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Minimum geocoding match rates: an international study of the impact of 

data and areal unit sizes 

 

Abstract 

The analysis of geographically referenced data, specifically point data, is predicated on the 

accurate geocoding of those data. Geocoding refers to the process in which geographically 

referenced data (addresses, for example) are placed on a map. This process may lead to 

issues with positional accuracy or the inability to geocode an address. In this paper, we 

conduct an international investigation into the impact of the (in)ability to geocode an 

address on the resulting spatial pattern. We use a variety of point data sets of crime events 

(varying numbers of events and types of crime), a variety of areal units of analysis (varying 

the number and size of areal units), from a variety of countries (varying underlying 

administrative systems), and a locally-based spatial point pattern test to find the levels of 

geocoding match rates to maintain the spatial patterns of the original data when addresses 

are missing at random. We find that the level of geocoding success depends on the number 

of points and the number of areal units under analysis, but generally show that the 

necessary levels of geocoding success are lower than found in previous research. This 

finding is consistent across different national contexts. 

 

Keywords: geocoding; match rate; accuracy; modifiable areal units; spatial point pattern 

test 
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Introduction 

Geocoding spatially referenced data, regardless of the context, is often the first step 

towards a spatial analysis. Though many sources of spatial data are now provided to 

researchers with coordinates such that the data can be mapped immediately—e.g., spatially 

referenced crime data are almost ubiquitous—geocoding algorithms are always operating 

in these contexts either in the background or explicitly when researchers have to geocode 

spatially-referenced data themselves. However, it is important to note that research has 

shown that geocoding algorithms are not only inaccurate at times—such that the geocoded 

events are not placed in the correct spatial location—but are also at risk of not being able 

to locate some street addresses or street intersections for events in the first place (Ratcliffe 

2001; Cayo and Talbot 2003; Zandbergen 2008).     

The current analysis investigates the impact of not being able to geocode a subset of 

a spatially-referenced data set, i.e. match rates. Data not being geocoded may result from 

any number, or combination, of situations that include spelling mistakes, incorrect 

references or abbreviations in street types, impossible addresses, and missing information 

(Ratcliffe 2004). Because of the importance of accuracy in spatial data (Bailey and Gatrell 1995; O’Sullivan and Unwin 2010), data that are not geocoded may have significant 

implications for subsequent research. Specifically, missing data, even missing at random, 

may lead to bias in the spatial pattern of the events being analyzed. As administrative 

systems vary internationally, it is also possible that some national jurisdictions produce 

data that are often (in)sufficient for accurate spatial analysis at small areas. 

But how much data can be missing before the spatial pattern of the mapped data 

becomes insufficiently similar to the complete data? Research in this area is limited; in fact, 
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we are only aware of one research paper that has investigated this issue, which only 

focused on New South Wales, Australia (Ratcliffe 2004). In this paper, we contribute to this 

literature by conducting an international investigation using a variety of data sets with 

different counts of events, multiple and different-sized areal units, from multiple cities and 

countries, and a locally-based spatial point pattern test. We are able to show, with 

consistency across cities and countries, that when data are missing at random, the 

minimum acceptable match rate is context dependent, specifically with regard to the size 

and number of areal units under analysis. Importantly, the results suggest that the 

necessary levels of geocoding success are lower than found in previous research. 

 

Related research 

Overall, there are a number of potential problems that may arise in geocoding:  

 long streets may be arbitrarily broken into segments that are not based on 

intersections; 

 events can be placed on the street segment using an interpolation process that may 

place the event in the wrong place on the street segment; 

 a geocoding match may be made on an areal unit and subsequently misplaced on the 

wrong street segment; 

 there is variation in street segment length that may skew the analysis; and 

 the geocoding process may fail to find a location for an event at all (match rate) 

(Chainey and Ratcliffe 2005). 

There are also privacy concerns with regard to reverse geocoding, particularly for sensitive 

data related to crime and public health (Kounadi et al. 2013). There is a significant body of 
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research that has investigated these issues, some of which is reviewed below, as well as 

other research that highlights the importance of data quality (Bichler and Balchak 2007), 

alternative geocoding services and techniques (Bell et al. 2012Murrey et al. 2011; Whitsell 

et al., 2006), and the advantages of various online geocoding services in a variety of 

different research contexts (Roongpiboonsopit and Karimi 2010a, 2010b; Davis and 

Alencar 2011; Karimi et al. 2011; Mazeika and Summerton 2017). 

