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ABSTRACT

OBJECTIVES The aim of this study was to investigate whether therapeutic intravascular ultrasound pulmonary artery

denervation (PDN) is safe and reduces pulmonary vascular resistance (PVR) in patients with pulmonary arterial

hypertension (PAH) on a minimum of dual oral therapy.

BACKGROUND Early studies have suggested that PDN can reduce PVR in patients with PAH.

METHODS TROPHY1 (Treatment of Pulmonary Hypertension 1) was a multicenter, international, open-label trial

undertaken at 8 specialist centers. Patients 18 to 75 years of age with PAH were eligible if taking dual oral or triple

nonparenteral therapy and not responsive to acute vasodilator testing. Eligible patients underwent PDN (TIVUS System).

The primary safety endpoint was procedure-related adverse events at 30 days. Secondary endpoints included procedure-

related adverse events, disease worsening and death to 12 months, and efficacy endpoints that included change in

pulmonary hemodynamic status, 6-min walk distance, and quality of life from baseline to 4 or 6 months. Patients were to

remain on disease-specific medication for the duration of the study.

RESULTS Twenty-three patients underwent PDN, with no procedure-related serious adverse events reported. The

reduction in PVR at 4- or 6-month follow-up was 94 � 151 dyn$s$cm�5 (p ¼ 0.001) or 17.8%, which was associated with

a 42 � 63 m (p ¼ 0.02) increase in 6-min walk distance and a 671 � 1,555 step (p ¼ 0.04) increase in daily activity.

CONCLUSIONS In this multicenter early feasibility study, PDN with an intravascular ultrasound catheter was performed

without procedure-related adverse events and was associated with a reduction in PVR and increases in 6-min walk distance

and daily activity in patients with PAH on background dual or triple therapy. (J Am Coll Cardiol Intv 2020;13:989–99)

© 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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P
atients with pulmonary arterial hy-

pertension (PAH) manifest signs of

sympathetic overdrive (1) that are

associated with poor outcomes (2). The lungs

are a major source of catecholamines and

both release and metabolize >40% of circu-

lating levels (3). It is unknown whether acti-

vation of the sympathetic nervous system is

a secondary phenomenon or whether it may play an

exacerbating and/or pathogenic role in the progres-

sion of disease. In experimental models of pulmonary

hypertension, therapies that target the sympathetic

(4,5) and renin-angiotensin-aldosterone (6) systems

reduce small-vessel remodeling and improve hemo-

dynamic status. However, in patients with PAH, the

few studies undertaken thus far have demonstrated

modulation of both pulmonary and systemic hemody-

namic status, with no evidence of clinical benefit

(7–9). Furthermore, beta-adrenergic blockade may

produce deterioration in patients with PAH resulting

from the systemic hemodynamic effects (hypoten-

sion, reduced heart rate, and cardiac output).

Catheter-based renal denervation in patients with

systemic hypertension reduces blood pressure

(10–12). Such technologies offer the opportunity to

modulate sympathetic activity through targeted

denervation of the pulmonary vasculature, poten-

tially avoiding the adverse effects of systemically

active therapies. Nerves surrounding the pulmonary

vasculature are present to a depth of 4 mm in large

animals (13,14) and 10 mm in human samples (15). In

patients with PAH, the application of radiofrequency

energy to a specific location at the bifurcation is re-

ported to provide an acute improvement in hemo-

dynamic status that persists to 3 months despite the

withdrawal of disease-specific therapy (16). Current

guidelines indicate that patients with PAH and

high-risk indicators should be treated with 2 disease-

specific therapies (17). As such, the effect of pulmo-

nary artery denervation (PDN) in patients on best

medical therapy is unknown, as is the feasibility of

ultrasound energy delivery for PDN.

The TIVUS System (SoniVie, Rosh Haayin, Israel) is

a percutaneous, noncontact catheter that provides a

fenestrated ring of thermal effect to a depth of 10 mm,

which is the expected location of the efferent and

afferent autonomic nerves in the pulmonary artery

adventitia (15). We designed this preliminary study to

investigate for the first time the feasibility of thera-

peutic intravascular ultrasound PDN, to monitor early

safety, and to determine whether the procedure

would lower pulmonary vascular resistance (PVR) in

patients with PAH established on a minimum of dual

oral therapy.

