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Summary 
 
Computer-aided diagnosis (CAD) offers a promising solution to reduce variation in 
colonoscopy performance. Pooled miss rates as high as 22% for polyps and 
associated interval colorectal cancers following colonoscopy are concerning. 
Meanwhile, the concept of ‘optical biopsy’ where in vivo classification of polyps based 
on enhanced imaging replaces histopathology has not been incorporated into routine 
practice, largely limited by inter-observer variability and generally meeting accepted 
standards only in expert settings.  Real-time decision support software has been 
developed to detect and characterise polyps, whilst also offering feedback on the 
technical quality of inspection. Some of the current algorithms, particularly with recent 
advances in artificial intelligence techniques, now match human expert performance 
for optical biopsy. This article will review the current evidence in relation to the clinical 
applications of CAD and artificial intelligence in colonoscopy.  
 
 
 
 
 
Introduction 
 



 2 

Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and fourth 
leading cause of cancer death worldwide.1 Colonoscopy has demonstrated efficacy in 
preventing CRC through the detection and removal of neoplastic lesions.2 There is 
concerning variability in the diagnostic performance of colonoscopy leading to 
widespread efforts to improve quality and reduce operator dependence. 
 
Adenoma detection rate (ADR) is an independent predictor for the risk of interval 
CRC.3,4 This key metric has been shown to vary considerably among different 
endoscopists within a similar setting, even independent of patient-related factors.5,6 
The operator dependence of colonoscopy has been highlighted by a pooled miss-rate 
of 22% for polyps of any size in a meta-analysis including six studies involving patients 
undergoing two same-day colonoscopies.7 A more recent analysis identified a post-
colonoscopy cancer rate of 8.6% within three years of an apparently negative 
colonoscopy. Evidence suggests that these most likely represent missed cancers or 
incompletely resected lesions.8,9  
 
A number of strategies have been developed in an attempt to improve ADR. This 
includes advanced imaging technologies to facilitate detection, such as virtual 
chromoendoscopy, although studies have failed to demonstrate conclusive 
increments in ADRs in average risk populations.10 Devices aimed at increasing 
mucosal exposure have produced variable results. A recent meta-analysis suggested 
only modest improvements in ADRs for distal attachment devices, especially in low-
performing endoscopists.11 

 
It is increasingly recognised that a significant proportion of lesions are endoscopically 
subtle. Using the Paris classification to describe morphology, flat and depressed 
lesions are not only particularly challenging to detect but are also more likely to contain 
advanced histopathology.12 Furthermore, sessile serrated lesions have endoscopic 
features that are difficult to differentiate from background mucosa in comparison to 
conventional adenomas, such as mucus capping, indistinct borders and pale colour.13 

 
Although uncertain, indirect evidence supports a concept that endoscopists may fail 
to identify lesions even when within the endoscopic field of view. This includes the 
demonstration that nurse participation allowing dual observation during colonoscopy 
withdrawal can improve ADR.14 Learning curves also exist for the detection flat and 
sessile serrated lesions.15,16 In addition, the landmark endoscopy quality improvement 
programme study by Coe at al. that led to improved ADRs included pattern recognition 
training. 17 It is possible that the appreciation of certain visual cues may alert high level 
detector endoscopists to subtle lesions that may otherwise be overlooked.  
 
 
Polyp characterisation during endoscopy is another area subject to inter-observer 
variability amongst endoscopists. The term ‘optical biopsy’ has been proposed where 
enhanced imaging, in conjunction with validated classification systems, allows for real-
time in vivo prediction of histopathology. This application is particularly relevant to 
diminutive (5mm) polyps to differentiate between neoplastic and non-neoplastic 
lesions. A ‘resect and discard’ strategy has been proposed for diminutive adenomas, 
where in-vivo virtual chromoendoscopy-based diagnoses are used in lieu of 
histopathology, allowing resected adenomas to be discarded.18 Suggested benefits 
include significant cost savings due to immediate surveillance interval 
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recommendations, with a reduced requirement for follow-up appointments and lower 
burden on histopathology services. A further proposal involves a ‘diagnose and leave’ 
strategy where diminutive rectosigmoid polyps optically characterised as non-
neoplastic could be left in situ.  
 
 
An ideal optical biopsy technique should use readily available enhanced imaging 
alongside a robustly validated classification system which is reproducible in 
widespread clinical practice. In addition, some form of accreditation scheme alongside 
audit processes to monitor performance should exist as highlighted by the recent 
National Institute for Clinical and Healthcare Excellence guidance on virtual 
chromoendoscopy to assess colorectal polyps.19 The American Society for 
Gastrointestinal Endoscopy published the Preservation and Incorporation of Valuable 
Endoscopic Innovations (PIVI) standards required of a technology for a resect and 
discard strategy (≥90% agreement for post-polypectomy surveillance intervals when 
compared with histopathology) and for a diagnose and leave strategy (≥90% negative 
predictive value for adenomatous histology).20 Studies have demonstrated that 
standards for a resect and discard strategy can be achieved in academic settings but 
not always in community-based practice, limiting its incorporation into routine care.21,22 
The reasons for variability in performance between ‘expert’ and ‘non-expert’ settings 
are unclear. Differences in training methodologies and performance feedback could 
be one potential explanation.   
 