 The component of the geocoding literature most pertinent to the current topic, 

however, aside from research on match rates, is the accuracy (positional error) of 

geocoded data: relative to the actual address, where do geocoding procedures1 place the 

point on the map? This research area is of particular importance in research that considers 

the geography of health with issues for health access, risk, and outcomes—see Goldberg 

and Jacquez (2012) for a special issue on geocoding and positional accuracy that extend 

beyond the current scope of this paper.  

Research has shown that even slight levels of positional error can have notable 

impacts on subsequent analyses (Malizia 2013), such that accuracy in geocoding may 

matter for both data that are and are not placed on a map, particularly in the case of spatial 

cluster detection (Zimmerman et al., 2008). This is particularly relevant given the recent 

importance attributed to micro-places in crime analysis (Weisburd 2015; Steenbeek and 

Weisburd 2016), i.e. precise locations matter. Moreover, it was not that long ago when 

spatially-referenced data were organized and analyzed without the aid of computers, 

particularly in the case of crime analysis (Chainey and Ratcliffe 2005). 

                                                        
1 See Goldberg (2011) for a discussion of the methods for geocoding address data in geographic information 

systems. 
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 Investigating the impact of geocoding addresses onto a street segment using linear 

interpolation (150 Main Street is placed in the middle of the 100-block of Main Street, for 

example), Ratcliffe (2001) found that an address is placed in an incorrect census tract 5 – 

7.5 percent of the time.2 Given the result from Malizia (2013), even this low degree of 

positional inaccuracy may be problematic for subsequent analyses. More problematic, 

however, is when analyses are undertaken at units of analysis cartographically larger than 

the unit of analysis used in geocoding: Ratcliffe (2001) found that more than 50 percent of 

points were placed within the incorrect land parcel. Though such inaccuracies may be 

considered discouraging for those analyzing spatial point patterns, this issue can be 

avoided by not undertaking inference at a spatial scale “lower” than data quality can justify, 
similar to the primary strategy for avoiding the ecological fallacy (Openshaw 1984). 

 Cayo and Talbot (2003), also investigating positional inaccuracies, found that 

geocoding to the parcel rather than to the street segment resulted in greater accuracy, an 

intuitively sensible result—see Zandbergen (2008) for an exception. Moreover, they found 

that positional accuracy was better in urban areas relative to suburban areas and suburban 

areas relative to rural areas. This should come as no surprise simply because of the 

decreasing degree of street density, and the corresponding increases in average error, 

moving away from urban centres.  

 More recently, in an analysis using a wide variety of crime types, with the number of 

data points ranging from approximately 600 to 100,000 and different road network files, 

                                                        
2 Linear interpolation is most common in North America, given that European streets tend not to be regular 

enough for interpolation to be useful. 
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Hart and Zandbergen (2013) found that different crime types and road networks had an 

impact on geocoding match rates and positional accuracy. As such, data quality (addresses 

being geocoded and the spatial reference data), is an important consideration, but they also 

found that geocoding to larger areal units (street segments versus actual addresses or 

parcels) led to better match rates and higher levels of positional accuracy—Shah et al. 

(2014) found comparable results. Moreover, Edwards et al. (2014) found similar results 

with better match rates using larger areal units, but that these match rates are also better 

in urban and higher incomes areas, analogous to those found by Cayo and Talbot (2003) 

with regard to urban areas.  

 Most pertinent to the current investigation is Ratcliffe (2004) who identified the 

minimum acceptable match rate in geocoding that must be achieved when data are missing 

at random for the spatial pattern of the mapped data to be the same as, or similar enough 

to, the complete data. In this paper, Ratcliffe (2004) uses a Monte Carlo approach to 

identify statistically significant differences in the spatial patterns of geocoded (crime) data. 

First, 100 percent of the geocoded data are assigned to areal units, and those areal units are 

ranked according to the highest and lowest counts. Second, 1 percent of the data are 

removed at random, and then the areal units are again ranked according to the highest and 

lowest counts. Third, using the Mann-Whitney U test (a nonparametric rank test), the 

differences in ranks are tested statistically. Fourth, if the difference is statistically 

significant stop, but if not repeat the second and third steps until a statistically significant 

difference is found. Fifth, repeat the above 250 times in order to be sure that geocoding 

match rates are not identified based on one (or a few) aberrant samples; the mean of these 
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simulations in each case, plus 2 standard deviations, was used to identify the minimum 

acceptable match rate.  