METHODS

STUDY DESIGN AND PARTICIPANTS. TROPHY1 (Treat-

ment of Pulmonary Hypertension 1) was amulticenter,

open-label, early feasibility study. Participants were

recruited from 5 hospitals in Europe and Israel and 3 in

the United States. The study was undertaken in

accordance with the Declaration of Helsinki and was

approved by local ethics committees or Institutional

Review Boards. All participants provided written

informed consent. Briefly, eligible patients were men

or women 18 to 75 years of age with PAH that did not

respond to vasodilator testing, on a minimum of dual

oral disease-specific therapy (17), with estimated

glomerular filtration rate $30 ml/min/1.73 m2.

PROCEDURES. After qualifying hemodynamic eval-

uation and pulmonary angiography, patients under-

went immediate therapeutic intravascular ultrasound

PDN (TIVUS System). A maximum of 18 activations

were delivered to nonoverlapping segments of the

main (n ¼ 8), right (n ¼ 8), and left (n ¼ 2) pulmonary

arteries. The number of activations and distance from

the pulmonary artery bifurcation was limited on the

left by the recurrent laryngeal nerve (15). Continuous

monitoring of energy output, vessel wall distance,

and temperature was used to optimize each activa-

tion, with automated safety cut-outs. Patients were

sedated and received pain-controlling medication at

the discretion of the responsible physician. The target

activated coagulation time of >250 s was achieved

with intravenous heparin to prevent coagulum

buildup on the ultrasound probe.

Post-procedural follow-up was at 1 month, 4 or

6 months (Europe and Israel, 4 months; United States,

6 months; mean 4.8 � 1.3 months), 8 months, and

12 months. Systemic blood pressure and heart

SEE PAGE 1000
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rate, adverse events, 6-min walk distance, and med-

ications were recorded and laboratory assessments

undertaken at each visit. Right heart catheterization

was performed at baseline and 4- or 6-month and 12-

month follow-up in the supine position, with pul-

monary pressure and flow measurements repeated in

triplicate. Magnetic resonance imaging or computed

tomography was performed at 1 and 6 or 12 months.

Wrist-based activity monitoring was undertaken for

14 days (ActiGraph GT9X Link, ActiGraph, Pensacola,

Florida) prior to baseline, 4- or 6-month, 8-month,

and 12-month visits.

OUTCOMES. The primary endpoint was procedure-

related adverse events at 30 days (pulmonary artery

perforation, dissection, aneurysm, or stenosis; he-

moptysis; and disease- or procedure-related death).

Secondary endpoints included PAH worsening and

death to 12 months and change from baseline to 4- or

6-month follow-up in PVR, mean pulmonary artery

pressure, right atrial pressure, 6-min walk distance,

quality of life (emPHasis-10), N-terminal pro–brain

natriuretic peptide, disease-specific medication, and

actigraphy. The time-to-event endpoint was a com-

posite of death, disease-related hospitalization,

FIGURE 1 Consolidated Standards of Reporting Trials Diagram

Hemodynamic and anatomic eligibility assessment was undertaken in 24 patients. One was excluded at right heart catheterization, and 23

underwent ultrasound pulmonary artery denervation. All patients were included in adverse event (AE), serious AE (SAE), and time to clinical

worsening (TTCW) analysis. Twenty patients underwent invasive assessment of hemodynamic status at 4 or 6 months, with 3 excluded

(1 receiving intravenous [i.v.] prostanoid therapy, 1 who died, and 1 with nonadherence to therapy).
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initiation of parenteral prostanoid therapy, lung

transplantation, or atrial septostomy, whichever

occurred first, to 12 months (18). Risk assessment was

undertaken using the French invasive score with low-

risk criteria defined as World Health Organization

functional class I or II, 6-min walk distance >440 m,

right atrial pressure <8 mm Hg, and cardiac

index $2.5 l/min/m2 (19). An independent data and

safety monitoring board reviewed all potential

procedure-related serious adverse events and

adverse events.

BLINDED DATA ANALYSIS. Hemodynamic data were

analyzed blinded to participant and time point by

an independent core laboratory (Cardiovascular

Research Foundation, New York, New York).

STATISTICAL ANALYSIS. Statistical analyses were

performed using 1-way analysis of variance, the Wil-

coxon matched-pairs signed rank test, Student’s

paired t-test, and the chi-square test as appropriate in

accordance with the pre-specified statistical analysis

plan. Reported adverse events are of all patients

enrolled, but patients who did not undergo follow-up

right heart catheterization were excluded in the

reporting of hemodynamic and functional endpoints

(Figure 1). Expected survival was modeled from 6-min

walk distance, sex, and cardiac output using the

French registry equation (20).

