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Low-complexity Framework for Movement
Classification using Body-worn Sensors

Dwaipayan Biswas, Koushik Maharatna, Member, IEEE, Goran Panic, Evangelos B. Mazome
Josy Achner, Jasmin Klemke, Michael J6bges and Steffen Ortmann

for systems requiring real-time information, using high

Abstract— We present a low-complexity framework for complexity image processing algorithms can lead to slower
classifying elementary arm-movemers (reach-retrieve, lift-cup-to-  analysis [3]. Hence, body-worn inertial sensors have gained
mouth, rotate-am) using wrist-worn, inertial sensors. We propose  5rominence over other approaches [5][6], particularly with the
that this methodology could be used as a clinical tool to assesSpiet in research focus towards monitoring human activities

rehabilitation progress in neurodegenerative pathologies tracking . S S -
occurrence of specific movements performed by patients with their P€rformed in daily life which is a more natural indicator of the

paretic arm. Movements performed in a controlled training-ptase ~ subject’s involvement as compared to monitoring only during a

are processed to form unique clusters in a multi-dimensional prescribed exercise/training phase.

feature-space. Subsequent movements performed in an The fundamental requirement for a long-term continuous
uncontrolled testing-phase are associated to the proximaludter  monjtoring scenario using resource constrained WSN nodes, is
using a minimum distance classifier (MDC). The framework a low-power operation to prolong the battery life. Typical

involves performing the compute-intensive clusteringon the o . . .
training-dataset offline (Matlab) whereas the computation of '€MOte monitoring systems employ computationally intensive

selected features on the testing-dataset and the minimum distzsn ~ data processing steps like feature extraction from the sensor
(Euclidean) from pre-computed cluster centroids are done in data and pattern recognition (e.g. classification) which are
hardware with an aim of low-power executionon sensor nodes carried out on off-line computational facilities. This involves
The architecture for feature-extraction and MDC are realizd  continuous data transmission incurring significant amount of
using Coordinate Rotation Digital Computer based design which energy expenditure at the radio front-end of the sensors. Hence

classifies a movement in (9n+31) clock cycles, n being number of]c licati involvi i t itori
data samples. The design synthesized in STMicroelectronics or applications involving continuous remote monitoring (e.g.

130nm technology consumed 5.3 nW @50 HZ, besides beingMotion/fall detection for the elderly population in daily life), a
functionally verified upto 20 MHz, making it applicable for real-  low-power strategy is of paramount importance which can be
time high-speed operations. Our experimental results show that achieved by performing low-complexity data processing in

the system can recognize all three arm-movements with average resource constrained environment of the sensor node itself [7].
accuracies of 86% and 72% for four healthy subjects using In this work, we focus on the application area of arm

accelerometer and gyroscope data respectively, whereas troke o . e
survivors the average accuracies were 67% an®(%. The movement recqgnmon a|m.ed at stroke rehabilitation. In
framework was further demonstrated as a FPGA-based real-time neurodegenerative pathologies (e.g. stroke or cerebral palsy),
system, interfacing with a streaming sensor unit detecting and classifying particular arm movements (e.g.
clinically prescribed exercises) performed in daily life, can over
Index Terms— Clustering, classification, activity recognition, time provide a measure of rehabilitation progress. A systematic
CORDIC, FPGA, low-complexity exploration to recognize three fundamental movements of the
upper limb associated with daily living activities using wrist-
. INTRODUCTION worn inertial sensors has already been reported in [8]
ACTIVITY recognition (AR) in nomadic settings has gaine@mploying a clustering and minimum distance classification
prominence in the research community for assessimgsed approach. Sensor data collected from each subject in a
human mobility through remote monitoring systems. Remotsnstrained training phase (e.g. in the laboratory) are clustered
monitoring for long durations has been aided by th® form three unique clusters representing each movement in a
advancements ubiquitous and mobile computing facilitiggulti-dimensional feature space. A minimum distance
primarily using radio-frequency identification (RFID) [1], low- classifier (MDC) computes the proximity of the test data
cost inertial sensors [2], and fusion of inertial sensor and visiogollected in an unconstrained scenario (e.g.ofl&boratory)
based approaches [3]. RFID and vision-based methods @&eeach of the clustersClassification of the movements
primarily restricted to a defined region catering for indooperformed in the subsequent testing phase involving the
activities, requiring amn-hindered surveillance [4]. Moreover, essential steps of (1) computing selected time-domain
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features from the sensor data and (2) the distance to the pre- Il. APPLICATION SETUP
computed cluster centroids can be mapped to a low-complexityyjith an aim of continuous monitoring of activities

architecture tlolachleve real-tlme- qletectmn pf arm movemerig formed in daily lifeby patientsthe specific movements (or
thereby providing an energy efficient solution towards longsyercises) that need to be tracked as defined by clinicians need
term operation of wearable sensors [7]. . to be performed multiple times, following an exercise regime

_ Hence in this paper, we propose the design ang 5 gaming session, in a controlled environment (clinic or
implementation of a CoOrdinate Rotation Digital Computefome) [L1][12]. The sensor data collected during this phase can
(CORDIC) based low-complexity MDC for real-time armpe analysed througBV to determine the best cluster forming
movement  recognition.  The fundamental mathematic@hatyres and obtain the centroids of each cluster corresponding
processes of the MDC have been formulated using the differggteach movement. This helps to perform a clinical profiling of
transcendental functions realizable using CORDIC and he individual patient with respect to their movement quality.
optimized implementation strategy has been adapted, analyzjigyements performed in the uncontrolled nomadic
the shared computational stages. The algorithm proposed in §8lironment (involving daily activities) can be associated to the
has been implemented in an offline-online resource Sha”BQoximal cluster centroid using the MDC to detect the
mechanism, where the time and memory intensive processgatyrrence of those particular movements. The merits of using
feature extraction, selection and cluster formation using 10 rugg, clustering based methodology over a plethora of other
pf 10—foI(_j cross-vali_dation (CV), onthe training data were dongachine learning algorithms [10] for fine-grained arm

in an offline mode (in Matlab). The computation of the selecteglgyements, have been presented in detail in [8] whereas issues
features (required for cluster formation) on the testing data agge as sensor selection/placement, data fusion have been
computation of the minimum distance (Euclidean) from the prggyqressed in [13] for arm movement recognition.

