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Genome editing enables very accurate alterations to DNA. It promises

profound and potentially disruptive changes in healthcare, agriculture,

industry, and the environment. This paper presents a multidisciplinary

analysis of the contemporary development of genome editing and the tension

between continuity and change. It draws on the idea that actors involved in

innovation are guided by “sociotechnical regimes” composed of practices,

institutions, norms, and cultural beliefs. The analysis focuses on how

genome editing is emerging in different domains and whether this marks

continuity or disruption of the established biotechnology regime. In

conclusion, it will be argued that genome editing is best understood as a

technology platform that is being powerfully shaped by this existing regime

but is starting to disrupt the governance of biotechnology. In the longer term

is it set to converge with other powerful technology platforms, which

together will fundamentally transform the capacity to engineer life.

Keywords: genome editing; sociotechnical regime; technology platform

1. Introduction

Genome editing is a powerful new technology that enables very accurate alterations

to the genetic material of all living organisms. In 2015, a feature in the scientific

journal Nature entitled “CRISPR the disruptor” anticipated the technology

having a profound impact on bench research, as well as in farming, healthcare,

and the environment (Ledford 2015). Genome editing has been rapidly and
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widely diffused in research across the globe and is being actively commercialized

by a wave of new start-up companies involved in creating novel plant varieties and

new therapeutics. The huge potential of this technology is raising important social,

ethical, and legal questions, especially the possibility of genetically modifying

future human generations.

Scientifically, CRISPR and other genome editing tools are the cumulative pro-

ducts of incremental discoveries and advances in understanding the molecular

biology of living organisms. Conceptually, genome editing is part of a longstanding

“genre of technique” (Landecker 2007) in which molecular biologists add, subtract,

transfer, and reorder the components of cells, genes, and tissues.

This tension between disruption and continuity is itself familiar from previous

accounts of biotechnology, where it is either as old as brewing and bread-making

or the very definition of a modern, technology-driven business sector (Bud 1993).

These different histories, or “possible pasts,” (Morrison 2012) of biotechnology

serve different ends. The latter valorizes biotechnologies as novel, exciting, and gen-

erative of future health and wealth, the better to enroll support and resources. The

former naturalizes it as continuing a longstanding sphere of human activity and there-

fore nothing to excite undue (public or political) concern. Genome editing speaks to

both these traditions. Nonetheless, there are good reasons to suggest that genome

editing marks a step change in the genetic engineering of life and is indeed disrupting

laboratory practices, innovation processes, and regulatory regimes.

The contemporary emergenceof genomeeditingmust be understood as takingplace

in a radically different context from the early development of recombinant DNA in the

1970s. In the twenty-first century biotechnology, first questions attending any scienti-

fic breakthrough concern how and when it will be translated, regulated, and commer-

cialized, as well as who owns it andwhomight benefit from its application. Therefore,

a central task is to analyze these processes of innovation and the dynamics of socio-

technical change and how they are shaping this powerful technology.

This paper analyses the emergence of genome editing and the tension between

disruption and continuity. To achieve this, we draw on the idea that the actors

involved in a particular innovation system are guided by a sociotechnical regime

constituted by a specific set of practices, institutions, norms, and cultural

beliefs. The focus is on the nature of the sociotechnical regime in which genome

editing is emerging and the extent to which this marks continuity or disruption

of the established biotechnology regime. Specifically, we ask:

. How and where is genome editing emerging and what regime of practices,

institutions, norms, and cultural beliefs is enabling and guiding its

development?
. To what extent does this represent continuity or disruption in the established

sociotechnical regime associated with biotechnology?
. Which elements of this regime and what other factors are shaping its future

trajectory?
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This paper first sets out the conceptual framework for thinking about sociotech-

nical regimes and describes the methods used. The following sections analyzes the

key features of the technology and the core elements of the regime it is developing

within: its applications, how it is being patented, commercialized and regulated,

and its broader cultural meaning. In conclusion, an assessment will be made of

how genome editing is related to processes of continuity and change within the

sociotechnical regime associated with biotechnology, the prospects for more funda-

mental change as it converges with other technology platforms, and where genome

editing is likely to be disruptive in the future.

2. Conceptual framework

The analysis of technological change has a long history in the social sciences,

drawing on various disciplinary traditions. In this paper, we seek to describe the

early development of a potentially disruptive technology arising within an estab-

lished domain (i.e. biotechnology). While “disruption” may be cast as a negative

term, a positive framing of “disruptive innovation” has gained considerable cur-

rency in the last decade in both business studies and technology policy, following

the resurgence of interest in Joseph Schumpeter’s work on the creative destruction

brought about by new technology and Clayton Christensen’s book The Innovator’s

Dilemma: When New Technologies Cause Great Firms to Fail (Christensen 1997).

For Christensen, disruptive innovation describes “a process by which a product or

service takes root initially in simple applications at the bottom of a market and then

relentlessly moves up market, eventually displacing established competitors”

(Christensen 2018).

Within social studies of science and technology, this concept has been recently

applied to the analysis of system transitions, such as energy production and the

adoption of electric cars. However, it has been widely criticized in a burgeoning

literature on this topic for placing too much emphasis on novelty, individual tech-

nological applications, and impact at the firm rather than the industry or system

level (Winskel 2018). Analysts such as Geels have instead focused on sociotechni-

cal systems (the multi-level perspective), which “ … consist of an interdependent

and co-evolving mix of technologies, supply chains, infrastructures, markets, regu-

lations, user practices and cultural meanings” (Geels 2018, 225). Here, the system

is marked by the interaction between material elements and social structures, such

as policies, culture, technologies, or markets, which form stable relationships to

enable the production and use of knowledge. Within this framework, technological

change requires the alignment of different system elements through processes of

mutual shaping. This is guided by a particular sociotechnical regime, constituted

by a set of semicoherent rules and institutions, which orient and co-ordinate the

actions of the social groups that reproduce the system. These form the

“grammar” of a system and might include shared beliefs, values, expectations, rou-

tines, regulations, institutionalized practices, and capabilities (Fuenfschilling and
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Truffer 2014). The biotechnology regime is marked by several key features: appro-

priation based on the patenting of living systems and processes; commodification

and commercialization via dedicated research-intensive firms; governance built

on institutions regulating pharmaceuticals and food and shaped by ethical prin-

ciples and soft law; and cultural understandings drawing on a grammar of frames

and metaphors associated with the engineering of life.