Optical diagnosis of malignant colonic polyps is another important clinical application, 
where recognition of early invasive cancers and prediction of depth of invasion is key 
to selecting the optimal treatment strategy. In cases of superficial invasive carcinoma, 
en-bloc endoscopic treatments can be curative. Polyps harbouring deep submucosal 
invasion are at higher risk of lymphovascular invasion and in these cases referral for 
surgical resection is recommended. Validated classification systems based on 
advanced imaging using magnifying chromoendoscopy and narrow band imaging 
have been developed to predict submucosal invasion. These include the Kudo pit 
pattern, Sano capillary pattern, Hiroshima and NBI International Colorectal 
Endoscopic Classifications.23 The majority of studies have evaluated experts within 
Japan. Western data are limited but image analysis studies suggest that accurate 
diagnosis represents a challenge.24 

 
 
The use of ‘computer-aided diagnosis’, using advances in artificial intelligence and 
especially recent deep learning techniques, offers a promising solution to provide 
decision support during colonoscopy to address human variation in performance. 
 
This review article evaluates the current literature in relation to the clinical applications 
of computer-aided diagnosis and artificial intelligence in colonoscopy addressing 
current evidence, limitations and future prospects.  
 
Computer-Aided Diagnosis & Deep Learning 
 
Computer-aided detection and diagnosis (CAD) systems are designed to assist 
clinicians in interpreting medical images. Over the last few decades there have been 
significant technological advances in the methods applied within this field. Machine 
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learning is a type of artificial intelligence (AI), that allows systems to automatically learn 
from data and improve performance without prediction rules being explicitly 
programmed.  
 
Early image-based CAD systems were based on traditional machine learning 
approaches that require human researchers to design meaningful image features 
which would then be fed to a trainable prediction algorithm such as a classifier. Deep 
learning overcomes this obstacle by discovering the informative features, in a trainable 
manner, that optimally represent the data for the specific task. Deep learning models 
rely on artificial neural networks, that are biologically inspired by the concept of 
neurons and synapses in the human brain.  Within the field of image analysis, the best 
results to date have been achieved with a particular type of model known as 
convolutional neural networks (CNNs), consisting of multiple layers of relatively simple 
computational nodes but with complex connections simulating the action of the human 
visual cortex, allowing learning of increasingly higher-level features.    
 
Deep-learning based approaches are now gaining unprecedented interest and 
success in relation to medical imaging due to advances in the development of 
algorithms, availability of enhanced computational power with graphics processing 
units (GPU) and access to large sets of data (‘big data’).25-27 Algorithms have been 
shown to exceed human performance in tasks such as object recognition in natural 
images and playing strategic games.28-29 This successful combination is highlighted 
within medical imaging by the example of a CNN, trained on 129,450 skin images, that 
was able to match the performance of expert dermatologists in differentiating benign 
from malignant lesions.30 In another study, deep-learning algorithms evaluated as part 
of a competition, were comparable in accuracy to an expert pathologist assessing 129 
pathology slide images for the presence of breast cancer metastases within sentinel 
axillary lymph node specimens.31 More importantly, the top-performing algorithms 
achieved a superior diagnostic performance on the test set when compared to 11 
pathologists taking part in a time-limited exercise designed to simulate real-life clinical 
practice.  
 
 
 
 
 
 
 
 
 
 
 
Polyp Detection 
 
 
Early work led by computer scientists focussed on techniques guided by polyp features 
such as colour, shapes or textures in comparison to the surrounding mucosa.  
 
Karkanis et al. used a colour feature based analysis on colonoscopy videos.32 The test 
set consisted of 1200 randomly selected still frames from video sequences from 66 
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patients all containing polyps. Expert endoscopists manually annotated image regions 
within frames that corresponded to polyps and normal background tissue. The best 
performing model demonstrated a sensitivity of 93.6% and specificity of 99.3%. Wider 
application of the model was limited by significant variations in polyp colours and 
lighting conditions during colonoscopy.33  
 
Other methodologies have analysed shapes and boundaries. Hwang et al. developed 
a technique focussing on elliptical shape features.34 Relying on elliptical shape can 
lead to challenges where other structures such as the lumen or artefacts can be 
misinterpreted as polyps.  
 
Fernandez-Esparrach et al. , used a Window Median Depth of Valleys Accumulation 
(WM-DOVA) energy maps system to highlight the specific region of an image 
containing a polyp.35 This system modelled polyps as protrusions in the mucosa and 
defined their boundaries. They analysed 24 colonoscopy videos containing 31 
different polyps labelled by expert endoscopists. Polyp detection was achieved with a 
sensitivity of 70.4% and specificity of 72.4%. Of note the WM-DOVA method was 
particularly useful for small flat (Paris 0-II) lesions and was not negatively affected by 
bowel preparation which was graded using the Boston Bowel Preparation Scale. The 
authors suggested that since the model did not use texture or colour cues, only solid 
faeces would mimic a polyp appearance, but other forms of faecal material would not 
have an impact. Limitations of the model included detection errors caused by lateral 
views of the polyps and other structures (colonic folds and blood vessels).  
 