computed cluster centroids was done in hardware, targetinggjyen the application framework, this methodology can be
real-time implementatian implemented for online detection of arm movements in a
The design was synthesized using STMicroelectronics 138source-constrained environment of body-worn sensor nodes.
nm technology with a supply voltage of 1.08V and occupiefihe offline processing of the training datavolving the key
24K NAND?2 equivalent cell area and consumed 5.3 'S giens of cluster formation and feature selection need only be
Hz, resulting in a low-complexity framework, applicable fory,na when requested by the clinician, depending on the

real-time operations within a WSN node. The application are8habilitation progress of the patient over time. Furthermore,

we cqn3|der is that of human actlv!ty recognition .w'here fhe test data can be classified in real-time by computing the
sampling frequency of up to 50 Hz is deemed sufficient for

capturing kinematic information [RI0]. The design was required features and the distance to the pre-computed cluster

further verified up to higher frequencies (M@0 MHz) and a centr.oids in near real-time, proyiding an energy efficient
total chip area of the layout was calculated as 2.2%2./ur solution towards long-term operation of wearable sen3ties

experimental results to classify movements of four healt line-online processing framework is illustrated in Fig. 1.
subjects and stroke survivors involving an archetypal activiy!though here we have targeted arm movement as a case study
of daily living (ADL), ‘making-cupef-tea, show that the this framework can be suitably used for critical event
system can recognize all three arm movements with averdgé@nitoring such as fall-detection or in sports medicine.
accuracies of 86% and 72% for healthy subjects using _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
accelerometer and gyroscope data respectively, whereas for Offline processing - software

Stl’Oke SurVIVOI’S the aVerage aCCUI’aCIES were 670/6% Training dataset |—|—>|Featureextraction|—>|Featureseleclion'—blclusterformatiunl |

The framework was further demonstrated as a real-time —
working system, interfacing a streaming inertial sensor, unit === —— F=———— — L — — — —
host PC and DE4 FPGA board to facilitate serial port control

Minimum distance

Testing dataset

recognizing a performed arm movement in approximately 0.6 I o,pfmlgthdwtd : e
ms @780 Kz. The main contributions can be enlisted as the ~ =  — — — — — =22 2000
development of: Fig. 1. Processing frameworkoffline/online processing of the training/testing
» CORDIC based low-complexity MDC architecture for onlinglataset respectively.

AR,

Experiments were conducted in two phases -
. po i f Ko uncti ith training/laboratory phase and a testing/ofitaboratory phase
* generic olfine-ontiine framework I conjunction With ,, _ ¢, healthy subjects at the University of Southampton and

clustering, apphcablc_a in wide range of AR appllcatlons._ foPr stroke survivors at the Brandenburg Klinik. The healthy
The rest of the paper is structured as follows: an overview Of, . . . )
subjects were both right arm dominant while the stroke

the application setup is described in Section Il and the

theoretical formulation of the MDC in terms of CORDICpOlOUlatiOn had either left or right arm impaired. For this

. . . investigation, three arm movements, elementary in nature were
rotation along with the architecture for the proposed framework™ ™. . : ) .
: . . : . : considered: (1) Action A reach and retrieve object, (2) Action
is described in Section Ill. SectionV describes the

implementation and performance evaluation of the systenE% — lit cup to mouth and (3) Action C- perform

Finally, related literature and discussion are presented Fl)r%)urmg/(un)lockmg action.
Sections V and VI respectively.

o system demonstrator for real-tinAR,;



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS

In the training phase, essential for the target cluster lll. ALGORITHM TO ARCHITECTUREMAPPING

formation, each healthy participant performe@40, 120 and The accuracy of any movement recognition technique is
120 trials each of Action Action B and Action C respectively. gependent on several factors such as: nature/number of
The stroke survivors performed80 trials ofA and 40 trials  4ctivities, sensor type/number/placement, data mining and the
each ofB and C. The collection of this training set helps tQassification methodology adopted [10]. Furthermore, there is
inherently capture the personalized (i.e. person-centrig) need for personalised evaluation especially for trackin
movement patterns of the individuals through unique clusteggyivities that are susceptible to individual and temporal
augmenting accurate recognition [14]. The more number Qfiation In this paper, although the focus is primarily on an
trials pertain_ing to Action Aw.rttBand Cis reprgsentative of optimized architecture design for the testing phase, a brief
the generalised nature of the reach and retrieve movemglbrview of the algorithm and associated data processing
performed frequently in daily lives. ~ especially in the training phase is quintessential since it
The testing phase employs an archetypal activity-list (Cfietermines the generation of the cluster centroids used by the
Table I) emulating the process of ‘making-cupef-ted, \MDC. The k-means clustering algorithm mentioned in [8], uses
commonly performed in daily life incurring repeatedg time-domain features, extracted from each of the three axes
occurrences of the three investigated arm movements. The §gthe accelerometer or the gyroscope sensors. The features are:
comprises 20 individual activities having 10 occurrences qf) standard deviation,)Zoot mean square, 3) information
Action A and 5 each of Actions B and C. The healthy subjecg.]tropy, 4) jerk metric, 5) peak number, 6) maximum peak

performed the activity-list four times with a 10-minute resémplitude, 7) absolute difference, 8) index of dispersion, 9)
period between trials whereas the stroke survivors performﬁ&’rtosis, 10) skewness.

two trials s_ince they tend Fo tire quicker. The_ expgriment Was The fundamental concept of clustering is to form groups of
performed in an unconstrained manner ensuring wider rangesghilar objects as a means of distinguishing them from each

variability in the data. other and it is well-perceived that cluster analysis is primarily
TABLE | used for unsupervised learning where the class labels for the
USECASEACTIVITY LIST— ‘MAKING -CUP-OF-TEA’ training data are UnknOWn. HOWeVer, k—meanS C|UStel’ing can
Activity Action also be used for supervised learning as in our proposed
1. Fetch cup from desk A methodology [8] where we are aware of the labels for the
2. Place cup on kitchen surface A training data pertaining to the three movemgdmetping to have
3. Fetch kettle A a definite estimat®n the underlying cluster structure (three
4. Pour out extra water from kettle c clusters), facilitating faster convergence during cluster
5. Putkettle onto charging point A formation. We use the regularized Mahalonobis distance
6. Reach out for power switch on the wall A . . .
7. Drink glass of water while waiting for kettle to boil B cons@erlng the covariance of _the datfa’ where a pararméer
8. Reach out to switch off kettle A or 1) is used to control the choice of distance measure (squared
9. Pour hot water from kettle in to cup c Mahalonobis or Euclidean). The clustering is performed on the
10. Fetch milk from shelf A feature vectors computed from the training data (accelerometer
11. Pour milk into cup c and gyroscope). It is performed in conjunction with a sequential
12. Put bottle of milk back on shelf A forward selection (sfs) algorithrselecting a combination of 2
13. Fetch cup from kitchen surface A to 30 ranked features (10 features computed on each tfi-axia
14. Have a sip and taste the drink B axes data) in each step and 10 runs of 10@Id9 segments
15. Have another sip while walking towards desk B .. . . . o
16. Unlock the drawer c of trgmlng an_d 1 of testing only congdgnng training data)_are
17. Retrieve biscuits from the drawer A carried out with each feature combination. Cluster centroids are
18. Eat a biscuit B selected based on an experimentally determined threshold
19. Lock the drawer C (25%) of the expected number of data points for each of the
20. Have a drink B three clusters formed (healthy subjects: Action A - 240 £ 60

o o o Action B/C - 120 * 30; patients: Action A- 80 * 20, Action B/C
For this investigatiopwe use tri-axial accelerometers (range 40 + 10). Therefore, offline processing provides a detailed list
+ 1.5 g) and tri-axial gyroscopes (range + 500 °/s), housad iyt feature combinations that resulted in a successful cluster