Different forms of sociotechnical disruptions may therefore occur within various

elements of a system, affecting which actors and material elements are involved and

the relationship between organizations and institutions. This paper explores the

extent to which disruption is occurring in the regime of practices, institutions,

norms, and cultural beliefs that guides action within the system.

Recent theoretical and empirical work has looked at important aspects of the

development of biotechnology and genomics (see Franklin 2006; Thompson

2013; Jasanoff, Hurlbut, and Saha 2015; Reardon 2017), leading to important

insights into the dynamics of change in these domains. However, surprisingly

little research has used the multi-level systems or sociotechnical regimes approach.

Our choice of topics is therefore defined by the key features of the biotechnology

regime listed earlier. In the following sections, we briefly outline the key actors,

organizations, and institutions that constitute the emerging regime associated

with genome editing, how they relate to the established sociotechnical system

built around biotechnology, and where disruption is (or is not) occurring in the

associated regime of applications, intellectual property, commercialization, govern-

ance, and cultural framing.

3. Methods

Our analysis draws on multiple data sources derived from a series of discrete pro-

jects that used a range of methods. These data have been carefully integrated and

cross checked to ensure a robust picture of the recent development of genome

editing. The technical introduction drew on a detailed review of the academic

and policy literature undertaken as part of a study of biomodifying technologies

(Morrison et al. 2019). Data on the commercial development of the technology

involved a comprehensive online survey of firms working on genome editing

using industry databases and web directories (e.g. GenomeWeb). Data were

then collated on individual firms from their web sites, news releases, annual

reports, and stock exchange (e.g. SEC) filings. Analyses of legal and ethical gov-

ernance of genome editing, and of the patent landscape involved desk-based

retrieval and analysis of key legal, policy, and civil society documentation, as

well as a comprehensive literature review. The scientific, clinical, and ethical

aspects raised by the National Academies of Science, Engineering and Medicine’s

Human Gene Editing Initiative were analyzed for themes and framings, using

publicly available materials (including video of keynotes, panels and audience

Q&A, and presentation slides from the 2015 Human Gene Summit). The data

4 P. Martin et al.



on cultural framing emerged from qualitative thematic and metaphor analysis of a

range of media and texts including newspapers, popular science books, and blogs.

For details of methods, see Cameron and Masten 2010. In addition, the authors

have attended many national and international scientific and policy meetings

related to gene editing between 2016 and 2018 and have drawn on observational

data and informal interviews carried out at these events in writing this paper.

4. Introduction to the technology

Currently, there are three main genome editing tools: zinc fingers (ZFN), transcrip-

tion activator-like effector nucleases (TALENs), and CRISPR-Cas based systems.

Each of these tools works in a similar way. They contain a binding domain that can

recognize specific DNA sequences and an enzyme capable of cutting DNA. This

targeting capacity is not absolute, meaning that a genome editing tool may cause

unintended changes known as “off target” effects (Koo, Lee, and Kim 2015).

Zinc finger nucleases were the first of this type of gene editing tools but are widely

regarded as difficult to make and use. The number of translational applications of

ZFN currently in development is limited. TALENs are easier to use, but most

sources agree that CRISPR-Cas9 has driven the real take-off in genome editing

(Ledford 2015). TALENs and CRISPR tools are available at relatively low cost

through the not-for-profit Addgene repository, while CRISPR components are now

routinely included in the kits of “biobricks” distributed by the International Geneti-

cally Engineered Machines (iGEM) competition. CRISPR’s accessibility and wide-

spread distribution have thus been facilitated by building on the “installed base” of

existing infrastructure set up to distribute established genetic engineering tools.

For CRISPR Cas9 in particular, the relative ease of application means it can be

readily incorporated with the equipment, skill sets, practices ,and routines of a

wide variety of research groups, to open up new experimental possibilities.

Thus, it makes more sense to regard genome editing as a platform technology

akin to polymerase chain reaction (PCR) or cell culture rather than thinking of

it as, for example, a “medical technology” (cf. Keating and Cambrosio 2003;

Landecker 2007). Another reason for the widespread uptake of CRISPR is its con-

siderable adaptability. Researchers have modified the Cas9 protein to give it novel

properties, such as editing RNA instead of DNA, making epigenetic modifi-

cations, changing one base to another, and silencing or boosting the expression

of specific genes, with further options under exploration. Other CRISPR variants,

from different strains of bacteria (e.g. CRISPR-Cpf1) offer a further range of prop-

erties such as smaller size, varying efficacies in plant, animal, or human cells, and

different degrees of on and off target effects. In this sense, CRISPR-Cas genome

editing systems are still being studied to adapt and modulate their properties. As a

result, the scope of genome editing is changing rapidly and looks likely to con-

tinue to do so for the foreseeable future as new tools, techniques, and capacities

emerge.
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CRISPR has been widely and rapidly adopted in laboratories across the world in

the last few years and has transformed the genetic manipulation of many living

systems. It is notable in its relative simplicity, ease of use, low cost, and speed.

Although “disruptive” to many laboratory practices, this work has largely devel-

oped within the established cultural, institutional, and practice regimes of contem-

porary laboratory-based molecular biology.

5. Clinical, agricultural, and industrial applications

Genome editing tools can be used in the cells of any organism that has DNA –

humans, animals, plants, bacteria, fungi, etc. Possible or planned applications

include, but are not limited to the following:

5.1. Human healthcare

Genome editing tools are being developed for multiple human therapeutic appli-

cations. Most interventions are still at the preclinical stage, but some have been

experimentally applied in humans. As of April 2019, some 25–30 clinical trials

were underway worldwide recruiting ∼1,000 patients. These mainly use blood

cells that are extracted, genetically modified ex vivo, and re-applied by transfusion.

For example, white blood cells modified with ZFN have been designed to resist

infection by HIV or edited using CRISPR-Cas9 to increase their efficiency in

attacking tumor cells. Of these, chimeric antigen receptor-modified T (CAR-T)

cells (such as Novartis’ Kymriah) are the most translationally advanced products.

The traditional model of treating genetic disease by correcting or replacing “faulty”

gene variants in monogenic disorders such as cystic fibrosis is also being studied

with contemporary genome editing. These approaches build directly on the long

history of gene therapy and the use of modified viruses as delivery vehicles.

However, the safe and effective delivery of CRISPR or the other editing tools

remains an issue with a range of different approaches being investigated.