The study is registered at ClinicalTrials.gov

(NCT02516722, NCT02835950).

FUNDING. The study was funded by SoniVie. The

advisory committee and sponsor designed the study.

Independent data collection and monitoring were

undertaken by site-specific contract research organi-

zations. Statistical analyses were performed by the

Cardiovascular Research Foundation. All authors had

access to data and were responsible for the decision

to submit.

RESULTS

Between March 2015 and April 2018, 24 patients with

PAH on a minimum of dual oral therapy were enrolled

in TROPHY1. After qualifying right heart catheteriza-

tion, 23 patients underwent PDN.

Baseline characteristics are shown in Table 1. The

mean age was 60.0 � 11.4 years, 18 patients (78%)

were women, and 19 (83%) were Caucasian. At the

time of enrollment, all patients were receiving dual

oral therapy, and 7 (30%) were also receiving an

inhaled prostanoid or oral prostacyclin agonist

(Table 2).

Patients received an average of 10.0 (minimum 7,

maximum 16) ultrasound activations, with 4.5 (range:

2 to 7), 1.9 (range: 1 to 2), and 4.0 (range: 1 to 8) in the

right, left, and main pulmonary arteries, respectively,

with all patients receiving the pre-specified minimum

(2 right, 1 left, and 2 main). The duration of the

denervation procedure was 32.0 � 9.8 min, with a

mean fluoroscopy time of 8.1 � 5.4 min.

There were no procedure-related serious adverse

events. Serious adverse events and adverse events

are shown in Table 3. No patients reported procedure-

related pain lasting longer than 2 days, and no

perforation, dissection, aneurysm, or stenosis was

identified by pulmonary angiography post-procedure

or magnetic resonance imaging or computed

tomography at 1 and 12 months. There was no

acute reduction in mean pulmonary artery pressure

TABLE 1 Baseline Characteristics of Patients Enrolled (N ¼ 23)

Age, yrs 60.0 � 11.4

Female 18 (78)

Race

Caucasian 19 (83)

Black 1 (4)

Hispanic 2 (9)

Middle East 1 (4)

Time from diagnosis, yrs 6.1 � 5.7

Type of PAH

Associated with connective tissue disease 12 (52)

Associated with drug use 3 (13)

Idiopathic 8 (35)

WHO functional class III 23 (100)

Values are mean � SD or n (%).

PAH ¼ pulmonary arterial hypertension; WHO ¼ World Health Organization.

TABLE 2 Medical Therapy of Patients at Baseline and 4- or

6-Month Follow-Up (N ¼ 20)

Disease-Specific Therapy Baseline 4 or 6 Months

ERA/PDE5 inhibitor 10 (50) 10 (50)

ERA/sGC 4 (20) 4 (20)

ERA/PDE5 inhibitor/inhaled prostacyclin 3 (15) 3 (15)

ERA/sGC/inhaled prostacyclin 2 (10) 2 (10)

ERA/sGC/oral IP agonist 1 (5) 1 (5)

Diuretic agents

None 3 (15) 3 (15)

Loop 7 (35) 6 (30)

Loop/aldosterone antagonist 7 (35) 8 (40)

Loop/aldosterone antagonist/thiazide 3 (15) 3 (15)

Values are n (%).

ERA ¼ endothelin receptor antagonist; IP ¼ prostacyclin;

PDE5 ¼ phosphodiesterase type 5; sGC ¼ soluble guanylate cyclase.
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(þ0.7 � 10.0 mm Hg; p ¼ NS), and no change in esti-

mated glomerular filtration rate was apparent at

1 month (6.1 � 27.0 ml/min/1.73 m2; p ¼ NS). Three

subjects did not undergo follow-up right heart cath-

eterization and were not included in efficacy analysis:

1 transitioned to intravenous prostanoid, 1 died (un-

related to the procedure), and 1 was nonadherent to

therapy (Figure 1). Survival at 4 or 6 and 12 months

was 96%. The French registry equation was used to

estimate expected survival on the basis of patient

data at the point of study entry; expected survival

was 93% and 87% at 6 and 12 months, respectively

(20). Disease-specific therapy was unchanged be-

tween baseline and 4- or 6-month follow-up in pa-

tients included in the efficacy analysis (Table 2).