Shimmer wireless 9DoF kinematic sensor module [15]. Thgrmation and the highest corresponding accuracies (averaged
impaired arm for the stroke survivors and the dominant arm fgjer 10 runs) for each subject and each sensor type.

the healthy subjects, proximal to the wrist, were chosen for thepp, important aspect is the choice of features since human
sensor placement with the dorsal side of the forearm in contags stydies typically incur the extraction of time and/or
with the XY plane and the Z-axis pointing away from itfrequency domain features, as well as heuristic features from
Magnetometers were not considered for this investigation dygta which exhibit discriminative patterns for each movement.
to the presence of ferromagnetic materials in the homg&mmonly used frequency domain features as a result of signal
environment [16]. Data was collected @50 Hz, transmittegynsformation — Fourier, wavelet are well equipped in
along with a timestamp to a host computer using Bluetooth. capturing dynamic movements like walking, running, etc. (high
frequency components) while the orientation/postural
information can be obtained from the low frequency
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components. In this investigation we use time domain featuresordinate of rotation circular and linear respectively.
since: 1) we consider fine-grain upper limb movement as

compared to detecting gross/dynamic activities and static TABLE Il
. . . S . . GENERALISED CORDIC ALGORITHM IN TWO CO-ORDINATE SYSTEMS
sostu.resf I|kte standtmg,t_run_mng, s:ttmg, cyclllngt, etcr.] and 2) tlm; m ROTATION MODE (Zo —0) VECTORING (Yo —0)
omain feature extraction incurs low complexity when mappe _ v s
onto equivalent architecture. %0 =K Bocoszy o sirey) X =K\x" + Yo’
A detailed study on sensor selection/placement and data 1 ¥n = K (Yo C0SZ0+ Yo Siro) Yn=0
fusion for the targeted arm movements have been reported in 7,=0 z,=Z+tan ™ (yo/Xo)
[13]. Particularly, it has been shown that higher recognition
sensitivities are achieved using: 1) data from the wrist sensor N=% N=%
module as compared to the elbow since the former is more 0 Yn = Yo +%oZo Yn=0
responsive and produces significant discriminatory patterns for z,=0 Z, =2 +(Yo/%o)

the arm movements being investigated and 2) similar timé
domain features extracted on individual sensor axes datalagach coordinate system, CORDIC in general, can be operated
compared to considering he modulus of the tri-axial data affitwo modes - Vectoring and Rotatidi8]. For an input vector
fusion of specific  accelerometer-gyroscope  signdk, yg]", in the Vectoring mode ¢y—0), the magnitude of the
combinations. Three unique sensor combinations for the wrigctor, angle between the initial vector and the principal
module (multiplying accelerometer-gyroscope signals) weordinate axis is computed whereas in the rotation maede (z
created based om priori consideration of the expected—0), for a given angle of rotation the final vector is computed.
trajectory of the subject’s arm with respect to the sensor These can be used for computing a series of transcendental
position and orientation of the sensor axes for the investigatgghctions as shown in Table [118]. The transcendental
movements. The use of all the individual sensor signals, ratlignctions generated by the vectoring CORDIC operation can be
than a processed signal (i.e. moduli or fused), provides theed for feature computation and the MDC. We use, \éex
classifier a wider pool of features to select and hence theq as operators representing vectoring CORDIC operation in
recognition rate for the movements is reflected in the higheircular and linear coordinate system respectively. The input
sensitivity achieved [13]. dataset is represented by, dhere ic {0, 1, 2...n-1} and d is
According to the application frameworkf(section Il), the the output of vectoring CORDIC operation oggg data
online processing stage aimed at real-time arm movemegample. The features and the MDC have been formulated in
detection comprises of the key stef feature extraction from terms of CORDIC operation, in line with this convention.
the test dataset and 2) associating the test data to the pre- .
computed cluster centroids using a MDC. In this section w’% Feature - Jerk Metrigr()
present the architecture and implementation of the MDC in The jerk metric characterizes the average rate of change of
conjunction with the cluster centroids for detecting the threcceleration in a movement. It is calculated as the rms value of
investigated arm movements. A detailed architecture afae derivative of the acceleration (jerk) normalized by the
implementation of several of these features have been preserfggximum value of the integral (velocit})9] as shown in (2).
in [17], except for the jerk metric which is an important feature,

qguantifying the tremor inherent in the movement especially rms d(dsi)
among the stroke population. Given the low-complexity when ‘ ) dt @
using CORDIC for formulating the features as demonstrated ik metric= ———=———-=

9 9 max{ [(dg;) dt]

[17] compared to other implementations, in this paper we use it

to formulate- 1) the jerk metric and 2) the MDC for classifyingI

the test data in the respective feature space. We present a b}igflmportant to note here that although the calculation of jerk

overview of CORDIC fundamentals, used for the algorithmic'—S phyf_lcallly r.ela.tedl to thel_a((j:ctelr-_:[:nat:op da;at bl]ft thethsame
to-architecture formulation. computing logic is also applied to thetation data from the

CORDIC is an iterative algorithm which uses 2D vectop? 05c0P€: since the computed metric serves its purpose as a

rotation for computing different transcendental function%iscriminating feature for characterising the movements. Since
employing the iterative equatians the data samples are equally spaced due to the constant

sampling frequency, the first derivative is computed as the
difference of the consecutive data samples using a subtractor.
The integral of the data is computed using trapezoidal
Y1 =Y +0] o X ) integration which_involves th_e addition of the cpnsecu_tive data
samples and a divide by 2 (implemented as right shift). From
Zj1=7 —0;.9 (2), it can be deduced that the rms of the first derivativeeof th