Wang et al. developed an algorithm that extracted features for polyp edge detection 
and tracked these within ‘polyp shots’.36 A polyp shot is defined as a sequence of 
images covering the same polyp. The software correctly detected 42 out of 43 polyp 
shots (97.7%) on 53 randomly selected videos from two different endoscopy 
processors. There were 31 videos that did not contain any polyps within the test set.  
A performance metric consisting of the total number of falsely alerted polyp shots as 
a proportion of the total number of tested videos was used to evaluate the false 
positive rate. The system operated in near real-time but produced an average of 36.2 
false positives per video.  The performance was not assessed against polyp 
morphology or bowel preparation quality.    
 
More recent systems have utilised hybrid methods such as Tajbakhsh et al., where 
shape information was combined with the image appearance of polyp boundaries.37 
The system was evaluated using a free-response receiver operator characteristic 
analysis. It achieved a sensitivity of 48% in their own image database and 88% in an 
external dataset, with an average of 0.1 false positives per frame. The authors 
suggested the variation of the performance may be attributed to an insufficient number 
of images within the external dataset including an absence of images without a polyp. 
The datasets analysed, however, contained only 10 and 15 polyps respectively. The 
total number of frames evaluated included 5,500 polyp and 14,200 non-polyp images.  
 
Deep-learning based methods using CNNs have started to feature more frequently in 
the literature. Park and Sargent, developed a CNN to extract image descriptor features 
representing polyps.38 The model was an advance on their previous work that used 
anatomical features which was susceptible to error from variations in viewing angles 
and image quality factors. The algorithm demonstrated 86% sensitivity and 85% 
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specificity when evaluated on a training set of 11802 still images from 35 videos. A 
limitation of is that the algorithm did not incorporate relationships in adjacent video 
frames into the CNN.  
 
Misawa et al. conducted a pilot study using a dataset consisting of 73 colonoscopy 
video sequences running from caecal intubation to scope withdrawal across anus 
which included a total of 155 polyps.39 Flat lesions accounted for 64.5% of the dataset.  
Each frame containing a polyp was retrospectively annotated by two expert 
endoscopists acting as the reference for polyp presence. The dataset was divided into 
155 polyp positive and 391 polyp negative short videos which were randomly used for 
training and testing the CNN. A cut-off value of 15% was set for the probability of 
detecting a polyp based on a receiver operating characteristic analysis. The system 
achieved a sensitivity, specificity and accuracy of 90.0%, 63.3% and 76.5% 
respectively on an image-frame based analysis using a test set of 135 short videos.   
 
More recently, Urban et al. evaluated a CNN on a dataset of 8641 hand-selected 
colonoscopy images from over 2000 patients consisting of 4088 unique polyp images 
and 4553 images without polyps. 40 Polyp containing images were annotated by a team 
of colonoscopists. The CNN detected polyps with a cross-validation accuracy of 96.4% 
and area under the receiver operating characteristic curve (ROC-AUC) value of 0.991. 
A further analysis of two colonoscopy video datasets was performed. Three 
colonoscopists deemed to be experts (ADR≥50%) identified frames containing polyps 
without the assistance of the CNN. A senior expert (ADR≥50% and >20K 
colonoscopies) also reviewed the videos with a CNN-overlay consisting of a 
superimposed green box over polyps detected in frames with a probability greater than 
95%. A confidence level (high or low) was assigned by the senior expert for true polyp 
presence which was used as a reference. The first dataset consisted of nine videos 
where 28 polyps were removed by the original colonoscopists. The three experts 
reviewing the unaltered videos identified a total of 36 polyps (8 additional). With the 
CNN overlay on videos, a total of 45 polyps were identified, of the 9 additional polyps 
found with CNN assistance the senior expert confidence value was low for 6 and high 
for 3 polyp encounters. A second dataset was evaluated consisting of eleven videos 
containing 73 polyps, where the colonoscopist did not close in on already identified 
polyps during withdrawal to purposefully simulate missed polyp scenarios. The CNN 
identified 67 of 73 polyps with a frame-by-frame false positive rate of 5%. This 
important feasibility study using CNN video overlay supports the concept that CNN 
assistance offers promise in improving ADR by highlighting polyps that could 
potentially be missed.            
         
A much-needed global initiative, as part of the Medical Imaging Computing and 
Computer Assisted Intervention (MICCAI) 2015 conference, highlighted the key 
challenges for automated polyp detection and sought to define performance metrics 
on publically annotated databases to allow comparisons of multiple methodologies.41 
Results from the challenge competition demonstrated that CNNs were state of the art 
and a combination of methods led to improvements in performance. Several groups 
have since used the annotated datasets to enhance methods.42,43 Figure 1 illustrates 
the polyp detection performance of different CNNs. Results from the subsequent 2017 
challenge await publication. Table 1 provides a summary of the key recent studies for 
polyp detection.  
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CAD based systems for polyp detection, particularly using deep learning techniques, 
provide great promise in offering real-time support for clinicians potentially reducing 
human variation in performance. No system has currently been trialled or adopted in 
a clinical setting. General application is lacking as most methodologies are validated 
on small datasets, often consisting of high quality still images, lacking variability in 
polyp morphologies and commonly use a single type of endoscopy processor. 
Furthermore, few studies address the potential effect of other quality parameters on 
performance such as bowel preparation and withdrawal time. It is possible that CAD 
polyp detection performance might vary depending on operator characteristics such 
as speed of withdrawal and quality of inspection. To overcome these challenges, 
clinician and computer scientist collaborative initiatives leading to more readily 
available large annotated datasets with consistent performance evaluation metrics are 
an absolute necessity.    
 