Diuretic therapy was consistent between time points

(Table 2): furosemide equivalent 54 mg/day (range:

0 to 160 mg/day) versus 59 mg/day (range: 0 to

160 mg/day), aldosterone antagonist 15 mg/day

(range: 0 to 50 mg/day) versus 16.25 mg/day (range:

0 to 50 mg/day), and thiazide 0.5 mg/day (range: 0 to

5 mg/day) versus 0.5 mg/day (range: 0 to 5 mg/day).

At 4- or 6-month follow-up, hemodynamic and

functional endpoints improved: PVR was reduced by

94 � 151 dyn$s$cm�5 (p ¼ 0.001), or 17.8%, and 6-min

walk distance increased by 42 � 63 m (p ¼ 0.02)

(Figures 2 to 4, Central Illustration, Table 4).

Improvements in mean pulmonary artery pressure

(�5.1 � 7.4 mm Hg; p < 0.01), right atrial pressure

(�2.4 � 3.5 mm Hg; p ¼ 0.01), and pulmonary arterial

compliance (þ0.39 � 0.83 ml/mm Hg; p < 0.01) were

also observed (Figure 2, Central Illustration, Table 4).

Reductions from baseline PVR of >10% were observed

in 14 patients (70%), and of those, 8 (40%) had re-

ductions of >20% (Figure 3). At 4 or 6 months, daily

activity was increased by 671 � 1,555 steps (p ¼ 0.04),

but no alteration was identified in cardiac output

(þ0.3 � 0.9 l/min; p ¼ NS), stroke volume index

(þ4.85 � 11.5 ml/min/m2; p ¼ 0.09), quality of life

(emPHasis-10 score �5.1 � 12.4; p ¼ 0.20), N-terminal

pro–brain natriuretic peptide (�263.5 � 1,120 pg/ml;

p ¼ 0.2), systemic blood pressure (þ4.8 �

24.4 mm Hg; p ¼ NS), and heart rate (þ0.05 � 8.2

beats/min; p ¼ NS) (Figures 2 and 4, Supplemental

Figure 1, Table 4). Hemodynamic and functional im-

provements were reflected in an increased number of

European Society of Cardiology low-risk indicators

achieved at 4- or 6-month follow-up (European Soci-

ety of Cardiology/French invasive risk score 0.4 � 0.6;

p < 0.001) (Figure 4, Central Illustration). Following

PDN, clinical worsening events occurred in 6 patients,

which were distributed throughout the follow-up

period (Figure 4).

DISCUSSION

This is the first study to examine the feasibility of

therapeutic intravascular ultrasound PDN and

describe early safety and clinical outcome indicators.

Following qualifying right heart catheterization, pa-

tients with PAH on a minimum of dual oral therapy

underwent immediate PDN. No procedure-related

serious adverse events were reported, and pulmo-

nary hemodynamic status, 6-min walk distance, and

daily activity improved at 4 or 6 months.

Patients were recruited from specialist pulmonary

hypertension centers, and the female predominance,

hemodynamic severity, and background therapy are

similar to those of large registries (21,22). The mean

age of 60 years, lengthy diagnosis-to-enrollment

duration, large number of patients on triple therapy,

and high proportion of connective tissue disease–

associated PAH also suggest that patients enrolled

were those established on guideline-directed therapy

with limited options for therapeutic escalation or

transplantation.

Ultrasound PDN was undertaken with no

procedure-related serious adverse events reported.

Of the 15 severe adverse events, 11 were disease-

related deterioration. At 12-month follow-up, clin-

ical worsening events had occurred in 6 of the 23

patients enrolled, a number typical for patients in

World Health Organization functional class III or IV

(23,24). As such, procedural feasibility and early

safety appear acceptable. Disease-specific and

diuretic therapy were maintained from baseline

to follow-up. At 4 or 6 months following PDN, a

TABLE 3 Serious Adverse Events and Adverse Events (All Patients Enrolled, N ¼ 23)