 Ratcliffe (2004) undertook this simulation using a variety of crime types (all 

reported crime, vehicle crime, malicious damage, and burglary ranging in counts from 783 

to 1362) and areal units (census blocks ranging in count from 144 to 261) in five different 

areas of New South Wales, Australia. In the case with the greatest number of points, 

Ratcliffe (2004) identified 78 percent as minimum acceptable match rate, but either 84 or 

85 percent in the other 4 cases. In order to err on the side of caution, 85 percent was 

identified as the overall minimum acceptable match rate that has been cited in many 

studies that have used geocoding procedures since its publication—over 300 citations at 

the time of writing—most often in criminology but also geography, (public) health, and 

epidemiology. 3  

 Ratcliffe (2004) identifies a number of limitations in his analysis. First and foremost, 

as repeatedly stated in the article, this is a first estimate. As such, more research is needed 

in this area. Though different data sets in different contexts are used, this is only one study 

in one country. There are two important limitations in these analyses: (1) the variation in 

the number of data points and areal units; and (2) the test used for statistical testing. First, 

though five data sets in different contexts are used, the range for event data is only 600 

events: 783 to 1362. In standard statistical sampling, the sample size required for a 

representative sample effectively goes asymptotic after a point. This may be true for 

geocoding events as well, such that after a certain point, if data are truly missing at random, 

the minimum acceptable match rate decreases as the total event population increases. Also, 

                                                        
3 https://scholar.google.com/scholar?oi=bibs&hl=en&cites=8644180519281685630 
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the number of areal units only range from 144 to 261. Though this may be representative 

of census tracts, or similarly sized areal units, Ratcliffe (2004) did not investigate smaller 

areal units such as census block groups. Moreover, the crime and place literature advocates 

street segments, using tens of thousands of areal units in their analyses (see Andresen et al. 

2017a, 2017b, Bernasco and Steenbeek 2017; Braga et al. 2010, 2011; Vandeviver and 

Steenbeek 2019; Weisburd 2015; Weisburd et al. 2004, 2012; Wheeler et al. 2016); surely, 

the number of areal units in the analysis impacts the need for a greater or lesser minimum 

acceptable match rate. And second, though identified by Ratcliffe (2004) as having other 

limitations, the Mann-Whitney U test is a global statistic. As such, one spatial pattern could 

be very clustered and another could be very close to uniform, but have identical rankings, 

not identifying any statistically significant differences.  

 In order to address these limitations, in the analyses below we consider a much 

wider range of event counts, ranging from less than one thousand to over 10,000. We also 

consider a wider range of areal units of analysis, ranging from less than 100 up to almost 

50,000, therefore being representative for neighborhood level analyses as well as those 

considering the micro-place. We use a locally-based spatial point pattern test that identifies 

statistically significant change for each areal unit, not the overall ranking. And finally, 

though we use five locations, similar to Ratcliffe (2004), these five locations are in different 

(Western) countries and represent very different underlying physical environments (e.g., 

North-American-style regular grids compared to more organically evolved European-style 

street networks). 
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Materials and methods 

Study sites, data, and areal units 

The cities (countries) we investigate geocoding match rates are Vancouver (Canada), Leeds 

(England), The Hague (Netherlands), Brisbane (Australia), and Antwerp (Belgium). As 

shown in Table 1, a variety of property and violent crime types are used for events to 

investigate geocoding match rates. Having a variety of event types is not the goal, however, 

but to have a range of sizes for the data sets under investigation. We selected, where 

possible, event classifications that had approximately 1,000, 2,500, 5,000, and 10,000 

events. We always selected complete data sets within each event type, rather than 

(randomly) selecting specific sample sizes. With regard to areal units4, for each city we 

selected three areal units of analysis, often defined by national censuses or local 

administrative boundaries. Local and national conventions define the size of these various 

areal units, but land area for each city is also related to their counts.  

 In all cases, we have a variety for the number of areal units to investigate their 

impact on geocoding match rates. And with the exception of Leeds, we are able to have a 

range of event counts to investigate the potential impact of minimal acceptable match rates 

decreasing as the number of events increases. Combined, we investigate 54 event-unit 

combinations. 