By far the most controversial use of CRISPR to date has been the modification of

human embryos to produce two genetically altered children. The birth of the

world’s first “CRISPR babies” was reported by Chinese scientist He Jiankui in

November 2018 and provoked an international outcry and calls for a moratorium

on such applications (see below).

Demonstrating their adaptability, CRISPR-based systems are also being devel-

oped for health applications that do not involve directly modifying human

genetic material. Genome-editing nucleases are being designed to attack infectious

agents or detect genetic material from invading pathogens such as the Zika virus.

Genetically modified animals are being configured to present new models of

human disease for preclinical experiments or make animal tissue more suitable

for xenotransplantation into humans.
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5.2. Transgenic plants and animals

Genome editing has the potential to create new varieties of modified animals and

plants for agricultural, “pharming”, and other nonmedical applications. Already

the technique has been applied to a number of crop breeding programs,

including herbicide resistance, improved nutrition (e.g. soy beans with

reduced trans-fat), improved shelf life (e.g. nonbrowning mushrooms), pest

resistance (e.g. virus resistant cucumber), and improved yields (e.g. rice)

(SAM 2017). Animal applications under development include hornless milk

cows, improved milk quality and muscle growth, and disease resistance (e.g.

TB resistant cattle (SAM 2017)).

Various organisms may also be genome edited for environmental and health

reasons, for example, modified bacteria to clean up contaminated land. One of

the more prominent applications is in the production of “gene drives” where

pest animals are engineered to produce sterile offspring, with the intention of

reducing breeding populations to tackle Zika or malaria spread by mosquitoes

(SAM 2017).

5.3. DIY genome editing and biosecurity

CRISPR systems do not require sophisticated equipment or expertise, and thus,

access has extended beyond formal laboratories and into the preexisting “garage

labs” and “hackspaces” of DIYbio. For example, the Open Discovery Institute

(ODIN) sells DIY Bacterial Gene Engineering CRISPR kits for just $159,

accompanied by a guide that suggests a novice will be able to run the same exper-

iments as a PhD student within 6 months.

It should also be noted that there are broader biosecurity issues raised by the

development of genome editing that go beyond biohacking. The Editing Biosecur-

ity project suggests that with respect to genome editing, “Scientific, technical, econ-

omic, and social trends are increasing the range of potential biological hazards,

diversifying the sources of these hazards, multiplying the routes of exposure,

expanding the populations that may be exposed, and increasing these populations’

level of susceptibility.” (Kirkpatrick et al. 2018) These include concerns about dual

use technologies, biosafety issues associated with gene drive and breaches of bio-

logical containment, and biosecurity threats from bioweapons developed by state

actors, terrorist organizations, reckless individuals, and groups. How these are

responded to is still emerging.

With the exception of DIYbio, almost all these approaches involve integrating

genome editing into existing research trajectories, aiming for markets that, if not

always extant, have at least been previously anticipated. While human and agricul-

tural applications are seen as an incremental innovation whose new capabilities

have so far been shaped by the existing grammar of biotechnological innovation

systems, in contrast, DIYbio and some biosecurity applications open up genetic

engineering to entirely new groups and applications.
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6. Intellectual property and commercialization

One of the dominant features of the sociotechnical system that has enabled the

development of biotechnology has been the commodification of knowledge

through the creation of intellectual property (IP) and its commercialization by dedi-

cated firms. The early development of genome editing has drawn heavily on these

processes and institutions and has been powerfully influenced by the existing bio-

technology regime.

6.1. A contested patent landscape

The patent landscape for genome editing has been highly contested. One of the

most high-profile patent disputes involved Jennifer Doudna (UC Berkeley) and

Emmanuelle Charpentier (now Max Planck) who filed a US patent application in

May 2012 for the use of CRISPR-Cas9 as an editing tool in any cell type and

Feng Zhang (Broad Institute of MIT and Harvard) who filed in December 2012

for uses of CRISPR-Cas9 in eukaryotic cells. Zhang was awarded a patent

before Doudna and Charpentier, leading to US litigation. Both the Broad’s

patents and UC Berkeley’s patent claims were found to be sufficiently distinct to

be valid (King & Wood Mallesons 2018). The complexity of the US CRISPR

patent landscape was increased, when in April 2019, the US Patent and Trademark

Office (USPTO) awarded UC Berkeley’s patent for uses of CRISPR Cas-9 in the

“cellular or non-cellular environment” (Pierson 2019). In Europe, this patent

dispute has played out somewhat differently; the EPO granted Doudna and Char-

pentier a patent for uses of CRISPR/Cas 9 in any cell type, and although the

Broad Institute also acquired some patents, disputes have arisen over the priority

dates of inventions, which could lead to these being limited or revoked. Other

CRISPR European patent holders include MilliporeSigma, ToolGen, Vilnius Uni-

versity, Harvard College, and Cellectis. In February 2019, it was estimated that

over 1,700 patents had been filed by 100s of companies on CRISPR-related tech-

nology and/or uses (Cynober 2019).

The patenting of CRISPR technologies has reignited several ethical debates, as

patent holders are able to control who uses the invention and for what purposes

(McMahon 2019). Patents on controversial uses of CRISPR, e.g. for gene drives,

could control such applications (Sherkow 2017). Conditions can also be attached

to licenses to promote “ethical” uses of technologies. For example, the Broad Insti-

tute’s license with Monsanto for agricultural uses of CRISPR-Cas9 requires Mon-

santo to allow farmers to save and use seeds in the next season (Sherkow 2017).

However, patents on CRISPR technologies, if exercised in a restrictive manner,

could impede access to technologies for the public and research community by

refusing licenses or driving up costs.

Finally, the European patent system has morality provisions excluding patents

for inventions whose commercial exploitation is against morality/ordre public,

including “processes for modifying the germline genetic identity of human
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beings.” If CRISPR technologies are defined as such, they would be unpatentable

in Europe (San Martín and Smith-Willis 2015). To date, “germline” is undefined in

this context, and this will be an important interpretive question if raised in a Euro-

pean challenge to the patentability of gene editing technologies. Overall, the patent-

ing of genome editing technologies appears to fit, sometimes uncomfortably, within

the existing regime for the creation of intellectual property within biotechnology.