Xj+l: Xj —/JCTJ .Z_J

where, [x Y17, z andg; ¢ {1, -1} are the intermediate result data samplesd;; ) can be computed using the operater Vec

vector, the residual angle and the direction of vector rotationv%iCh is shown in (3). The sampl . are used as the v inout
the jth iteration stage respectively; @ {1, 0} being the (3). ples yinp

to the CORDIC and the x-component of the output is fed back
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to the x-component of the CORDIC input. A
1 (-t T ({ )
rms=—=| [T ve¢ld g 3) \ - __
\ﬁ |=O X \\I__/ :
W : dB/// //
. P ! P // /
Therefore, with new data sampleg atriving aI each clock g ', { de/  minimum (s, s, o} ?
cycle, the x-component of the CORDIC output is computed as: & i H !
LCB : \\f\——// P /\\
2 2 2 Lo / 3
di = K\ldso +dSl +.ot dS(I—l) 4) : : ( /)“\\‘
[ \\ 7 Clusters formed from
—~ h .. h d.
The x-component of the output generated after every complete T L o aining phase data
CORDIC operation is scaled with a scale factor K. This is an Feature - f,

essential step as feeding this result without scaling into the X'Fig. 2 lllustration of the minimum distance classification hugtology.
component of the CORDIC input results in an accumulation of

the scale factor corresponding to eaghtldereby affecting the According to Fig. 2, the two dimensional co-ordinates are:
formulation in (4). Hence, the scale factor compensation Gluster centroid A- (fai, f22) and Test vector F (fry, fr2). This
invoked after every complete CORDIC operation (comprisinfipature space ff;) can be extended to incorporate all 30
N stages) with a set of input data, feeding the compensafedtures. The Euclidean distance of the test feature vectors from
output to the x-input of the CORDI@ the next iteration the centroid can be computed as in (6), which can be further
Following n operations with the scale factor compensation theframed (7), having functional similarity to rms computation
x output of the CORDIC yielding the final result is multipliedand can be realized using CORDIC operator. {&% where the
with 1/7n for obtaining the rms.1 value 1/Vnis pre-computed data samples g, are the computed differences between the
(n being a fixed numbgrand is multiplied with the final feature vectors of the test dataset and the cluster centroids.
CORDIC output with the help of a reduced complexity

multiplier-less  shift-and-add technique or fixed-numbe 2 2 2
mumg”er_ q HA:\/(fTO~fA0) Hfr~fag o+t o fazg 6)
The jerk metric is finally computed using the CORDIC
: : 29

operator Vecas shown in (5). Referring to Tablerhax([ds;) dp = (-ZO dgsi) @)

andrms[ dﬁ] are set as the &nd y inputs to the CORDIC, .
n-1

operating in vectoring mode in the linear coordinate system. da =(,HOV€‘CC[ da %i]TJ (8)
1= X

jerk metric= Veq:[max(j @i) r ;1 I (5) Similar to rms computation (3), the samplgs are fedo the y

, input of CORDIC while the final result (scaled with K) at the x

output of CORDIC is obtained after n number of operations,
The implementation includes 1 subtractor and CORDICVecvheren is dependent on the number of features selected (1 > n
b < 30). Similarly, the distances ds, dc can be computed using
Wec.. The offline-online processing approach (cf. section II),

I . . , has been illustrated in Fig. 3, representing the input-output
trapezoidal integration. Finally, CORDIC (Ve re-used for signals which have been further described in Table Ill.

computing the value of the feature. The jerk metric is dependen

on the rms of the derivative and maximum of the integral taking T e \
I
I

for computing rms( ds'] and 1 adder for computipgi;)

(n + 1) cycles. Considering n as 256 data samples, |

representative of a movement for approximately 5 seconds |(” Feature Feature Cluster
(@50 Hz), facilitates a multiplier-less shift-and-add operation. | \Extraction Selection Formation /,

B. Minimum distance classifier (MDC)
feature) cluster

The MDC methodology has been illustrated through a Sggts;r datain  code centroid
mathematical approach having three clustersB(AC formed
using k-means on the training dataset for the three movements)
and a test vector (T) to be associated in a 2-dimensional feature |
space (fand §) in Fig. 2. The distance of T from each of the I
three centroids are denoted by ds, dc which are compared to |
estimatdts proximity to the clusters. |

16-bit 30-bit 16-bit
——— _——— _—— —_———

Hardware — Testing phase \

Predicted |
cluster |

CORDIC-based
engine for Feature
extraction

Feature selection
and minimum
distance classifier

Fig. 3. Architecture for offline-online framework fMDC.
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TABLE Il
LiST OF INPUT-OUTPUT SIGNALS The features selected from the testing set) (Bnd the
Signals  Description corresponding cluster centroidss(ffzs, fcs) are passed onto the
_ 16-bit i/p for tri-axial'sensor d_ata corresponding t¢ minimum distance computation modudown in Fig. 6using
data_in ffgfzmoerné;ir_fg"g?o[‘yﬂgy:gitz';‘g phase (Acc_x, Ac subtractors to compute the difference between the
corresponding features and cluster centroids which are used to
compute the distance {dds and &) using operator Veq7) to
produce the respective distances of the test set from each
centroid. A comparator is used to determine the proximal
cluster, denoted astdt output (‘00” - A, ‘01° - Band ‘10’ - C).
Here, we have used three CORDIC operations in parallel for
distance computation from each centroid (cf. Fig. 5) which
could be achieved by reusing one CORDIC module for a

The sequence of features (10 features) has been iIlustratecfefﬁuem'a,lI co.mputatlo.n but at the expense of an mcdeasg
Fig. 4, which are extracted from each tri-axial data segment Bemputatlon pme. A h'gh spegd deS|gln has been preferred in
y and z) of each sensor type, thereby having total of 30 featu W of real-fime detectl_on. Using multiple CORDIC modules
[8]. The features selected (out of a total of 30) during the clus gs its effects on t_he C_h'p area and power and hen_ce a tra(je-off
formation are represented using a feature-code. An example %t—h the computation t.|me_ Is necessary for an optimal design.
bit code: 000100000000000001001000000000, represents fie0rst-case scenario, it-all 30 features are selected, the
features (3, 17, 20) viD_x (dispersion computed on x-axis' istance computation from each of the three centroids would

data), jerk y (jerk metric on y-axis) and rms_z (rms on z-axiéﬁ\’o've 3((;_(}0R|DIC operation:ReuTing a .sLngk:e CORhDI%’ ¢
were selected during cluster formation. incurs additional processing time, along with the overheads o

a control logic. The feature extraction engine consumes
s [ s i [ o [ D [ W | skow | W emiopy | Jok | posks | g | appro?dmately 1 nW of powerl}] given the I.ow frequency
2 3 5 s 7 5 s opeations (@50 Hz) and therefore computation time has been
given priority in this design.
The computation of the features and the MDC incurs a
recursive formulation which leads to a computing loop that
The architecture for the MD@ssociating the test dataset tccannot be achieved with a pipelined CORDIC architecture
pre-computed cluster centroids is shown in Figs. 5 and 6. Twhereas using an iterative CORDIC implementation would
feature-code helps to select the required features. The clushave its effect on the throughput. Hence, a unit latency design
centroid for that corresponding feature is selected throughcoalescing all iterations in a single computing stage (one clock
sample counter (5-bit feature-counter) which counts throuccycle) is adopted here. We present an estimate of the hardware