<Insert Table 1 About Here> 

 

Table 1. Counts of events (crime) and areal units of analysis   

                                                        
4 In order to undertake the spatial point pattern test, outlined below, street segments include non-

overlapping buffers (7 metres) such that these line features are areal units for the purposes of the test. 
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Spatial point pattern test and the Monte Carlo simulation 

In order to address our research question regarding the minimum acceptable match rate, 

we need to use a spatial statistical test that can identify change at the local level. For this 

purpose, we use the spatial point pattern test developed by Andresen (2009, 2016), and 

extended by Steenbeek et al. (2018) and Wheeler et al. (2018). This spatial point pattern 

test identifies spatial stability and/or differences in two (or more) spatial point patterns. 

This test is undertaken considering the percentages of event types (crime) in each areal 

unit of analysis and, therefore, can identify differences between different level of 

geocoding. A review of the details and applications of the spatial point pattern test is 

available in Wheeler et al. (2018), with the most recent applications being in the contexts of 

comparing spatial patterns in forensic DNA data and police recorded crime data (De Moor 

et al. 2018), the changing spatial patterns of crime with regard to the crime drop 

(Hodgkinson and Andresen 2019; Hodgkinson et al. 2016; Vandeviver and Steenbeek 

2019), the spatial dimension of police proactivity (Wu and Lum 2017), and the appropriate 

spatial scale for aggregate crime analysis (Malleson et al. 2019).  

 The spatial point pattern test identifies differences in the spatial patterns of two, or 

more, point data sets considering an underlying areal unit of analysis; as such, this is an 

areal-based spatial point pattern test The output of this test is a global index of similarity, S, 

that ranges between 0 (no similarity) and 1 (perfect similarity), calculated as follows: 

𝑆 = ∑ 𝑠𝑖𝑛𝑖=1𝑛  
(1) 

where si is equal 1 if the pattern of two datasets are similar within an individual spatial unit 

of analysis and 0 otherwise, and n is the number of areas. As such, the S-Index measures the 
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percentage of areas (street segments or census tracts, for example) that share a similar 

spatial pattern. An S-Index value of 0.80 or greater is often used to identify when two 

spatial point patterns are similar (Andresen 2009), however, we err on the conservative 

side and use 0.90, but this has little qualitative impact on the results presented below. In 

addition to the S-Index, the results of this test may be mapped, allowing for local level 

results to be shown and, subsequently, analyzed for their patterns. There are a number of 

versions of this test available with the most relevant being a full bootstrap, “partial” 

bootstrap, and a proportion difference test.  

In the context of two spatial point patterns, the full bootstrap version treats both 

data sets as random realizations of known spatial patterns, undertaking a full bootstrap 

with replacement on both data sets. The partial bootstrap version identifies one of the 

spatial point patterns as a base and the other as a test; the base is considered a set of 

known values (percentage of points geocoded to an areal unit, for example) and the test 

data set is treated as a random realization and has a full bootstrap with replacement. 

Lastly, the proportion difference test identifies statistically significant change using chi-

square tests at the local level rather than a nonparametric confidence interval. We use the 

partial bootstrap version of the test in the Monte Carlo simulation below, because we treat 

the percentages of events for each areal unit in the original event data sets as known (the 

base data sets) and perform a bootstrap on the subsequently sampled data sets as the test 

data sets. All versions of the test are available as an R library (Steenbeek et al. 2018)—see 
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Andresen (2009, 2016), Wheeler et al. (2018), and Steenbeek et al. (2018) for more details 

regarding the test options.5  

The basic context of the spatial point pattern test is as follows:  

1. Identify one data set as the base and calculate the percentage of events 

within each areal unit; 

2. Randomly sample with replacement the test data set and calculate the 

percentage of events within each areal unit; 

3. Undertake a Monte Carlo simulation by repeating step 2 a number of times 

(we use 200) to generate a confidence interval of values for each areal unit; 

4. Compare the percentage from each areal unit in the base data set to its 

corresponding confidence interval (we use 95 percent), such that if the base 

value is within the confidence interval it is considered similar; 

5. Calculate the S-Index as the percentage of areal units that are considered 

similar, with 0.80 or greater indicating similarity. 