6.2. The commercial development of genome editing

Very high levels of commercial interest have been shown in genome editing since

the emergence of CRISPR systems. Prior to that, only a small number of companies

pioneered TALEN (e.g. Calyxt) or zinc fingers (e.g. Sangamo), the latter emerging

in the 1990s. As with commercialization of nearly all emerging biotechnologies,

genome editing has been led by start-up companies established by the scientific pio-

neers of the field. The competing research groups mentioned above with patent

claims on CRISPR (e.g. Broad Institute and UC Berkeley) have been active in

establishing new firms to exploit these inventions. Other institutions with IP in

this area, such as the University of Vienna, have also licensed this to new compa-

nies (e.g. CRISPR Therapeutics) (Cohen 2017).

Table 1 gives details of the main firms involved in the commercialization of

genome editing. There are several notable features of this rapidly expanding sub-

sector. First, nearly, all are US based and very young, with most formed between

2011 and 2015. They are extremely well financed, raising over $1.2bn between

them by the start of 2018, with the CRISPR-based firms winning almost $1bn of

this total. Second, they have adopted a range of business strategies. The majority

are developing products in the human healthcare and agricultural areas, but

several are selling research tools and services, such as enzymes. There has been

an active collaboration between these small firms and much larger integrated

pharmaceutical and agricultural biotechnology companies, as few start-up firms

have the resources or expertise to take products all the way to market without

investment and support from larger partners.

Companies working on human therapeutics focus on two main areas: genetic

diseases, such as haemophilia, and CAR-T cell therapy (using engineered

immune cells) for cancer. Historically, there has been a lack of interest from

large pharmaceutical companies in the treatment of genetic disease, but this is

changing. For example, CRISPR Therapeutics formed a $335M joint venture

(Casebia) with Bayer in 2015 to develop cures for blood disorders, blindness,

and congenital heart disease (Weisman 2016) and in the same year established

a collaboration with Vertex to develop therapies for sickle cell disease and β-tha-

lassemia (BusinessWire 2015). Huge investment from pharmaceutical companies

in CAR-T cell therapy has anticipated FDA approval of the first medicine of this

sort in 2017. In the field of crop improvement, Precision Biosciences has part-

nered with Cargill to develop genetically modified canola oil. Interest also

New Genetics and Society 9



Table 1. Leading genome editing companies (January 2019).

Name

Public/

private

Country/

year founded Funding

Technology

(licensed from) Application area

Services/ Products in

development Major collaboration

Caribou

Biosciences

Private USA 2011 $46M private CRISPR

(UC Berkeley)

Antimicrobials; animal

health;

bioproduction

Research services

(drug screening;

agriculture; animal)

Novartis; DuPont

Pioneer; Genus

Calyxt Public USA 2010 $64M IPO Talens (Minesotta

Uni)

Agricultural biotech Speciality ingredients;

food crops;

Was spun-out from

Cellectis; Bayer

CRISPR

Therapeutics

Public USA 2013 $127 private

$56 M IPO

CRISPR (Vienna

University)

Therapeutics inc

CAR-T Cell therapy

Sickle cell & beta

thalassaemia;

various cancers;

liver disease

Vertex; Casebia (joint

venture with Bayer)

Editas Public USA 2013 $210M private

$94M IPO

CRISPR (Broad

Institute)

Therapeutics inc

CAR-T Cell therapy

Various cancers; eye

diseases; rare genetic

diseases

Juno

Horizon

Discovery

Public UK 2005 $50M private

$75M IPO

CRISPR (Broad

Institute; ERS)

Tools GE enzymes, cell lines,

animal models

AstraZeneca; Roche

Diagnostics;

Novartis

Inscripta Private USA 2015 $86M private CRISPR (own IP) Tools GE enzymes

Intellia Public USA 2014 $85M private

$108M IPO

CRISPR (UC

Berkeley)

Therapeutics inc

CAR-T Cell therapy

Various cancers; rare

genetic diseases

Was spun-out from

Caribou Regeneron;

Novartis

Precision

Biosciences

Private USA 2006 $26M private ARCUS –

CRISPR

variant

Food; therapeutics inc

T Cell

immunotherapy

GM plants; various

cancers

Cargill; Baxalta

Sangamo

Therapeutics

Public USA 1995 $85M private

$49M IPO

$73M public

Zinc fingers Therapeutics Various cancers;

haemophilia;

thalassaemia; rare

genetic diseases

Pfizer; Gilead Sciences;

Shire

1
0

P
.
M
a
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remains in other non-CRISPR technologies with Sangamo forming a $3 billion

partnership with Gilead Sciences in 2018 to work on zinc fingers for cancer

therapy (Reuters 2018).

Although young, the genome editing industry is already extensive. In rapidly

reaching this point, it has drawn heavily on a well-established sociotechnical infra-

structure of funding, institutions, and expertise for the exploitation of novel bio-

technologies. At the same time, genome editing technology has started to be

rapidly integrated into the mainstream pharmaceutical and agbiotech industries.

7. Metaphors, cultural framing, and enrolling public

One of the key processes involved in the construction of new sociotechnical

systems and regimes around emerging technology is the enrolment of public.

Central to this are processes of cultural framing in which a novel technology is ren-

dered familiar through the use of well-established metaphors and discursive frames.

Genome editing is the latest in a long line of advances in genetics and genomics

where powerful metaphors play a central role in the constitution of these technol-

ogies. Examples include the metaphor of the “code” in genetics, of “the book” in

genomics, and of “engineering” in synthetic biology (McLeod and Nerlich 2017).

The first popular science book on genome editing exploits two of these metaphors:

Hacking the Code of Life: How gene editing will rewrite our futures (Carey 2019).

To convey hopes and fears surrounding genome editing, longstanding Western

myths, and narratives and book titles are used, including “Brave New World”

and “Frankenstein”, “Opening Pandora’s Box” or “Prometheus” (Kozubek

2016), as well as religious references, such as “Playing God” or “a crack in cre-

ation” (Doudna and Sternberg 2017).

Gene or genome “editing” is both a constitutive and communicative framing,

having its roots in letter, book, and word processing metaphors for DNA and

genomes. Editing can involve “cutting and pasting” and “finding and replacing,”

which involves the use a “guide molecule,” sometimes compared to a GPS

system and “molecular scissors.” The main action is that of “targeting” parts of

the genome. Explanations of genome editing using such metaphors also talk

about its dangers in terms of “off-target effects” (O’Keefe et al. 2015).

Fears about off-target effects now mingle with increasing anxieties about the

“germline” genome editing or heritable genome editing. Such fears have recently

been exacerbated after the birth of gene-edited babies in China. It is also the

most closely associated with eugenics, “designer babies,” and other longstanding

moral concerns. However, hopes and fears of control always encounter the

reality of biological complexity (Ball 2017).

