance prior to the increase in departure rate. This ability 

seems to be inversely proportional to the increase in demand e.g. ܫܴܥ௣௖  for the 

S1_a scenario increases more rapidly than that for the S1_h scenario, responding 

to a departure rate decrease. 

The influence of real-time travel information is seen to vary from one scenario to 

another under different departure rates (see Figure 6), reflecting the complexity of the 

effect of information on the road transport network performance and in line with the 

literature (e.g. Mahmassani and Jayakrishnan, 1991). The use of real-time travel 

information could have a slightly positive impact on ܫܴܥ௣௖ , for example at 7:30am 

under S1_a  ܫܴܥ௣௖ = 0.57, compared with 0.54 in S2_a scenario and from 8:00am to 

9:00am for S1_h compared with the S2_h scenario. Under normal demand conditions 

for S1_a and S2_a scenarios, ܫܴܥ௣௖  has improved due to the use of real-time travel 

information at some intervals, (e.g. 7:30am), whereas there is no change for other 

intervals (e.g. 8:30am) as depicted from Figure 6. This is similar to the variation in ܴܰܫ 
for scenarios S1_a and S2_a between 7:00am and 7:15am as outlined above. 

However, the use of real-time travel information might also cause adverse effects, for 

example ܫܴܥ௣௖  has a lower value in the case of real-time travel information than its 

value without travel information in the case of a 50% demand increase (S1_h and 

S2_h) at 7:45am. This could be due to the fact that all travellers receive the same 

information concerning the best routes without considering the rerouting effect (Yang 

and Jayakrishnan, 2013), resulting in a more congested network. This could be 

demonstrated using a vulnerability analysis, as the highest ܸܰܫ for all scenarios occurs 
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at this point (i.e. at 7:45am for S1_h), showing the concentration of traffic on certain 

routes. Together, these findings indicate that ܫܴܥ௉஼  behaves in an intuitively expected 

manner and according to previous related research. 

Figure 7 shows the composite resilience index (ܫܴܥ௘௤) using equal weights for different 

scenarios. The variation in ܫܴܥ௘௤  exhibits a similar trend to that of ܫܴܥ௣௖ , under different 

demand increases. This reflects the ability of  ܫܴܥ௘௤  to respond to variations in 

departure rate and demand increases. However, the values of ܫܴܥ௘௤  are always higher 

than these of ܫܴܥ௣௖ , as shown in Figure 8, potentially highlighting the impact of double 

counting using EWM. Furthermore, the correlation between the two indices, ܫܴܥ௣௖  and ܫܴܥ௘௤ , was found to be strong with the coefficient of determination ܴଶ ൐ ͲǤͻ͸ for all 

scenarios. 

Conclusions 

This paper has introduced a composite resilience index based on three resilience 

characteristics, namely redundancy, vulnerability and mobility. The interdependence 

of the resilience characteristics has been explored using the influence of low level 

attributes such as link flow, capacity and speed on the characteristics. Furthermore, 

the role of each characteristic in assessing different abilities of the road transport 

network has been outlined. Two weighting methods have been used, namely equal 

weighting and principal component analysis, to obtain a composite resilience index for 

a road transport network based on the three characteristics. The composite indices 

developed are able to reflect the impact of demand increase and availability of real-

time travel information. 

Simplicity and transparency could be the main advantages of EWM, leading to a 

recommendation for this approach when a quick assessment of road transport network 

resilience is required. However, the values of ܫܴܥ௘௤  are always higher than ܫܴܥ௣௖  

values highlighting the probable influence of double counting. Consequently, an 

overall recommendation is the use of PCA to calculate the composite resilience index 

to avoid double counting. However, the sensitivity of PCA to the data set should be 

taken into account when applying the method, as the weight allocated to each 

characteristic may change if further data is added. 
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Despite these caveats, the composite resilience indices developed are able to capture 

some of the complex relationships between the resilience characteristics of road 

transport networks and real-time travel information. The behavior of both indices for 

the scenarios investigated has shown to be in line with the related literature. It is 

recommended that various resilience characteristics be used in the planning and 

policy stages, but the composite index could offer an overall assessment of road 

transport network performance when comparing the impact of the implementation of 

new technology. Furthermore, it could also be used for a ‘goal achievement’ purpose 

or in a ‘distance to target’ context. 
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