Event n Description

Serious adverse events

PAH hospitalization 11 Right ventricular failure/volume overload, syncope,

initiation of IV prostacyclin

Non-PAH hospitalization 3 Digoxin overdose, vasovagal episode, exacerbation of

lung disease

Death 1 Cardiac arrest

Adverse events

Anemia 2

Cardiac/PAH 32 Edema, chest pain, ECG changes, palpitations,

breathlessness, PAH progression/worsening

Infection 16 Urinary, respiratory, gastroenterological, dermatological,

dental

Pain 10 Pain during procedure, neck pain

Procedure related 7 Bleeding, hematoma, bruising, low saturation

Renal impairment 3

ECG ¼ electrocardiographic; IV ¼ intravenous; PAH ¼ pulmonary arterial hypertension.
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FIGURE 2 Pulmonary Vascular Hemodynamic Status at Baseline and 4 or 6 Months

(A) Pulmonary artery pressure (mean systolic pulmonary artery pressure: upper, þ95% confidence interval [CI]; mean of mean pulmonary artery pressure: white circles,

�95% CI; mean diastolic pulmonary artery pressure: lower, �95% CI). (B) Pulmonary vascular resistance (PVR). (C) Right atrial pressure (RAP). (D) Cardiac output

(CO). (E) Pulmonary capillary wedge pressure (PCWP). (F) Systolic blood pressure (SBP). (G) Heart rate. (H) Pulmonary arterial compliance (PCa). (I) Stroke volume index

(SVI). n ¼ 20, mean � 95% CI, Wilcoxon matched-pairs signed rank test or Student’s paired t-test as appropriate.

FIGURE 3 Change in PVR at 4 or 6 Months

Individual patient change in pulmonary vascular resistance (PVR) from baseline to 4 or 6 months following pulmonary artery denervation.
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94 dyn$s$cm�5 reduction in PVR was observed, 6-min

walk distance was increased by 42 m, and systemic

blood pressure and heart rate were not altered. In

keeping with the observed reduction in PVR, both

right atrial pressure and pulmonary artery compli-

ance were improved (22). Although not statistically

significant, stroke volume index increased to a level

above the optimal absolute cutoff threshold associ-

ated with mortality or transplantation (38 ml/min/m2)

(22). In comparison with prior reports of PDN in pa-

tients with PAH (PADN-1 [First-in-Man Pulmonary

Artery Denervation for Treatment of Pulmonary

Artery Hypertension]) (16), patients enrolled in TRO-

PHY1 were older, with a longer time from diagnosis

and a high predominance of connective tissue dis-

ease, and were all established on guideline-directed

therapy. Consistent with PADN-1 (16), PDN improved

PVR in a manner driven primarily by a reduction in

pulmonary artery pressure. However, in TROPHY1,

no on-table reduction in pulmonary artery pressure

was apparent, and the magnitude of changes was

less marked. The observed reduction in PVR and

increase in 6-min walk distance achieved at 4 or

6 months in TROPHY1 are in line with hemodynamic

FIGURE 4 Functional and Clinical Outcomes

At 4 or 6 and 8 months following pulmonary artery denervation, distance walked on 6-min walk test (6MWT) (A) and daily activity (steps per

day) (B) were increased. Quality-of-life score (C) and N-terminal pro–brain natriuretic peptide (NT-proBNP) (D) were not changed. The

number of European Society of Cardiology low-risk criteria increased (E). Clinical worsening events were distributed throughout follow-up. In

A to E, n ¼ 20, mean � 95% confidence interval, 1-way analysis of variance or chi-square test as appropriate. In F, n ¼ 23.
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CENTRAL ILLUSTRATION Pulmonary Vascular Hemodynamic and Functional Indicators at Baseline and Follow-Up

Intravascular ultrasound pulmonary artery denervation to treat pulmonary arterial hypertension

An open-label, early feasibility study of ultrasound pulmonary artery denervation in 23 patients with
pulmonary arterial hypertension established on guideline-directed medical therapy
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(A) Pulmonary artery pressure (mean systolic pulmonary artery pressure: upper, þ95% confidence interval [CI]; mean of mean pulmonary artery pressure: white

circles, �95% CI; mean diastolic pulmonary artery pressure: lower, �95% CI). (B) Pulmonary vascular resistance (PVR). (C) Right atrial pressure (RAP). (D) Distance

walked on 6-min walk test (6MWT). (E) European Society of Cardiology risk score. n ¼ 20, mean � 95% CI, 1-way analysis of variance, Student’s paired t-test, and chi-

square test as appropriate.
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outcomes of approved drug therapies and compare

favorably with a minimally important clinical dif-

ference in 6-min walk distance of 33 m (25). The

observed increase in daily activity and improved

clinical risk score provide further indication of po-

tential benefit on a background of guideline-directed

medical therapy.