 
Polyp Characterisation 
 
Computer-aided classification for colonic polyps has largely been developed for use 
with advanced imaging modalities such as magnifying NBI, endocytoscopy and laser 
auto-fluorescence. More recent methods have integrated advanced computer vision 
techniques including deep learning into non-magnification conventional endoscopy. 
The key studies for polyp characterisation are summarised in table 2. 
 
 
Magnification Endoscopy 
  
Computer-aided classification of colorectal polyps using NBI magnification images 
with zoom endoscopes, was first evaluated by Tischendorf et al. 44 In this prospective 
pilot study, 209 polyps were analysed from 128 patients using a computer algorithm. 
The images were initially pre-processed to provide contrast between blood vessels 
and polyp surface. Calculations based on three features were used for classification: 
mean vessel length, vessel circumference and mean brightness within detected blood 
vessels. This analysis achieved a sensitivity of 90% and specificity of 70.2% in 
differentiating neoplastic from non-neoplastic images when compared to 
histopathology as gold standard. The model was inferior to classification by human 
observers. The authors improved on this with a further prospective study analysing a 
total of 434 polyps (10mm or smaller) from 214 patients.45 This algorithm evaluated 
nine classification features achieving 95% sensitivity, 90.3% specificity and 93.1% 
accuracy. This performance was comparable to an expert group analysis and superior 
to the non-expert group. Both studies however analysed the images retrospectively 
and the algorithm did not operate at real-time.  
 
There have been a number of subsequent studies in Japan using magnification 
imaging. Takemura et al. developed image analysis software to classify pit patterns 
that quantified 6 shape descriptors for each pit.46 Using 134 retrospectively collected 
chromo-endoscopy images containing polyps stained with crystal violet, validated by 
a single expert endoscopist, their computer algorithm achieved an overall accuracy of 
98.5%. A major limitation was that the system was only semi-automated requiring a 
manual processing step for some images and took several minutes to provide a 
decision.  
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A further retrospective study by this group used a computer-based system to 
characterise 371 polyps into neoplastic and non-neoplastic categories based on the 
Hiroshima classification.47 This classification divides the surface structure and micro-
vessels based on NBI into types A (non-neoplastic) and types B-C (neoplastic). The 
software achieved an accuracy of 97.8%, sensitivity and specificity of 97.8% and 
97.9% respectively for a diagnosis of neoplastic lesions (type B-C3). Two experienced 
endoscopists also reviewed the images, and when compared to the computer-based 
algorithm results there was agreement in 98.7% of images. The methods however still 
required the selection and manual extraction of regions of interest by experts.  
 
An improved version of this software was subsequently analysed prospectively, this 
time being able to provide support vector machine real-time decision outputs operating 
at 20 frames per second.48 Support vector machines are supervised machine learning 
algorithms that analyse data for classification. The system was tested on 118 
colorectal lesions from 41 patients providing an overall accuracy of 94.9% for all 
lesions in comparison to histopathology and a concordance of 97.5% with expert 
endoscopic diagnoses. Whilst promising, a significant limitation is the lack of 
generalisability of this system given that magnification colonoscopy is not accessible 
to the majority of endoscopy centres worldwide.  
 
Endocytoscopy (EC) allows in vivo cellular imaging by contact microscopy, providing 
ultra-magnification capability (x450) for visualisation of nuclei. Mori et al. assessed a 
computer-aided diagnostic system for the endocytoscope (EC-CAD) in a pilot study 
involving 152 patients.49 This integrated prototype colonoscope provides a standard 
videoendoscope mode which can be switched to EC mode using a hand operated 
lever. EC images were collected after staining with crystal violet and methylene blue. 
The EC-CAD was based on automatic extraction of features from nuclei based on six 
features leading to a predicted pathological classification decision in 0.3seconds.  
Retrospectively collected still EC images from 176 small polyps (10mm) were 
evaluated by the software and compared to 2 expert and 2 trainee endoscopists. EC-
CAD achieved a sensitivity of 92.0% and accuracy of 89.2% in identifying neoplastic 
polyps. This performance was comparable to experts and superior to trainees. 
Specificity was 79.5% with no significant difference in comparison to the expert or 
trainee groups. A diagnosis could not be provided by EC-CAD in 4.5% of the images 
due to insufficient staining and inability to extract nuclei.  
 