Ethical and social issues around genetics and genomics have been discussed in

novels, films, TV series, and so on for a very long time. This continues in the

context of genome editing with Sci-Fi thrillers like Change Agent, films like

Rampage, TV series like Orphan Black, and much more (Nerlich 2019).
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Those fostering public engagement with genome editing will have to take this

shifting cultural landscape into account together with the complexity of ethical

and social issues surrounding this new technology. Efforts are now being made

to engage wider public with gene editing, efforts that also look at language and

culture (Burall 2018).

A range of civil society organizations are actively criticizing the development and

use of genome editing in a number of countries, including ones specifically focused on

the impact of biotechnology such as the Center for Genetics and Society in the USA

and Human Genetic Alert in the UK. These groups have raised important concerns

about the development of genome editing, its governance, and the future imaginaries

associated with it. This reflects a longstanding cultural unease with the prospect of

human genetic modification. As a consequence, advocates remain concerned that

public support for genome editing is not deeply rooted and resistance to the technology

may emerge, framed by dystopian narratives about biotechnology, both old and new.

Currently, genome editing for medical purposes, including germline editing,

seems to evoke more hope than fear in the public sphere, both in the United

States and the United Kingdom, as recent research has shown (Scheufele et al.

2017; Royal Society 2018). The US survey found that people only drew a line

when editing, especially germline editing, was for “enhancement” purposes

rather than treating disease. This situation may change after the birth of the first

genome edited babies, which has triggered a worldwide debate about the govern-

ance of germline editing (Rosemann et al. 2019).

The cultural framing of genome editing has drawn heavily on established meta-

phors used in the biotechnology regime. These have played an important performa-

tive function when used by state and professional actors to enroll public and win

support for research. As genome editing moves from the laboratory to the clinic,

emerging attitudes to the technology will be shaped not only by tropes and

stories but also by the existing regime of narratives about IVF, preimplantation

genetic diagnosis, and other reproductive technologies, as well as the national

and international cultures of ethics surrounding them.

8. Ethics, regulation, and governance

Another key element of the biotechnology regime has been the creation of a robust

framework to regulate the work of scientists and shape the creation of new products

and services. This includes the design of formal regulatory frameworks and the

establishment of softer forms of governance based on ethical norms as well as

attempts to “invent around” ethical roadblocks by scientists (Thompson 2013, 3)

8.1. The legal regulation of human genome editing

Most applications of gene editing mimic existing gene therapies, in targeting

somatic “adult” body tissues. As such, they are likely to be governed within
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established regulatory frameworks, such as the Advanced Therapy Medicinal Pro-

ducts Regulations in the EU. However, as of July 2019, the exact framework had

yet to be determined.

In contrast, there has been a great deal of controversy about the possibility of

using genome editing to alter future generations (Lander 2015). The boundary sep-

arating “somatic” cell and “germline” genetic modification was created in the

1980s following the report of the President’s Commission on Bioethics. In the

1990s, this was reinforced by various international conventions and treaties that

prohibited germline modification even for therapeutic purposes (Council of

Europe 1997; UNESCO 1997; EU 2000). With the advent of CRISPR, some inter-

national statements have been updated to reaffirm this prohibition (e.g. UNESCO

2015).

However, this consensus has recently come under pressure. For example, the

Human Fertilisation and Embryology (Mitochondrial Donation) Regulations

(2015) permit genetic modification to enable the conception of children

without the mitochondrial disease, making the UK the first jurisdiction in the

world to legally permit human germline modification. In justifying this,

the UK government concluded that mitochondrial replacement techniques

(MRT) would not affect the “genetic identity” of the resulting child (Turkmendag

2017).

While some commentators praised the UK’s approach for being “consequential

in its impact and ground breaking in its regulatory evaluation process” (Adashi and

Cohen 2015, 832), others claimed that the techniques provide a “quiet way station”

in which to develop other human germline interventions (Baylis 2017). This

concern is not unfounded: in February 2016, after the passage of MRT regulations,

the HFEA granted the first license permitting gene editing of human embryos for

research purposes. A range of professionals, public interest, and religious groups

have opposed this liberalization and campaigned for sustaining the ban on germ

line engineering.

Despite this opposition, it seems likely the UK’s MRT regulations will become a

model for other jurisdictions (Adashi and Cohen 2015). Having examined the

national policy framework of 16 countries, Isasi, Kleiderman, and Knoppers

(2016) found that vagueness in distinctions between clinical and research appli-

cations, as well as in basic definitions, has led to legal uncertainty, which allows

for different interpretations or practices to circumvent or hinder the intent of

policy (Isasi, Kleiderman, and Knoppers 2016). Furthermore, as observed during

the International Summit on Human Gene Editing, cultural differences between

countries are likely to extend the diversity of regulations (Reardon 2015). Inter-

national harmonization through “soft law” (e.g. private standards, guidelines,

codes of conduct, and forums for transnational dialogue) is proposed as a possible

solution. However, such an approach may depend on reaching greater international

consensus on the ethics of germline modification.
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8.2. Ongoing ethical and policy debates

The absence of international harmonization for human germline engineering has

mobilized a number of initiatives. Some prominent bioethicists and genetic scien-

tists, including Doudna, have called for a moratorium on such research pending a

broad debate and the development of appropriate oversight of the field (Baltimore

et al. 2015). Citing the 1976 Asilomar conference on regulating recombinant DNA,

this group helped launch a series of debates at the US National Academies of

Science, including two international Gene Editing Summits in 2015 and 2018.

Framed as a consensus statement, the report of the 2015 Summit accepted that in

certain cases where there was no other treatment and no possibility of selecting

unaffected embryos, human germline engineering (HGE) might be permissible

once considered safe, if carefully regulated (NAS 2017). These self-imposed

restrictions by the scientists were criticized for being an undemocratic trust-build-

ing exercise to show the public that scientists are behaving in an ethically respon-

sible manner, thereby “avoiding premature legislative intervention” (Jasanoff,

Hurlbut, and Saha 2015; Sarewitz 2015).

By 2017, growing numbers of scientists and policy makers were advocating the

cautious development of human germline genome editing. In some countries, this

took the form of increasing pressure to relax restrictions to avoid “falling behind”

international competitors and to prevent scientists and researchers moving to more

permissive jurisdictions. In this context, prohibitive laws are perceived as an

obstacle to innovation and scientific progress. For example, Canada’s criminal

ban on human genome editing has been criticized for not being a suitable instru-

ment to regulate scientific research (Knoppers et al. 2017). Similar concerns

have been expressed by German scientists, who are forbidden by law from enga-

ging in research projects that use human embryos (Bonas et al. 2017).