30-bit i/p denoting the selected features out of t@a
feature-code features during cluster formation on the training skt
(having ‘1’ for a selected feature else ‘0°); cf. Fig. 4.

cluster- 16-bit i/p each for 3 cluster centroids formed from
centroid features selected from the training phase data.

predicted-  2-bit o/p for the predicted cluster computed as thamim
cluster distance of the test dataset from the cluster centroids

Fig. 4 Sequence of features extracted from each tri-axial segment to form
a 30-bit feature-code.

the 30-bit feature-code. complexity in terms of the total full adder (FA) count, which
provides an objective reflection of the underlying architecture.
MQE "f 1 __________ ’f The MDC requires 3 subtractors and 3 CORDIC modules
Feare s (Vec). Ab-bit Ripple carry adder/subtracter (RCA)
b S o requires b full adders (FA), therefore we can considet/for
1 fr  the tostng dataset the subtractors. The hardware resource for one iteration of an
@ﬁu | Minimom Distance Gomputation | N-stage CORDIC rotation (considering a generalized word-
it length b) can be computed asiPFA. This can be reused for
fo Foature fo Foature fou multiple iterations (e.g. rms computation). Although the MDC
N

e S et N\Coumer—ys requires 3 CORDIC modules in parallel, 2 modules used for
s} T T aed T T =map T T feature extraction (1 module used for ,stuns entropy

fomne Tamngaaaser 70 fe M fwfu o fw fofe fw o gignersion kurtosis and skewness as reported in [17] and 1
Fig. 5 Overview of the MDC architecture. module for jerk metric which is independent of the rest of the

e - features) can be reused for MDC. Hence, in total we require
7= < btractor ] Ve, d, (2Nb .+ 3b) FA for the MDC implementatio-n. For
fasi ] ™ MDC implementation havingl6-stages (N) and24-bit (b)

e ! Predicted datapath, we requir@40 FA. It is important to note here that
s < oract b Voo ds Comparator ﬂster for the complexity analysis we did not consider the comparator,
fou | oECTOT _ ° Loge [, > the counter Ioglc_ and the multiplexers. _ _

_ ol The complexity of an alternate architecture (without
fmf"’_”, Ao, CORDIC) for MDC implementation can be estimated
o] SuDIrACIO! Ve @ considering- a squaring unit, non-restoring iterative cellular

e square rooter (SQRT) [20], an accumulator (replacing one

Fig. 6. Architecture for the minimum distance computation medu CORDIC module for the root mean square operation) and 3
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subtractors. Hence, in total requiring 3 squarers, 3 SQRTsstBoke survivors. For each healthy subject, there were 80 test

accumulators and 3 subtractors. For the sake of convenienceg&ors (4 trials of ‘making-cupef-tea’, having 20 movements

squaring units can be considered as 1 multiplier and @meach trial). Similarly, for each stroke survivor there were 40

accumulator block can be considered as a FA (registdest vectors?2 trials of ‘making-cupef-tea). The results using

associated with the accumulator are not considered, accountihg accelerometer and the gyroscope data are shown in Tables

only for arithmetic operations). IV-V for healthy subjects and stroke survivors. The software
A conventional array multiplier (CAM) requires b(b - 2) FA,evaluation results (Matlab) [8] are presented for comparison.

b half adders (HA) and?AND gates. Considering, 2 HA as 1

FA and 4 AND gates as 1 FA (due to area and transistor coun&COGNlTDN SENSITIVITIES Fo

the total gate count of a CAM can be deduced as (3-2550

TABLE IV
RARM MOVEMENTSOF HEALTHY SUBJECTS

_ _ ] Sensitivities (%) Overall accurac
FA. Hence, for 3 squaring units (1.5 CAM3ur = 1.5(1.25B  Subject Features—- B c (%) Y
— 1.5b) FA, where (A represents the total number of FA’s in RTL Evaluation
each circuit.A b-bit SQRT requires 0.125xb(b 6) FA and Accelerometer
similar number of XOR gates. Therefore, the total FA count folsypject1 11 100 100 75 94
3 SQRTSs, (considering 2 XOR gates as 1 FA) é8rA=  Subject2 2 85 55 85 78
(0.18758 + 1.125b) FA. Lastly, Awsuw= 6b FA (3 subtractors subject3 7 90 90 90 90
+ 3 accumulators) are required. Therefore, the total gate coustibject4 23 85 90 70 83
for the MDC computation using an alternate architecture in Gyroscope
terms of FA count is (A + Asort + Aadaisu) = (2.06258 +  Subjectl 10 50 80 100 70
4.875b) FA. Hence, for a 24-bit datapath, we reql®@s FA ~ Subjectz 27 70 80 70 73
which is more than the CORDIC based implementation. Subject3 18 80 85 90 84
It is worthwhile to recollect here that the CORDIC basedSubiect4 20 40 IS 61
feature extraction [17] engine requires 4110 FA (for 16-stage Software Evaluation 8]
CORDIC and 24-bit datapath) whereas the non-CORDIC— Accelerometer
feature extractor requires 6828 FA. Hence, even if the circuit"®ectt 11 100 100 100 100
bject2 2 80 5 80 61
elements from the non-CORDIC feature extractor are re-used -
for its equivalent MDC implementation, a unified CORDIC ubjects - 7 % 100 % %
i i o ) Subject4 23 95 100 85 94
based feature extraction engine and its equivalent MDC Gyroscope
implementation will incur low-complexity and result in an Subjectl 10 93 90 100 94
optimized design. _ o Subject2 27 100 80 60 85
Another important factor is the effect of normalization. Thesypjects 18 90 90 100 93
clusters are formed in a multi-dimensional feature space wherubject4 20 30 95 85 60
the cluster analysis takes place on the features extracted from
the training data. These features are linearly normalized with TABLE V
. . .  RECOGNITION SENSITIVITIES FOR ARM MOVEMENTS OF STROKE SURVIVORS
respect to their minimum and maximum value. Therefore, the Sensitivitios
: ] ) ] ensitivities (%) Overall accuracy
cluster centroids are represented by the normalised values (i.8ubject Features B C (%)

in the numeric range of 0 - 1) of the selected features. However,

. . RTL Evaluation
during the testing phase, the relevant features are extracted from