A second-generation EC-CAD was evaluated by the same group using a web-based 
study of images.50 This more advanced algorithm now focussed on both nuclei and 
gland duct lumens, extracted 296 features and used a support vector machine to 
classify polyps as non-neoplastic, adenoma or invasive cancer with a probability 
prediction. High confidence was defined as a probability exceeding 90%. Time to 
diagnostic output was 0.2 seconds. EC-CAD was evaluated on 205 small polyps 
(including 139 diminutive polyps) and compared with 3 experts and 10 non-experts. 
EC-CAD was accurate for 89% of polyps, with a sensitivity of 89% and specificity of 
88%. Once again performance was equivalent to experts and significantly better than 
non-experts. EC based post-polypectomy surveillance outcomes were also predicted 
for diminutive polyps and compared with decisions based on pathological assessment. 
EC-CAD based predictions provided agreement rates of 98% and 96% with European 
and American guidelines respectively.  
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The same EC-CAD system was subsequently used to distinguish invasive cancer from 
adenomatous lesions on images extracted from a database.51 This differentiation is 
important in guiding therapy, as endoscopic treatment will not be curative in the setting 
of deep submucosal invasion. The test set consisted of 200 EC images with 
endoscopic or surgical histopathology acting as a reference. EC-CAD provided a 
sensitivity, specificity and accuracy of 89.4%, 98.9% and 94.1% respectively for 188 
images that were suitable for analysis. There was no comparison with NBI imaging or 
endoscopy operators.           
  
NBI imaging combined with EC (EC-NBI) was developed to overcome the limitation of 
pre-staining of lesions with dyes that was required before analysis with standard EC.52 
Custom software was subsequently developed to evaluate EC-NBI images and 
evaluated on 100 images (50 neoplastic and 50 non-neoplastic) that were randomly 
extracted from a database.53 The CAD system provided a diagnostic output within 0.3 
seconds yielding an overall accuracy of 90.0%, sensitivity of 84.5% and specificity of 
97.6%. The accuracy improved further when a high confidence threshold was applied 
to the algorithm which was possible for 65% of the images.     
 
A CNN was created for polyp classification using the concept of transfer learning by 
Zhang et al. 54To address to some extent the limitation of small labelled datasets that 
exists in the medical field, transfer learning involves building on the knowledge 
acquired by the model for solving one visual task in a large unrelated or loosely related 
dataset and adapting this to the task at hand using the small available dataset. The 
endoscopy dataset consisted of 1930 images (1104 non-polyp, 263 hyperplastic polyp 
and 563 adenomatous polyp). The images were collected from a total of 215 polyps 
(65 hyperplastic and 150 adenomatous). The authors state that images were taken 
under white light and NBI imaging using zooming and optical magnification. 50 images 
were used for each category for CNN testing.  The best model for polyp 
characterisation on average achieved an accuracy of 85.9%(sensitivity 87.6% and 
PPV 87.3%). This performance was better than endoscopists evaluated on the same 
dataset.   
 
More recently, Chen et al. developed a deep-neural network CAD (DNN-CAD) system 
to characterise diminutive polyps using NBI images captured from colonoscopes with 
an optical magnification function.55 For training purposes, still images observing polyps 
at the maximum magnification power were collected retrospectively from 1476 
neoplastic polyps and 681 hyperplastic polyps. Regions of interest were manually 
selected from high-quality images by two endoscopists. The DNN-CAD was then 
tested on 96 hyperplastic and 188 neoplastic diminutive polyp images collected 
prospectively with the same image criteria for the training set. Histology was used as 
the reference standard. The DNN-CAD differentiated neoplastic from hyperplastic 
polyp images with 96.3% sensitivity, 78.1% specificity and 90.1% accuracy (NPV 
91.5%, PPV 89.6%). The performance of the algorithm was superior when compared 
to 4 novice endoscopists defined as having less than 1 year of colonoscopy 
experience. The DNN-CAD provided a diagnosis in 0.45 seconds, in a shorter time 
period compared to endoscopists (expert group 1.54 seconds and non-experts 1.77 
seconds).    
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Laser induced auto-fluorescence 
     
 
Laser-induced auto-fluorescence spectroscopy (LIFS) allows for the optical biopsy of 
colorectal polyps using an optical fibre that is incorporated into the biopsy forceps 
(WavSTAT, Pentax Medical, Tokyo, Japan). Laser light is emitted by the fibre and 
absorbed by the tissue. A computer software algorithm analyses the resulting 
autofluorescence signal from the polyp to provide an in vivo prediction of neoplasia. 
An initial study evaluating 207 polyps (9mm) in comparison to histopathology as 
reference, demonstrated an accuracy and negative predictive value for WavSTAT3 of 
74.4% and 73.5% respectively.56 A technically improved version, WavSTAT4, which 
provides a decision output within one second, was assessed on 137 diminutive polyps 
in a prospective observational study, yielding an accuracy of 84.7% (sensitivity 81.8%, 
specificity 85.2%, negative predictive value 96.1%).57 Agreement between the 
WavSTAT4 and histopathology based United States guidelines for surveillance 
intervals reached 88.9%.        
 