We adapt this general procedure by undertaking these steps with successively smaller 

sample of test data, one percent at a time, similar to Ratcliffe (2004). As such, we randomly 

select 99 percent of the base data for the test data and then complete steps 1 through 5, 

then 98 percent, 97, 96, 95, and so on until we reach 1 percent. This simulates randomly 

missing data, removing 1 percent at a time. We conduct this procedure 10 times for each 

percentage (99 through to 1 percent), for a total of 2,000 simulations for each combination 

                                                        
5 We will publish the full code for replication purposes in a GitHub repository with a link in this footnote, 

currently suppressed for the review process. 
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(using more than ten replications does not change the substantive results reported here). 

The output from these simulations is 54 sets of S-Index – geocoding match rate 

combinations.  

 

Results 

The primary results from the simulations are shown for each city in Figures 1 through 5; 

each figure has the three difference scales for each crime type in its respective city and a 

horizontal line to represent an S-Index value of 0.90. Though there are differences across 

cities and crime types, there is one general set of results. First, the relationship between the 

S-Index and geocoding match rates for the smallest areal units of analysis (street segments 

or mesh blocks) is approximately linear with S >= 0.90 emerging around a 85 percent 

match rate. Second, the medium- (or middle-) sized areal units tend to reach S >= 0.90 

when geocoding match rates are 50 to 70 percent. Third, the large areal units tend to reach 

S >= 0.90 with geocoding hit ranges ranging from 10 to 30 percent. And fourth, in all cases 

the larger areal units have greater S-Index values for a given geocoding match rate, 

followed by the medium-sized areal units, and the smallest areal units. 

<Insert Figures 1 to 5 About Here> 

Figure 1. S-Index – geocoding match rate, Vancouver 

Figure 2. S-Index – geocoding match rate, Leeds 

Figure 3. S-Index – geocoding match rate, The Hague 

Figure 4. S-Index – geocoding match rate, Brisbane 

Figure 5. S-Index – geocoding match rate, Antwerp 
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 Table 2 shows the geocoding match rate (to the closest 5 percent level, rounded up) 

to achieve an S-Index value >= 0.90. There is remarkable consistency for the small areal 

units of analysis across all crime types and cities: a geocoding match rate of 85 to 90 

percent is necessary to achieve this threshold S-Index value. The medium-sized areas have 

notably smaller geocoding match rates necessary to achieve an S-Index value >= 0.90. 

Moreover, a general pattern emerges for each city that is not easily discernible from the 

figures: as the number of events increase for different crime types within each city, the 

necessary geocoding match rate decreases—this is somewhat evident, but not as 

immediately obvious for the smallest areal units. Therefore, holding the number of areal 

units constant, as the number of events increases, the geocoding match rate necessary to 

maintain the relative spatial pattern decreases, as hypothesized above. In other words, 

there are diminishing marginal returns to increases in the number of events when 

geocoding given an areal dataset. This is also present for the larger areal units of analysis. 

 There is a general pattern of requiring lower geocoding match rates when there are 

increases in the number of events and/or decreases in the number of areal units. However, 

it is difficult to discern a clear relationship in this context because of the varying counts of 

events and the different numbers (particularly relative to city size) of areal units under 

analysis. In order to examine this complexity, Figure 6 plots the geocoding match rate 

necessary to achieve an S-Index >= 0.90 relative to the ratios of events-areas (Figure 6a) 

and the natural logarithm of areas-events (Figure 6b)—Loess regressions (a 

nonparametric smoothing technique) are shown in both figures to isolate the trends.  

<Insert Table 2 About Here> 

Table 2. Geocoding match rate, S-Index = 0.90, crime type and area type 
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 Figure 6a shows a quadratic trend with the pattern: as the number of events 

increases relative to the number of areal units, the necessary geocoding match rate to 

achieve an S-Index >= 0.90 decreases, albeit nonlinearly. However, with this ratio ranging 

from close to zero to 250, it is somewhat difficult to interpret. Figure 6b shows the natural 

logarithm of the ratio of the number of areal units to the number of events. As such, a value 

of zero indicates that the number of areal units is equal to the number of events and as this 

value increases, this indicates an increase in the number of units, with the upper extreme 

being street segments and mesh blocks. Figure 6b also includes a vertical line when the 

ratio is equal to zero and a horizontal line when the geocoding match rate is 80 percent. 

This all shows that when the ratio of areal units is equal to or greater than the number of 

events a geocoding match rate of 80 percent or greater is necessary to achieve an S-Index 

>= 0.90. Conversely, the necessary geocoding match rate decreases steadily as the number 

of events is greater than the number of areal units. These relationships have remarkably 

good fits with their respective R2 values being 0.87 (modelled with a quadratic term) and 

0.94, respectively.  