Accelerometer

the corresponding sensor data using the feature extractiQqpecn 19 70 80 100 80
engine and used by the MDC lie in different numeric rangegupjectc 19 85 20 100 73
compared to the respective centroids. Therefore, prior t@ubjects 21 80 90 30 70
computing the Euclidean distance, the centroids are unsubject4 8 20 80 50 43
normalized and used as inputs to the RTL module. Gyroscope
Subjectl 8 80 60 80 75
IV. IMPLEMENTATION AND EVALUATION Subjectz 10 60 90 50 65
L Subject3 24 80 20 70 63
A Verification Subjectd 30 50 50 0 38
The architecture for feature extraction and MDC was coded Software Evaluation[8]
using Verilog as HDL with a target ASIC implementation. It is Accelerometer
important to note here that although the input data is 16-bitsubject1 19 80 90 100 88
wide, the datapath width in the CORDIC-based featuresubjectz 19 90 20 100 75
extraction engine and the MDC module is 24-bits. In order tGubject3 21 95 100 20 78
achieve the desired 16-bit accuracy a 22-bit word-length shoulgubject4 8 10 80 60 40
be selected [21], according to the formulation{hog:N + 2) Gyroscope
and atleast 16 iterations. Therefore, to obtain a high accuracy®4biectl 8 90 50 100 83
24-bit CORDIC was used for this implementation. The desigrPuPect2 10 60 100 60 70
was functionally verified using data of 4 healthy subjects and ZUPects 24 85 30 80 70

Subject4 30 60 40 0 40
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Stroke survivors 1 and #epresent two extreme conditionsstroke survivor4 further contributes towards the mathematical
(late and early stage of recovery aft#toke) as evaluated by error. Itis evident from the feature computation engine [17] that
respective clinicians. Overall, the results of the RTL simulatiothe average error may become significant for the features
are on the lower side when compared to the software evaluatiparticularly involving higher-order terms (e.g. kurtgsis
The average difference in accuracy between RTL and softwalkewness) even when the accuracy of the CORDIC itself is set
simulation is 1.25% andl1% using accelerometer andhigh. Hence, to achieve higher accuracy, adjusting the datapath
gyroscope data respectively for healthy subjects. Similarly, favidth for the MAC unit may be necessary depending on error
stroke survivors, the average difference in accuracy is¥@.75olerance of the application. A ranked list of the associated
and 55% for the two sensor types respectively. The differendeatures for each subject chosen during cluster formation as a
in the results (decrease in individual movement sensitivities arebult of cross-validation is presented in [8]. The number of
the overall accuracy) of the RTL implementation and softwarfeatures selected for each subject represent the optimal number
can be attributed to the following factors: of top ranked features which resulted in successful cluster

(1) accumulation of truncation error, a common phenomenon frmation and highest cross-validation accuracies on the
fixed-point arithmetic operations and occurs due to théaining dataset.

implemented logic. Moreover, the software implementatiofs) in this implementation, a signal length of 256 data samples
(Matlab) presents the results in a 64-bit operating systefas been considered which can be represented on a dyadic scale
whereas the CORDIC-based RTL module has a datapath wigfy therefore any multiplication or division operation can be
of 24-bits. Since, in this implementation, to achieve 16'biF‘np|emented through a shift. Hence, for testing with data
accuracy, 16 iterations are used and hence this recursa{ﬁgady collected during the experimental protocol, an
CORDIC operation results in error accumulation to a highgfterpolation/extrapolation module in Matlab was implemented

degree. Hence for the MDC, where a data point is beiRg pre-process the test data to restrict the sample size to 256 as
classified based on a distance value, this accumulated efggposed to the software implementation.

could result in misclassification. On the other hand, health)L/1 lastlv. in this desi h fitered th d
stbject2, requiring the computation of minimum number of ) lastly, in this design we have not filtered the raw sensor data

features, viz. 2, is an exception as the overall accuracy achiej%e-processmg step [8]), to keep the computations at a minimal

is higher with RTL. The accumulated error in this case (f F:vel. Here, our focus was mainly on the implementationef th

computing the two required featurestandard deviation and MDC and hence a filter block could be added to improve

root mean square computed on the y-axis data [8]) could hat@lformance.

created a b_ias for the distance (_:omputation of _the t_est data W.r4na achieved results, for both the healthy subjects (average
tr_]e _centr0|.ds, thereby affec_:tmg thg classification resulg;Ccuracy of 86% and 72% with accelerometer and gyroscope
yielding a higher accuracy. Tt_us effe(_:t is also observeq to a |§-§§pectively) and the stroke survivors (average accuracy of 67%
extent for the following subject/action/sensor comblnatlon%{nd 60% with accelerometer and gyroscope respectively) can

healthy — 2/C/gyroscope; 4/Algyroscope and stroke pq congidered favorable because the methodology was tested to
1/B/gyroscope; 3/Claccelerometer; 4/Alaccelerometer ar&%tect activities performed in oaf-laboratory, semi-

4/B/gyroscope. As further illustration, variation of recognition, oy rajistic scenario, having a significant degree of variability.
accuracies w.r.t features for healthy subject2 Withpe aocyracy rates reported for the stroke survivors are
accelerometer data (cf. Fig. 7), shows that using more featuies.o iale, according to clinicians, since it provides a gross
(beyond 2) does not result in successful cluster formatiofg,as re of impaired arm use. It is important to mention here

(blank spaces) or improved accuracy. that a misclassification of a performed movement may not have

100 significant clinical impact because in this application (as
opposed to other clinically critical remote monitoring
80 applications, e.g. cardiovascular disease) the final decision on

the rehabilitation measure and the corresponding prescription

*° lies with the jurisdiction of the respective clinicians. This

Overall Accuracy (%)

" methodology could help to augment the clinical findings and
provide a quantitative measure on the rehabilitation progress of

20 patients over time outside the clinical environment. In view of

N the RTL simulation results, the conclusions drawn in [8] are still

13 5 7 9 11 13 15 17 19 21 23 25 27 29 evident- 1) variability in data patterns due to poor repeatability
Fig. 7. Variation in accuracy wirt‘ﬁn;lbjrrnol;g:ac:lf"f‘:amfer healthy Subject2 with and 2) considering more than one sensor type for specific cases
accelerometer data during software evaluation [8]. can improve overall detection accuracy. This can be observed