 
Non-magnification endoscopy 
 
Mesejo et al. created a framework combining machine learning and computer vision 
algorithms to classify 76 polyp lesions from colonoscopy videos, using white light and 
narrow band imaging, into three classes: hyperplastic, serrated adenoma and 
adenoma.58 Reference standard was based on histology results. The best performing 
model produced an average accuracy of 82.46%, sensitivity of 72.74% and specificity 
of 85.88% for the three classes of polyp. The system was human competitive, 
performing better than experts on average.    
 
 
Byrne et al. developed a CNN to differentiate diminutive adenomas from hyperplastic 
polyps on unaltered NBI videos from a previous study using standard colonoscopy 
(Olympus 190 series, Olympus America, Center Valley, PA).59 Polyps were detected 
in the normal ‘far focus’ mode and then viewed in the near focus mode before being 
resected and retrieved.  NBI frames used were a mixture of normal focus and near 
focus. The training set consisted of 223 polyp videos (all size ranges including many 
>10mm) in NBI (29% type 1, 53% type 2 according to the NICE classification and 18% 
normal mucosa with no polyp). Further validation was performed on 40 videos. The 
final test set consisted of 125 consecutively identified diminutive polyps (74 adenomas 
and 51 hyperplastic polyps). The deep learning model operated in quasi real-time on 
videos at rate of 50ms per frame. A probability score was calculated along with the 
classification according to NICE criteria. The model did not build enough confidence 
to predict the histology in 19 polyps, for the remaining 106 polyp videos, the overall 
accuracy achieved was 94% (sensitivity 98%, specificity 83%, PPV 90%, NPV 97%). 
The videos used for the model were all collected retrospectively by a single expert 
operator. The authors commented on further studies to evaluate the algorithm in a live 
patient clinical trial setting.  
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Quality Assessment 
 
A number of quality assessment indicators have been introduced by professional 
societies in order to provide assurance that high quality colonoscopy is performed. 
Key quality metrics relating to the quality of mucosal inspection include caecal 
intubation rate, mean withdrawal time and adenoma detection rates.60,61 Low ADRs 
are associated with high rates of post-colonoscopy colorectal cancers.4 Diligent 
mucosal inspection is vital in ensuring screening colonoscopy achieves its primary 
purpose, the detection of neoplastic lesions and subsequent removal which provides 
protection against CRC.   
 
These quality metrics are only reviewed post procedure which limits performance 
improvement to future colonoscopy. Furthermore, whilst prolonged withdrawal time 
has been associated with an increased ADR, it has been suggested that this crude 
metric does not necessarily reflect the quality of inspection. This may explain the 
failure of mandatory minimal withdrawal times to significantly improve ADR in some 
studies, although specific instructions about how prolonged withdrawal time should be 
used was often absent from negative studies.62,63  
 
 
Computer software based systems allow real-time quality analysis of colonoscopy 
videos and feedback during procedures. Filip et al. developed software to provide 
automated outputs in three key areas: 1) Real-time visual feedback of image quality 
taking into account blurriness and changing velocity 2) Post procedure statistics 
including % time of adequate visualisation and withdrawal times 3) automated bowel 
preparation documentation.64 In this study, 14 screening colonoscopy videos were 
analysed by the software and compared to three gastroenterologists who rated the 
videos using a scale for overall quality, withdrawal velocity, bowel preparation and 
image quality. The automated overall quality rating was strongly correlated with the 
reviewers’ overall quality rating, although there was no correlation with mean 
endoscopists image quality rating.  
 
Stanek et al. developed another real-time image analysis software feedback system 
for colonoscopy videos.65 Procedure image analysis was performed using the 
following modules: 1) blurry frame detection (distinguishing informative from non-
informative frames) 2) real-time stool detection 3) assessing the degree of inspection 
by counting the withdrawal spiral motions of the endoscope. This involves a feedback 
mechanism whereby the image is divided into four quadrants and a green marker is 
displayed when each quadrant has been inspected, leading to an increase in score 
with sequential inspection of all four quadrants. The authors report that the software 
led to an improvement in the quality of colonoscopy when evaluated on third-year GI 
trainees. 
 
It is therefore possible that novel quality indicators and metrics to assess quality of 
mucosal inspection could be developed based on CAD systems. In addition, some 
pilot studies have developed CAD software to evaluate other existing quality indicators 
including confirmation of caecal intubation and automated bowel preparation scoring. 

66 

 
Challenges and Future Directions 
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Artificial intelligence and CAD technology must overcome a number of challenges 
before it enters routine clinical practice. The key stages for implementation of CAD 
technology into routine colonoscopy have been highlighted elsewhere, particularly by 
Mori et al. where the following steps are described: product development and 
feasibility studies, clinical trials, regulatory approval and insurance re-imbursement. 
67,68 

 
The majority of the studies described for CAD in colonoscopy are currently limited to 
the early stages and most are retrospective in design. This leads to uncertainty about 
the true efficacy of CAD in ‘real-world’ practice which will only become apparent with 
future clinical trials. The lack of available large datasets required for effective deep 
learning represents a significant obstacle to progression. Efforts are underway in other 
areas of medicine to address this, such as the Cancer Imaging Archive.69  It should be 
noted that it is not purely a matter of quantity of data but also the additional quality of 
labelling or annotation from experts or on the basis of pathology results. 
 