The clearest sign of a push for a more permissive approach was the publication in

July 2018 of a major report by the UK Nuffield Council on Bioethics (Nuffield

Council 2018). It concluded that germline genome editing:

could be ethically acceptable in some circumstances, so long as: it is intended to

secure, and is consistent with, the welfare of a person who may be born as a conse-

quence of interventions using genome edited cells; and it is consistent with social

justice and solidarity, i.e. it should not be expected to increase disadvantage, discrimi-

nation, or division in society. (Nuffield Council 2018)

Recommendations were also made to ensure tight regulation of the technology and

broad public engagement and societal consensus. This marks a major break with

previous ethical frameworks, which stress the key difference between genetic

enhancement and therapy and instead argued that a stable and principled boundary

of this sort was not sustainable. This new, more permissive, ethical framework

based on welfare, justice, and solidarity is highly significant given the UK’s

leading international role in establishing regulatory standards in reproductive

technology.
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Despite this apparent consensus that human applications were premature, particu-

larly for heritable changes, the 2018 Gene Editing Summit was overshadowed by

the announcement by the Chinese scientist, He Jiankui, that he had used CRISPR to

edit the genomes of two recently born twin girls to confer resistance to HIV

(Lovell-Badge 2019).

In the wake of global criticism of He’s action, and further calls for a temporary

moratorium, a group of Chinese bioethicists also published a response, rejecting the

assumption that there is a scientific and ethical divide between the East and the

West and suggesting that Jiankiu’s actions can be better explained by the “prevail-

ing international science culture that puts a premium on sensational research and

being first” (Zhai et al. 2019). Shortly after, China’s health authority announced

draft regulations providing stricter oversight of human genome editing (Bloomberg

News 2019). Despite these moves to prevent the germ line editing of humans in the

short term, there remains a strong current of international policy and professional

support for this as an option in the longer term, something that is certain to

provoke fierce opposition from many groups.

8.3. The governance of agricultural and environmental applications

In the US it initially appeared that the Food and Drugs Administration (FDA)

would tightly regulate products created using genome-edited plants and animals.

However, in April 2018, the US Department of Agriculture (USDA) ruled that

innovators would be allowed to use genome editing technologies to create novel

crop varieties without regulatory oversight (McKie 2018). This marked a signifi-

cant break from previous regulations controlling genetically modified organisms

(GMOs), which have historically been less permissive and is likely to stimulate

rapid testing of various agricultural and environmental applications. The key argu-

ment made in support of this change was that stringent regulation should only apply

to organisms “…where novel DNA can actually be detected and not to those

which could have arisen by natural mutation (such as those involving manipulation

of a single base)” (POST 2016, 4). As a consequence, advocates hoped that the

technology would be seen as more “natural” than the transgenic intraspecies trans-

fer of DNA that characterized GMOs prior to recent advancements in genome

editing. In contrast, in July 2018, the Court of Justice of the European Union

ruled that genome-edited crops should be subject to the same regulation as more

conventional GMOs, placing Europe in direct opposition to the US on this key

issue (Callaway 2018).

Despite this apparent shift in policy, the FDA has continued to govern the use of

genome editing in animals. The FDA Plant and Animal Biotechnology Innovation

Action Plan remained committed to “a comprehensive framework for the develop-

ment and regulatory oversight of animal biotechnology products, including inten-

tionally genetically altered animals and the food and drug products derived from

them” (FDA 2019). This suggests that the Agency will retain formal oversight of
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some gene-edited animal products, creating tension at the heart of US policy. Under

these proposals, all new animals produced using genome editing will be regulated

as a new animal drug. This places a much greater regulatory burden on innovators

in terms of safety and has been criticized by industry as being too stringent.

8.4. The governance of DIYbio

The risks of DIYbio have been taken seriously by security agencies for some time

before CRISPR emerged, with the FBI convening a conference in 2012 and the EU

Non-Conventional Threat Briefing taking place in 2014. The possibility of genome

editing being conducted in kitchens and garages has also rung warning bells. In late

2017, in response to the availability of kits offered by the ODIN and YouTube

videos showing advocates experimenting on themselves, a number of official

and scientific bodies, such as the American Society of Gene and Cell Therapy

(ASGCT), warned against the dangers of DIY genome editing (ASGCT 2017).

In addition, the FDA asserted that the sale of the kits was illegal and the German

consumer protection agency, the BVL, warned that importing them could incur a

fine of up to EUR 50,000 (BVL 2017).

However, some have welcomed the “democratization” of molecular biology.

Kuiken (2016), for example, argues that the culture of responsibility, transparency,

and collaboration seen in DIYbio “community labs” ought to be a model for insti-

tutionalized science. Furthermore, some involved in DIYbio communities argue

that DIYbio, including gene editing, will be the only way to realize the promise

of personalized medicine, moving advanced therapies out of commercial and insti-

tutional laboratories. Genome editing offers to transform this area, making it easier

for nonexperts to routinely undertake the genetic engineering of life, thus redraw-

ing the boundaries between science and society.

9. Discussion and conclusion

In this section, we focus on issues of continuity and change, the extent to which

genome editing is usefully conceived of as being “disruptive” and the likely

pathway of its future development. We have illustrated above how genome editing

can be usefully understood as a “biomodifying” technology that transforms living bio-

logical tissue in novel and increasingly customizedways (Morrison et al. 2019) and as

a generic platform technology with multiple potential human, animal, plant, environ-

mental, military, and industrial applications spanningmany areas that have historically

been considered discrete within scientific, policy, ethical, and public debates.

9.1. What is stable and enduring?

Picking-up on the theme of continuity and change within the biotechnology regime,

we might start by asking what aspects of genome editing represent business as

usual? First, in the realm of sociotechnical expectations, the enduring hopes
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invested in the engineering of life continue to provide both a guiding set of techni-

cal principles and a powerful imaginary increasingly linking fundamental science

to the growth of the bioeconomy. Genome editing is closely entangled in the con-

tinued reproduction of futures in which the engineering of life is seen as a source of

economic value, as exemplified by the rapid capitalization of the technology by

start-up companies.