<Insert Figure 6 About Here> 

Figure 6. Geocoding match rate and ratio of events to areas 

 

Discussion 

We have shown that the previously suggested 85 percent acceptable minimum geocoding 

match rate (Ratcliffe, 2004) holds in a particular situation, but cannot simply be 

generalized to any situation or context. An 85 percent geocoding match rate is necessary to 

maintain spatial patterns when the analysis used street segments, or their equivalent size, 
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as the spatial unit of analysis. This result is particularly pertinent, then, to those 

undertaking research within the crime and place literature who use micro-places for their 

units of analysis (Weisburd 2015). Moreover, whenever there are more areas than events, a 

minimum geocoding match rate of 80 percent is necessary. As such, in order to err on the side of caution and maintain a conservative approach, Ratcliffe’s (2004) 85 percent 
minimum acceptable geocoding match rate could always be applied when there are more 

areas than events. 

 However, when the number of events begins to be greater than the number of areas, 

the minimum geocoding match rate does not need to be as conservative. In fact, once event-

area ratio reaches 10 (1000 events and 100 areal units, for example) a geocoding match 

rate of 50 percent is sufficient to achieve an S-Index >= 0.90, and this scenario is not an 

uncommon situation even for relatively rare crime types in a moderately sized city. A 

natural question to ask at this point is why Ratcliffe (2004) found that an 85 percent 

geocoding match rate was necessary when the event-area ratios ranged from 4 to 9 in their 

research? Though we cannot say with confidence without analyzing their data, we are 

confident with our results because we analyzed many contexts with consistency across 

crime types, the number of spatial units of analysis, and different cities/countries.  

 It is important to note here that when using the larger areal units, many of our 

analyses showed that a 20 to 30 percent geocoding match rate (or less) was sufficient to 

achieve an S-Index >= 0.90. Though this may seem rather low and have the reader 

concerned about any analyses that use spatially-referenced data with such a low geocoding 

match rate, we must recall that the current analysis is concerned with data that are missing 

at random. Eventually, randomly missing data do lead to changes in the spatial patterns 
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(see Ratcliffe 2004), but surely 20 percent is too low a threshold even when considering “standard” areal units of analysis (census tracts) and a sufficiently large event type data 

set?  

 We would raise serious concerns regarding any data set that had such a low 

geocoding match rate, questioning if data are truly missing at random, but suppose that they are. Many national level censuses have two data gathering processes: a “full census” in 
which every household fills out a census form about every individual in the household for a 

limited number of questions, and a “partial census” in which approximately 20 percent of 
households fill our a much more in depth form to obtain socio-economic and socio-

demographic information. These partial censuses have a sample size of 20 percent (this 

may vary slightly from country to country) because when they are random they have the 

expected values from the full population with low enough standard errors to make 

meaningful inferences for research and public policy. As such, if there are a sufficient 

number of events and not that many areas, it should come as no surprise that a 20 percent 

geocoding match rate (or even lower) is sufficient to achieve an S-Index >= 0.90 if the data 

are truly missing at random. The difficulty, of course, is being able to properly assess such a 

situation. 

 Regardless, the important result here is that the 85 percent minimum acceptable 

match rate, though relevant in some contexts, particularly in the crime and place literature, 

is not a monolithic result. Once there are more events than areas, geocoding match rates 

less than the 85 percent threshold are acceptable for the maintenance of spatial patterns if 

data can be identified as missing at random. In fact, this requirement of randomness for 

missing data was stated by Ratcliffe (2004) for his 85 percent geocoding match rate as well. 
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Though claims of acceptable geocoding match rates must always be made with this caution 

in mind, one should not consider lower geocoding match rate thresholds if they are unable 

to properly inspect their missing data. If such an inspection is not possible (XY coordinates 

are just missing with no addresses to check) or not feasible (too many events to manually 

inspect the data) then even the 85 percent minimum acceptable geocoding match rate may 

not be enough because research on geocoding has not investigated this phenomenon. 