Additional information that clinicians use for diagnostic purposes is also not always 
available for image analysis, where algorithms focus on the images alone. For 
example, including metadata on the location and size of polyps along with patient 
clinical information may be incorporated into future deep learning strategies. The 
concept of class imbalance is also challenging. In deep learning, there is a requirement 
to find classes of data for a specific task, an abnormal class may be difficult to find for 
example, images of subtle flat colonic lesions where this morphology type may be 
under-represented in colonoscopy image databases. This may limit the efficacy of an 
automated polyp detection algorithm arguably where it is required most in clinical 
practice. Technological advances in deep learning may reduce the data requirements 
in the future. Strategies such as transfer learning and data augmentation have been 
developed to partially address this.  
 
Concerns are often expressed about the lack of transparency and complexity involved 
in deep learning methodology. Once a CNN has been trained, it can be difficult to 
understand the decision-making processes of a network. For clinical use, it would be 
important for any CAD system to justify its analysis particularly if there were concerns 
about unreliable predictions. Visualisation techniques have been developed in an 
attempt to gain insight into the function of intermediate layers of the CNN and 
understand what the network is perceiving to make decisions.70   
 
The exact position of CAD in relation to colonoscopy workflow and endoscopist 
decision making is unclear. This is particularly important for polyp characterisation, 
where such an algorithm could provide decision support via a concurrent or second 
read.71 The possibility of CAD completely replacing human endoscopist decision 
making is unlikely at this stage. Should CAD technology be utilised as part of the 
‘resect and discard’ strategy for diminutive polyps then the medico-legal issue of 
photo-documentation with high definition images marked with CAD decisions needs 
to be addressed. As new validated classification systems are developed, particularly 
those that might be applicable across different imaging modalities and processors, it 
would be interesting to determine whether CAD can continue to provide decision 
support and match human ‘expert’ performance. Moreover, the emergence of deep 
learning methodologies with increased availability of larger datasets may reduce the 
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need for human derived classification systems which are often created by expert 
consensus and can be challenging to integrate into wider clinical practice.          
 
Clinical trials with CAD may address the uncertainty surrounding factors that lead to 
missed polyps particularly the relative contribution of inadequate mucosal exposure 
versus failure to identify subtle polyps that are present within the endoscopic field of 
view. Real-time overlays of CNN alerts during video-colonoscopy would highlight 
potential missed lesions present in the field of view, whilst future systems may also 
objectively assess the quality of mucosal inspection.  
 
 
 
 
Conclusion  
 
Artificial intelligence and CAD technology offers great promise for colonoscopy. Strong 
collaborations are required between clinicians and computer scientists to break 
through translational barriers and overcome challenges. An evaluation of clinician 
acceptance and minimal disruption on procedure workflow are crucial for wider 
implementation. Robust clinical trials will be required to provide evidence 
demonstrating improvements in performance. Increasing industry involvement and 
governmental incentives should lead to dramatic advances within the next few years. 
It is not inconceivable that artificial intelligence based software will analyse video 
colonoscopy in the future to support not only lesion detection and characterisation but 
also assess technical quality. By providing real-time feedback, this could prove to be 
a useful adjunct in improving ADR, guiding therapeutic decision making and reducing 
the significant variation observed in the quality of colonoscopy.   
 
 
 
 
 
Search strategy and selection criteria  
 
A literature search was conducted using MEDLINE (1946-2018), EMBASE (1980-
2018), Engineering Village and the Cochrane Library Databases. The following 
medical subject terms and keywords were used; “colonoscopy”; “endoscopy”; 
“polyps”; “artificial intelligence”; “computer-assisted diagnosis” and “neural networks”. 
Only fully published journal articles in English were reviewed. Reference lists of 
publications were manually searched for additional relevant studies and searches 
were conducted for authors the team recognised as experts in the field. The latest date 
of this search was July 2018.  A narrative review was performed using this search 
strategy highlighting key studies within three clinical areas: automated polyp detection, 
polyp characterisation and colonoscopy quality assessment. 
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Table 1 – Summary of recent key studies for computer-aided polyp detection 
 

Author Methods Dataset Results 
Wang et al.36  Polyp edge 

detection 
53 colonoscopy 

videos (22 polyp, 
31 non-polyp 

videos) 

97.7% Recall 
(sensitivity) 

36.2 false (‘shots’) 
positives per video 

on average 
Fernandez-

Esparrach et al.35 
Window Median 
Depth of Valleys 

Accumulation 
(WM-DOVA) 
energy maps 

24 colonoscopy 
videos containing 
31 different polyps 

70.4% Sensitivity 
72.4% Specificity 

Tajbakhsh et al.37  Hybrid context-
shape approach 

Internal dataset: 
10 polyp positive 

and negative shots 
(5200 polyp and 
14,200 non-polyp 

frames) 
External dataset: 
15 polyp video 

sequences (300 
images) 

48% sensitivity 
(internal dataset) 
88% sensitivity 

(external dataset) 
Average 0.11 false 
positives per frame 

Figure 1: Examples of three different scored polyp detection and segmentation images produced 
by four fully connected convolutional networks (FCNs). The colour bar defines the scoring 
probability of each pixel representing a polyp and can be compared to the ground truth image 
which acts the reference standard. Images provided by P.Brandao using methodology outlined 
in Brandao et al. 43 
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Park & Sargent38 Feature extraction 

using a 
convolutional 

neural network 
(CNN). 