There is also considerable stability in the organizations and institutions constitut-

ing the sociotechnical system being assembled around genome editing. In this

sense, the emergence of genome editing builds on the established institutional,

technical, and social infrastructures that have provided the foundation for biotech-

nology over many decades. These include research funding programs, scientific

and commercial support infrastructure (e.g., reagents, manufacturing), the appar-

atus for commercial development (creation of start-ups, venture finance), clinical

and agricultural development and testing (translational research institutes), and

the protection of IPR (well-established patent systems). None of these were in

place when genetic engineering first became possible in the 1970s, making it far

easier for the rapid growth and diffusion of genome editing to occur.

Scientific and public narratives around genome editing also demonstrate strong

continuity, with their cultural framing drawing on well-established tropes surround-

ing earlier biotechnologies. These include both utopian and dystopian discourses

about the potential power of genome editing to revolutionize medicine or create

monsters. The strong link to the hope for a cure for rare genetic diseases and the

sociocultural embedding of biotechnology may contribute to what appears to be

greater public acceptability of some aspects of genetic engineering. Here, processes

of normalization may work over time, so that new technological possibilities gradu-

ally get less “disruptive” (Marvin 1990). In this sense, ethical debates on germline

engineering can be seen as running ahead of the science in an attempt to establish

new norms and are playing a key role in moves to clear the way for technologies

that were previously socially unacceptable.

Seen from this perspective, genome editing is growing within an existing socio-

technical regime and its emergence and applications are being powerfully shaped

by what has gone before. Its early development has therefore not proved to be

very disruptive, at least not immediately and not everywhere.

9.2. What is changing and what is being disrupted?

Even as the emergence of genome editing illustrates the obduracy of the expec-

tations, institutions, and cultural framing built around genetic engineering, it is

also important to analyze what is different or changing (materially, politically, ethi-

cally, culturally, procedurally) from previous technologies? In particular, where is

regime “disruption” occurring and for whom?

At a scientific level, new tools to improve gene editing are rapidly being devel-

oped and the technology is set to become ubiquitous, pervasive, and mundane
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through its low cost, high speed, and ease of use. These quantitative improvements

may ultimately bring about major qualitative changes as genetic engineering of

cells, tissues, and whole organisms becomes cheap, quick, and routine. This has

strong similarities with the earlier development of polymerase chain reaction

(PCR), a technology platform for amplifying very small amounts of DNA,

which transformed genetic research and became the foundation for many key

developments in biotechnology, such as genetic testing and forensics. In particular,

genome editing is altering both the scale and scope of genetic engineering practices.

The scale is growing dramatically as a result of the huge increases in the speed and

volume of genetic manipulation made possible by CRISPR. For example, genome

editing makes it much easier to create large libraries of genetically modified labora-

tory animals. The scope is also dramatically increasing as the ability to alter a much

greater range of organisms at a large number of different sites (DNA, RNA, epigen-

ome) matures. Although the full impact of this shift in scale and scope made poss-

ible by this powerful technology platform is still to be felt, its outline is becoming

visible.

First, the boundaries between organisms are being further eroded as it becomes

easier to transfer and manipulate genes across species and between generations.

While this has always been part of recombinant DNA technology, genome

editing is increasingly challenging existing categories and distinctions between

the “natural” and “synthetic,” as well as creating novel forms of hybrid life. This

further transgresses traditional social (and legal/regulatory) categories through

which everyday life is ordered and rendered meaningful and is highly disruptive

to the collective understandings and governance of living things.

Second, there is increasing convergence among related technology platforms,

with next-generation sequencing (NGS), and synthetic biology vastly increasing

the capacity to custom synthesize large stretches of DNA. This combination of

the ability to rapidly “read”, “write,” and “edit” the genome opens-up many new

technical possibilities that may have profound consequences in the long term.

Already these tools are being used in combination in a major international initiative

to construct the first synthetic eukaryotic organism (the Synthetic Yeast Genome

Project – see http://syntheticyeast.org/). The creation of a powerful integrated plat-

form for genetically engineering life will enable an acceleration in the (re)pro-

duction of life in biological time, marking a break with natural cycles of

organismic reproduction and a shift to postgenomic temporalities. Genetic

changes that would have taken generations of selective breeding will become poss-

ible in a single generation. Already, genome editing is commercially available to

rapidly speed-up and customize the production of inbred mouse lines for drug

testing (Taconic 2018).

The growth of genome editing also has important geospatial implications as it

makes genetic modification much more accessible to a wide range of groups and

countries not traditionally involved in biotechnology, especially in the Global

South. Therefore, it falls within Christensen’s notion of disruptive innovation by
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making a product, service – or in this case, a technology platform – accessible to

completely new groups of users, in ways which may ultimately force older,

major players to adapt or be forced from the field. This is visible in DIYbio, but

also in the diffusion of genome editing to Africa (Mudziwapasi, Ndudzo, and

Rutendo Patricia Nyamusamba 2018). This shift to a postgenomic spatiality

raises key questions for the governance of genome editing by both professional

and state actors. Taken together, the compression of biological time and the globa-

lization of genetic manipulation may prove to be highly disruptive of existing insti-

tutions, scientific practices, and cultural norms. However, the analysis presented

here has mainly focused on the UK and the USA and the sociotechnical regimes

in these countries. Therefore, it must be stressed that while there are strong simi-

larities between such regimes in many advanced economies and the existence of

a globalized biotechnology sector, there are important differences between

countries. These are most significant with respect to the scale of public bioscience

research, the structure of the biotechnology industry, and the history and culture of

governance debates that are informed by religious traditions and legal systems. As a

consequence, the scale of adoption and disruption may differ in time and space

depending on cultural, technical, and geopolitical contexts, fostered, acceptance,

or resisted. This might lead to friction and complications in attempting to establish

global regulatory standards, as well as in creating international markets for genome

edited products.

Thirdly, perhaps the most immediate disruptive effect of genome editing is in

terms of governance. Existing regulatory frameworks play an important function

in enrolling support for genome editing and are shaping its early development in

a familiar fashion. However, the ability to more readily manipulate embryos and

ultimately the germ line is putting pressure on the de facto international moratorium

on human germline engineering. New coalitions of actors, especially those families

and patients suffering from rare genetic disorders, are placing great hope in the

possibility of this technology to develop new therapies. In the short term, this

may lead to genome editing tourism, but in the longer term, there are likely to

be increasing calls for experimental embryo and germline modification following

the testing of mitochondrial transplants and the maturation of gene therapy for

rare diseases. This will stoke demand for young women willing to donate ova

for research, a practice already subject to its own long-standing ethical conflicts

and track record of poor regulation at a global level. In other areas, such as the regu-

lation of agricultural GMOs, there are already signs of less stringent regulation and

the unravelling of regulations preventing the widespread cultivation of GM crops in

some countries.