 As with all research, ours is not without limitations. First, though we have 54 event-

area combinations for our simulations that leads to a strong relationship between 

geocoding match rates and the area-event ratio, many more possibilities could be 

investigated. Specifically, this simulation could be extended to increasingly expand, or 

shrink a regular grid over the various study areas to see if more area-event ratios can shed 

more light on this relationship. Second, we only consider criminal event data. Many other 

disciplines such as (public) health, economics, sociology, and political science use event 

level data and it is possible that the relationships found here will not generalise to those 

event types. And third, we only consider data that are missing at random. Though this may 

be a common reason for the inability to geocode data, as discussed above (misspelled 

streets, impossible addresses, improper street types, and so on), such data entry errors 

may be systematic in some cases. As such, the geocoding match rates referred to here must 

be used with caution and, as stated by Ratcliffe (2004) in their research, only when missing 

data appear to be missing at random. 

 In addition to addressing the limitations above, there are a number of directions for 

future research, with the most obvious being related to the nature of non-geocoded data. 

For example, in some policing jurisdictions if an exact address for a criminal event is not 
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known but the neighborhood is, the “address” for the criminal event may be assigned as the 
centroid of the neighborhood or a random point within that neighborhood. Additionally, if 

a criminal event has an unknown location, aside from the city within which it occurred, that 

criminal event may be assigned to the police station or substation where it was reported. 

And third, there may be systematic errors in criminal event location reporting such that the 

same places are consistently not geocoded. The first two directions for future research are 

tractable to investigate with a point level data set and areal boundary data, but the third is 

more difficult. Specifically, a complete set of events with addresses would have to be 

obtained with a subsequent data set of geocoded events. The non-geocoded events would 

then have to be identified (relatively easy) and then it is necessary to search for a pattern 

that led to unsuccessful geocoding output (more difficult). The difficulty is that many 

spatially-referenced data sets are provided without specific addresses but with variables 

for X and Y coordinates. If an event is not geocoded it simply has missing values for the XY 

coordinates without the address, often for confidentiality concerns.  

 Regardless of this difficulty, there is still a lot of research necessary to investigate 

geocoding match rates. As spatially-referenced data sets are increasingly become available, 

spatial analyses of such data are more and more commonplace. Given the added 

dimensions, literally, of spatial data, acknowledging its quality is critical if we are to make 

theoretical advancements in understanding social phenomena and the development of 

(public) policy to improve social ills.  
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Table 1. Counts of events (crime) and areal units of analysis 

Type and number of events Type and number of areal units 

Vancouver, Canada (115 square kilometers) 

Theft of vehicle (1,474) 

Residential burglary (2,994) 

Theft (5,708) 

Theft from vehicle (12,809) 

Census tracts (117) 

Dissemination areas (991) 

Street segments (18,445) 

Leeds, England (552 square kilometers) 

Residential burglary (4,749) 

Shoplifting (5,666) 

Super output areas (482) 

Output areas (2,543) 

Street segments (47,664) 

The Hague, Netherlands (98 square kilometers) 

Theft of vehicle (1,025) 

Assault (2,478) 

Residential burglary (5,775) 

Street robbery (11,251) 

Districts (44) 

Neighborhoods (114) 

Street segments (14,375) 

Brisbane, Australia (1343 square kilometers) 

Graffiti (991) 

Assault (3,400) 

Residential burglary (5,327) 

Drugs (12,677) 

Statistical area level 2 (137) 

Statistical area level 1 (2,707) 

Mesh blocks (14,150) 

Antwerp, Belgium (205 square kilometers) 

Rape (980) 

Theft of vehicle (2,601) 

Assault (6267) 

Residential burglary (10,439) 

Neighborhoods (44) 

Statistical sectors (307) 

Street segments (26,875) 

 

Note. Mesh blocks are the smallest unit of geography available in the Australian national 

census; they are approximately the size of one city block.  
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Table 2. Geocoding match rate, S-Index = 0.90, crime type and area type 

 Large area Medium area Small area 

 Vancouver 

Theft of vehicle 30 80 90 

Residential burglary 20 70 90 

Theft 50 70 80 

Theft from vehicle 10 45 85 

 Leeds 

Residential burglary 35 75 90 

Shoplifting 60 70 75 

 The Hague 

Theft of vehicle 30 50 90 

Assault 20 35 85 

Residential burglary 15 15 85 

Street robbery 10 25 85 

 Brisbane 

Graffiti 55 80 85 

Assault 30 80 85 

Residential burglary 10 75 85 

Drugs 10 65 80 

 Antwerp 

Rape 30 70 90 

Theft of vehicle 15 50 90 

Assault 5 35 85 

Residential burglary 5 25 80 

 

 