Markers of neurohormonal activity are increased in

patients with PAH and are associated with adverse

clinical events (1,2). The pulmonary vasculature is

highly innervated, releasing and metabolizing >40%

of circulating catecholamines (3). The pulmonary

(nerve) plexus is predominantly sympathetic and is

innervated by fibers from the spinal ganglions (sym-

pathetic) and vagus nerve (parasympathetic) (15).

Baroreceptor structures have been described at the

pulmonary artery bifurcation (26), and balloon

distention of the main pulmonary artery increases

pulmonary artery pressure and PVR (27). These acute

changes are abrogated by surgical denervation and

chemical sympathectomy implicating sympathetic

nerves in the reflex (27). Furthermore, sympathetic

inhibition, through cervical ganglion block, reduces

pulmonary artery pressure in the context of acute

pulmonary embolism (28). In experimental models,

denervation of the pulmonary artery induces persis-

tent structural and functional changes within associ-

ated nerves and improves hemodynamic changes

driven by balloon distention (29), vasoconstriction

(13,15), and small-vessel remodeling (14). The

elevated PVR apparent in patients with PAH is driven

by small-vessel remodeling but also leads to

increased pulmonary artery pressure. The present

study demonstrates improvements in pulmonary

vascular hemodynamic status and functional capacity

4 or 6 months following PDN. In contrast to prior re-

ports of radiofrequency PDN, no acute reduction in

pulmonary artery pressure was observed with ultra-

sound PDN in this study, suggesting a potential

remodeling effect.

The health-economic cost of PAH-specific therapy

and clinical deterioration is high (30); dual oral ther-

apy is priced at $30,000 to $50,000 per year per pa-

tient and triple therapy at $50,000 to $160,000 per

patient per year (31,32). As such, a single, or repeated-

interval, catheterization laboratory–based procedure

may provide an alternative to therapeutic escalation

or an addition to combination therapy.

STUDY STRENGTHS AND LIMITATIONS. The study

was open label, with no placebo arm. Patients and

responsible physicians were not blinded, and the

potential effect of placebo cannot be quantified.

Patients were recruited from specialist centers at

which serial walk testing was part of routine care,

thereby reducing potential training and learning ef-

fects. To minimize potential bias, hemodynamic

studies were assessed by an independent core labo-

ratory, blinded to subject and sequence, and data

were analyzed by an independent statistician in

accordance with the pre-specified analysis plan.

Additionally, for this procedure, there is no immedi-

ate feedback to the operator to indicate success-

ful denervation.

CONCLUSIONS

Intravascular ultrasound PDN was feasible, reduced

PVR, and increased 6-min walk distance and daily

activity in patients with PAH treated with dual oral or

triple therapy. Further studies are required to eval-

uate the efficacy, durability, safety, and long-term

clinical impact of PDN in patients with pulmonary

hypertension of various forms.
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TABLE 4 Hemodynamics at Baseline and 4- or 6-Month Follow-Up (N ¼ 20)

Baseline 4 or 6 Months p Value

Right atrial pressure (mm Hg) 10.7 (8.1–13.3) 8.3 (6.1–10.5) 0.008

Pulmonary artery pressure (mm Hg)

Systolic 80.7 (68.8–92.5) 74.3 (63.1–85.4) 0.02

Mean 49.3 (42.5–56.1) 44.2 (37.4–51.0) 0.006

Diastolic 32.1 (27.3–36.8) 27.7 (22.3–33.1) 0.007

Pulmonary arterial wedge pressure (mm Hg) 13.4 (11.2–15.6) 12.9 (10.6–15.3) 0.63

Cardiac output (l/min) 4.9 (4.3–5.6) 5.2 (4.4–6.1) 0.41

Pulmonary vascular resistance (dyn$s$cm�5) 670 (479–861) 576 (373–779) 0.001

Systemic blood pressure (mm Hg)

Systolic 120 (113.0–126.9) 124.1 (112.4–135.7) 0.72

Diastolic 75.4 (69.7–81.1) 75.7 (69.5–81.9) 0.74

Heart rate (beats/min) 78.4 (73.7–83.2) 78.1 (72.4–83.8) 0.87

Values are mean (95% confidence interval).
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