Classification 
using a conditional 

random field 
model 

11802 image 
patches extracted 

from 35 
colonoscopy 

videos 

86% sensitivity 
85% specificity 

 

MICCAI 2015 
Endoscopic Vision 

Challenge 
Bernal et al.41  

Various methods: 
1)  Hand-crafted 

features 
2) End-to-end 

learning (CNNs) 
3) Hybrid 

approaches 

Video database: 
Training: 20 videos 
(10 polyp and 10 

non-polyp) 
Testing: 18 videos 

(9 polyp and 9 
non-polyp) 

 

Results on all 
videos analysed 
(top performing 

teams): 
 

CUMED: 
sensitivity (recall) 
71.4%, specificity 
94.4%, positive 
predictive value 

(precision) 80.0% 
 

ASU: 61.1% 
sensitivity (recall), 
specificity 98.6%, 
positive predictive 
value (precision) 

93.5% 
 

Misawa et al. CNN 73 colonoscopy 
withdrawal videos 

containing 155 
polyps (1.8 million 

total frames) 
Divided into short 
videos for training 

and testing.  
Training: 105 

polyp positive and 
306 polyp negative 
Testing: 50 polyp 
positive and 85 
polyp negative 

Sensitivity 90% 
Specificity 63.3% 
Accuracy 76.5% 

Urban et al. CNN Image dataset: 
8641 frames (4088 

polyp and 4553 
non-polyp) 

 
Video dataset 1:  

Image dataset: 
Cross-validation 
accuracy 96.4% 
and ROC-AUC 

0.991 
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9 videos 
(containing 28 

polyps removed by 
original 

colonoscopists) 
 

Video dataset 2:  
11 videos 

simulating missed 
polyp scenarios 
(containing 73 

polyps) 

Video dataset 1:  
CNN overlay led to 
identification of 45 
polyps (additional 

9 polyps over 
experts not using 
CNN assistance) 

 
Video dataset 2:  
67 of 73 polyps 
identified with 

frame-by-frame 
false positive rate 

of 5% (CNN 
trained on 8641 
images and fine-
tuned with video 

dataset 1)  
 
 

 
 
 
 
Table 2 – Summary of key studies for computer-aided polyp characterisation 
 
 
 
Author Imaging Modality Dataset Results 
Tischendorf et al.44 Magnification NBI 209 polyps (160 

neoplastic & 49 
non-neoplastic) 

from 128 patients. 

Sensitivity 90% 
Specificity 70.2% 
Accuracy 85.3% 

 
Gross et al.45 Magnification NBI 434 polyps (258 

neoplastic & 176 
non-neoplastic) 

from 214 patients. 

Sensitivity 95.0% 
Specificity 90.3% 
Accuracy 93.1% 

Takemura et al.46  Magnification 
chromo-

endoscopy 

134 pit pattern 
images 

Accuracy 98.5% 

Takemura et al.47 Magnification NBI 371 lesions (324 
neoplastic & 

47non-neoplastic) 

Sensitivity 97.8% 
Specificity 97.9% 
Accuracy 97.8% 

Kominami et al.48  Magnification NBI 118 colorectal 
lesions (73 

neoplastic & 45 
non-neoplastic) 

from 41 patients. 

Sensitivity 95.9% 
Specificity 93.3% 
Accuracy 94.9% 

Chen et al.55  Magnification NBI 284 diminutive 
polyps (188 

Sensitivity 96.3% 
Specificity 78.1% 
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neoplastic & 96 
hyperplastic) from 

193 patients. 

Accuracy 90.1% 

Mori et al.49 Endocytoscopy 176 polyps (137 
neoplastic & 39 
non-neoplastic) 

from 152 patients. 

Sensitivity 92.0% 
Specificity 79.5% 
Accuracy 89.2% 

Mori et al.50 Endocytoscopy 205 polyps (147 
neoplastic & 58 
non-neoplastic) 

from 123 patients. 

Sensitivity 89% 
Specificity 88% 
Accuracy 89% 

Takeda et al.51 Endocytoscopy 200 images (100 
adenomas & 100 
invasive cancers) 
from 76 lesions. 

Sensitivity 89.4% 
Specificity 98.9% 
Accuracy 94.1% 

Misawa et al.53  Endocytoscopy 
with NBI 

100 images (50 
neoplastic & 50 
non-neoplastic) 

Sensitivity 84.5% 
Specificity 97.6% 
Accuracy 90.0% 

Mesejo et al.58  White light & NBI 76 videos (41 
adenomas, 21 
hyperplastic 
lesions & 15 

serrated 
adenomas) 

Sensitivity 72.7% 
Specificity 85.9% 
Accuracy 82.5% 

Byrne et al.59  NBI 125 diminutive 
polyp videos (74 
adenomas & 51 

hyperplastic 
polyps) 

Sensitivity 98%, 
Specificity 83% 
Accuracy 94% 
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