) ) ) . _particularly for healthy subject2, where although the overall
(2) the difference of accuracy is further evident especially Wh"&ccuracy with accelerometer is 78% the sensitivity for Action B

computing a higher number of fgatures. There are more numkefow (559%), which is significantly improved when considering
of test datasets for_ healthy subjects as compared to the strgie gyroscope (80%). Similar trends are observed for healthy
survivors and the high number of features computed (e.9. 30 fQlhject4 with Action A using gyroscopd0®4, which can be
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detected successfully when considering the accelerometer data
(85%). Considering more than one sensor type could be
beneficial for stroke survivors as can be seen for the following
subject/action combinations- 2/C (gyroscope — 50%,
accelerometer 100%); 3/C (accelerometer30%, gyroscope
— 70%). For subject 4, the overall accuracy with both sensors
are not high, although it can be observed that Action A can be
recognized by 60% (gyroscope), Action B by 80% and Action C
by 50% (accelerometer). The low overall accuracy can be
attributed to the fact that Subject 4 was at an early stage of
rehabilitation and the impaired arm being tested was not the
naturally dominant arm thereby resulting in poor repeatability.
The performance of the proposed clustering-MDC
methodology was further compared against two well-known
supervised learning algorithmslinear discriminant analysis
(LDA) and support vector machines (SVM). LDA was chosen
in view of its low-computational complexity and SVM known
for producing high classification accuracy [22]. The average
overall accuracy using LDA for 4 healthy subjects was 45%
using accelerometer data and 53% using gyroscope ddfa. System Demonstrator using FPGA

Correspondingly for stroke survivors, the average accuracy The arm movement recognition framework (cf. section II)
was 49% and 46% using accelerometer and QyroscoRgs been demonstrated as a prototype system using an Altera
respectively. Similarly, using SVM, for the healthy subjects, theE4 FPGA in conjunction with a wrist-worn inertial sensor.
average accuracy wagl% and 68% using accelerometer andrhe hardware setup for real-time implementation is shown in
gyroscope respectively whereas for stroke survivors, the resytig. 9 where the data from the sensors (tri-axial accelerometers)
were 55% and0% using accelerometer and gyroscope datgs transmitted to a host computer (iRC) through Bluetooth
Across all test cases, none of the subjects had all threge raw data is converted to physical values and transmitted to
movements classified with a sensitivity higher than 60% usinfle FPGA through RS232. The synthesized MDC HDL was
either of the learning algorithms, thereby proving thgntegrated with RTL implementation of the RS232 receiver to
effectiveness of our proposed methodology [8]. complete the hardware functionality on the FPGA.

B. Synthesis and Layout
The design was synthesized using STMicroelectronics 130- m

nm technology library with a supply voltage of 1.08V and

frequency of 50 Hz, where the synthesized design occupied an Sensor attached

area of 242K (2-input NAND gate equivalent) and the dynamic SRR

power consumed was 5.3 nW. The design was also synthesized

and functionally verified at a higher clock frequency of 20

MHz. The implementation of the feature extraction engine takes

a maximum of 3n clock cycledT] (where n is the number of

input data samplesif it has to compute the all the 10 features. i .

The MDC design takes (9n + 31) clock cycles in the worst case, S - e——

considering it has to compute E_l” the 3(_) features from the teStlgk% 9 FPGA-based demorl;;[t)r‘;:cp;;yfor real-time arm movement cleestdin

dataset and compute the Euclidean distance to the three ClUgiBmovement data collected from the sensor attachtetarm.

centroids. To estimate the total chip area a layout of the

synthesized design was performed using the CadenceThe framework was validated with healthy subject2

Encounter tool as shown in Fig. 8. The total area of the chip wegsforming one trial of ‘making-cupef-tea’, where 18 out of the

estimated as 2.221 mm2.215 mm, having 25 signal pads and20 movements were successfully detected. The three centroids

8 power/ground pads. The 16-bit input/output port is used foxte stored as binary data in the memory by using the

1) i/p - three sensor data streams (AccX, AccY, AccZ or GyroXpegafunction in Quartus which allows the creation of a module

GyroY, GyroZ) sequentially; 2)p - three centroids; 3jp - 30-  that takes as input, memory initialization (MIF) filg3] and

bit feature-code split into - lower 16-bits followed by the highestores the data into the ROM of the FPGA. The feature code is

14-bits (padded with two zeroes) and 4) o/p - 2-bit (padded wigtent using the synthesizableadmemb’ function. The FPGA

14 zeroekpsignifying the predicted cluster label. operates at a much higher frequency (780 KHz obtained
through a clock-divider module) compared to the streaming
sensor operating &0 Hz. The sensor data was communicated
to the host PC through Bluetooth using the application

Fig. 8 Core chip layout with all pin assignments.

3R
/ Laptop / PC
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ShimmerConnect [15]. The serial port contrfd4] was VI. DISCUSSION

achieved through the .NET 4.5 framework and an application |, this paper, we have presented the architecture and
software (written in C#). The baud rate for transmitting the dafﬁﬁplementation of a low-complexity framework for arm
from the PC to the FPGA was set to 4800 bits per second, wh{gyement classification in asutof-laboratory environment

each set of data was 6#-bits (16-bits foreah X, Y, Z axes ysing body-worn inertial sensors. A completely personalized
and header code). The start of transmission was indicated by fa&0ach has been presented and the results obtained have been
header code which helps the receiver determine the correct a¥ggouraging and show that these particular arm movements can
value. A baud tick generaton the FPGA is used for interface pe reliably detected with stroke survivors exhibiting moderate
synchronization which produces a pulse based on a counigfels of involuntary tremor in their movements. The

logic. The classified arm movements are displayed on a famework was further demonstrated as a padaoncept real-
segment display in real-time (Action-Al, B—2 and C-3).  time arm movement recognition system.

The synthesized design uses 40,753 logic units and 13,184 bitgyne of the key features in such a system is the need for
of memory (for storing the centroid and input tri-axial data)gaptability which caters to the change in movement patterns
The prototype takes 515 clock cycles (= 0.6 ms) to produce the  gyer time pertaining to each patient thereby reflecting the
desired output since it computes two features for healthynrovement in their motor functionality as a result of the
subject2 (std takes 2n = 512 clock cycles) from the test dafygergoing  rehabilitation  protocol. The demonstrated
For this demonstrator, we have used data from only one Sengfidthodology can detect the change in movement patterns over

typg (i.e. accelerometers). However, this can be eaS“YGXte”dae%ngitudinal scale by two means: 1) with decreasing
to incorporate the gyroscopend the whole operation of oyement recognition rates over timedue to the differing

‘feature extraction-MDCcan be independently performed on  patierns of the daily life movements with respect to the pre-
both sets of data to obtain the desired arm movememputed cluster centroids in the selected feature space and 2)
classification and these results can be analysed in line with {)gical intervention- clinicians observe a considerable change
conclusions drawn in [8] and also in section IV-A wherg, the movements performed by the patients in comparison to

considering more than one sensor type has been advocateghiy previous assessment (the time of obtaining the training
ascertain impaired arm usage and rehabilitation progress.  qata for the clusters)in such circumstances, the patient’s

training dah would be collected periodically and the cluster
centroids and the associated features (new selected feature set)
Real-timeAR in body sensor networks is a challenging taskan be re-computed to reflect the changing movement patterns.
and energy efficiency has received particular attention in recértte new cluster centroids and feature set will be subject-
years from the pervasive computing research community fepecific due to the inter-subject variability inherent within
ways to extend the battery life of sensors aimed at long-temovement profiles, variation in the rehabilitation profile and
monitoring. With the advent of context-aware processinghe associated functional ability of each individual subject. This
energy efficient processing on sensor nodes and mobile deviggsrmation could be further used by the MDC to recognize
has taken precedence. A few recent papers [25-27] hawevements performed in daily life. Hence, we plan to carry out
discussed the need for reducing energy incurred @nlongitudinal study in the near future to demonstrate the
communication, with [27] showing the importanceoofnode methodology for indicating rehabilitation progress.
sensor processing over an off-node scheme saving up to 40% dh view of the designed architecture, there are a few
energy trading off accuracy. Some of the recent online AfRndamental factors which can be considered in future designs.
methods have looked into this aspect by processing on thest, the size of the register bank to store the incoming data
sensors (e.g. low-power MSP430 microcontroller) or mobilsamples from the sensors has been fixed at 256, representing 5
phones (e.g. android) [27]. Another recent work [28] takesseconds of kinematic data (sensor streaming @50 Hz). This
hierarchical approach whereby they recognize hand gesturegiome duration is suitable for the healthy subjects for the
the accelerometer sensor node using a Java based simulatocbmipletion of the elementary arm movements (actions) chosen
use this information to classify high-level activities on a mobiléor the experimental protocol. For patients, depending on the
device by transmitting data through a wireless link. Apart frodevel of dexterity, the time taken to perform the movements
reducing communication (through on-node data processing amijht be more especially when they are in their initial stage of
advocating light-weight algorithms), the focus has been ophabilitation. The next available window size, in view of
issues such as deactivation of power hungry sen26f4d.g. representing it in dyadic scale is 512 implying 10 seconds and
gyroscopes) and adaptive sampling rate [30]. Hence, to the besuld suit the requirements of patients needing more time to
of our knowledge, this is the first work which has focused oocomplete the actions. An alternate approach would be to reduce
an optimized, low-complexity algorithte-architecture the sampling frequency in the range of 20~25 Hz which has also
mapping aimed towards a hardware/accelerator based desighden considered to be suitable in human activity recognition
be used within resource constrained senor nodes. Furtli@}{10]. Second, here we consider the Euclidean distance over
energy saving design optimisations such as dynamic powle Mahalanobis distance [8] for the MDC as a pafefoncept
management (for e.g. shutting down feature extraction engimaplementation since the later increases the complexity
during MDQ) and clock gating techniques can be incorporatddvolved in computing the covariance matrix. Third,
to enhance the proposed low-complexity implementation.  fundamental exploration in terms of error accumulation and

V. RELATED WORK
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propagation needs to be carried out and according|y tH@] C. Kendell and E. D. Lemaire, “Effect of mobility devices on orientation

datapath adjustment for ASIC implementation needs to be done

in view of the target accuracy.

sensors that contain magnetometers,” J. Rehabil. Res. Dev, vol. 46, no. 7,
pp. 957962, 2009.
[17] D. Biswas and K. Maharatna, “A CORDIC-Based Low-Power Statistical

This design can be implemented as an ASIC chip and Feature Computation Engine for WSN Applications,” Circuits, Systems,

embedded on a sensor platform along with other processiﬁg]
components like A/D converter, filtering circuit, memory,

power source, to be used for real-tiiR. An ASIC would

and Signal Processing, vol. 34, no. 12, pp. 48028, 2015.

P. K. Meher et al“50 years of CORDIC: Algorithms, architectures, and
applications,” Circuits and Systems |: Regular Papers, |EEE
Transactions on, vol. 56, no. 9, pp. 189307, 2009.

provide Ieverage in terms of area and power as Compared[lt% S. Patel et al“A novel approach to monitor rehabilitation outcomes in

stroke survivors using wearable technology,” Proceedings of the IEEE

stateof-the-art microcontroller/mobile-platform based designs, g, 98, no. 3, pp. 45@61, 2010.

aiding the development of a poiof-care monitoring system.

[20] K.N. Vijeyakumar et al., "FPGA implementation ofl power high speed

This methodology could be extended for lower limb monitoring ~ square root circuits", in IEEE International Confereenn Computational

and used with patients suffering from other neurodegenerati

Intelligence & Computing Research (ICCIC)-28 Dec 2012, pp.-5b.
L. Vachhani et a.“Efficient CORDIC algorithms and architectures for

disorders exhibiting movement profiles which are less fluidic in ~ low area and high throughput implementation,” Circuits and Systems II:
nature. Real-time detection of arm movements can be useful in Express Briefs, IEEE Transactions on, vol. 56, no. 16pg55, 2009.

a wide array of applications in the field of sports, humalf

2] T. Chen, et al., "Design of a Low-Power On-Bde@G Classifier for
Remote Cardiovascular Monitoring Systems" in IEEE Jouraal

computer interaction or other treatments of arm dexterity. Emerging and Selected Topics in Circuits and Systeats3yno. 1, pp.
Therefore, the developed system can be used to track 7585, March2013.

movements of required body segments in these respective figftfd

outside a controlled environment.
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Novelty Statement The work in this paper proposes a novel low-
complexity architecture, designed for arm movement tietecbased on the
algorithm proposed in [8]. For the design, implementssind the FPGA-based
prototype demonstrator, the CORDIC-based featureatidreengine proposed
in [17] has been re-used. An FPGA-based demonstra®pulalished in our
previous work [(10.1109/ISCAS.2015.7168746), howeiveis based on a
different algorithm, using a different board. Henaes highlighted, the
fundamental contribution- offline-online design framework and system
demonstrator for movement detection using the MDC archite is completely
novel and unreported.
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