Thus, while the field of genome editing is still very much in the making and

taking place within the established biotechnology system, there are clear signs of

disruption to the underpinning regime of technical capabilities, scientific practices,

ethical norms, and regulations, especially in relation to the possibility of germline

editing. At the same time, the emergence of a new postgenomic regime dominated
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by the convergence of key technology platforms – genome editing, next-generation

sequencing, and synthetic biology – is occurring. The outline of this is still only

partially visible, but the direction of travel seems clear as the capacity to engineer

life dramatically increases. This may herald an intensification in the commodifica-

tion and capitalization of life, the establishment of new cultural values that normal-

ize synthetic organisms, and the resurgence of a neo-eugenics biopolitics centered

on germline engineering.

How the tension between integration into existing sociotechnical networks, insti-

tutions, and practices and disruption of the established regime is resolved over time

is important for several reasons. The development of genome editing within existing

structures enables rapid diffusion and adoption at low cost across a range of sectors and

applications, easier commercialization, and more robust regulation, as well as higher

levels of public acceptance. The ease of use and adaptability of the technology makes

this possible. However, integrationmay also lock genome editing into amore domesti-

cated role prescribed by established governance arrangements.While thismay limit its

more radical potential in the short term, a range of powerful actors remain committed to

exploiting its disruptive potential across a much wider range of applications. The

balance of political and economic forces supporting or opposing these options will

be critical in deciding how disruptive genome editing is in particular settings and

spaces. Further research will be needed to provide greater detail of how changes to

specific elements of the regime are occurring in different domains, institutions, and

geographies. Many features of this new landscape have still to be negotiated and

will be powerfully influenced by public and professional opposition and the social,

ethical, and biopolitical debates about the governance of life. The social sciences

must remain fully engaged with these vitally important questions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Michael Morrison’s work was supported the UK Economic and Social Research Council (grant ref
ES/P002943/1). Brigitte Nerlich’s work was supported by the University of Nottingham Synthetic
Biology Research Centre and the Biotechnology and Biological Sciences Research Council and
Engineering and Physical Sciences Research Council (grant ref: BB/L013940/1). Ilke Turkmendag
was supported by a small grant from Newcastle University, Faculty of Humanities and Social Sciences
Research Fund.

ORCID

Paul Martin http://orcid.org/0000-0003-0366-9271

Michael Morrison http://orcid.org/0000-0001-6870-6673

Brigitte Nerlich http://orcid.org/0000-0001-6617-7827

Stevie deSaille http://orcid.org/0000-0002-8183-7771

20 P. Martin et al.



References

Adashi, E. Y., and I. G. Cohen. 2015. “Editing the Genome of the Human Germline: May Cool Heads

Prevail.” The American Journal of Bioethics 15 (12): 40–42.

ASGCT. 2017. Statement on DIY Gene Therapy. https://www.asgct.org/research/news/december-

2017/asgct-statement-unregulated-diy-gene-therapy.

Ball, P. 2017. “Designer Babies: An Ethical Horror Waiting to Happen?” The Observer, 8 January.

Accessed 13 February 2017. https://www.theguardian.com/science/2017/jan/08/designer-bab

ies-ethical-horror-waiting-to-happen.

Baltimore, D., P. Berg, M. Botchan, D. Carroll, R. A. Charo, G. Church, E. C. Jacob, et al. 2015. “A

Prudent Path Forward for Genomic Engineering and Germline Gene Modification.” Science 348

(6230): 36–38.

Baylis, F. 2017. “Human Nuclear Genome Transfer (So-Called Mitochondrial Replacement): Clearing

the Underbrush.” Bioethics 31 (1): 7–19.

Bloomberg News. 2019. “China Proposes Stricter Rules on Gene Editing After Scandal.” 27 February

2019. Accessed 10 July 2019 https://www.bloomberg.com/news/articles/2019-02-27/china-prop

oses-stricter-rules-after-rogue-gene-scientist-scandal.

Bonas, U., B. Friedrich, J. Fritsch, Albrecht Müller, Bettina Schöne-Seifert, Henning Steinicke, Klaus

Tanner, et al. 2017. Ethical and Legal Assessment of Genome Editing in Research on Human

Cells. https://www.leopoldina.org/uploads/tx_leopublication/2017_Diskussionspapier_Genom

eEditing_01.pdf.

Bud, R. 1993. The Uses of Life: A History of Biotechnology. Cambridge: Cambridge University Press.

Burall, S. 2018. “Rethink Public Engagement for Gene Editing. Comment.” Nature 21: 438. https://

www.nature.com/articles/d41586-018-03269-3.

BusinessWire. 2015. “Vertex and CRISPRTherapeutics Establish Collaboration to Use CRISPR-Cas9

Gene Editing Technology to Discover and Develop New Treatments for Genetic Diseases.”

News release 26 October 2015. https://www.businesswire.com/news/home/20151026005392/

en/Vertex-CRISPR-Therapeutics-Establish-Collaboration-CRISPR-Cas9-Gene.

BVL. 2017. “Gentechnik mit Biologiebaukästen: Einfach, aber möglicherweise strafbar [Genetic

Engineering with Biology Kits: Simple but Possibly Punishable].” Bundesamt für Verbrau-

cherschutz und Lebensmittelsicherheit. https://www.bvl.bund.de/DE/06_Gentechnik/04_Fach

meldungen/2017/2017_01_25_DIY-Kits.html.

Callaway, E. 2018. “CRISPR Plants Now Subject to Tough GM Laws in European Union.” Nature.

News Story 25 July 2018 https://www.nature.com/articles/d41586-018-05814-6.

Cameron, L., and R. Masten, eds. 2010.Metaphor Analysis: Research Practice in Applied Linguistics,

Social Sciences and the Humanities. Sheffield: Equinox Publishing.

Carey, N. 2019. Hacking the Code of Life: How Gene Editing Will Rewrite our Future. London: Icon

Books.

Christensen, C. 1997. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail.

Boston, MA: Harvard Business School Press.

Christensen, C. 2018. Disruptive Innovation. Web pages, Accessed 1 August 2018. http://www.

claytonchristensen.com/key-concepts/.

Cohen, J. 2017. “How the battle lines over CRISPR were drawn.” Science. 15 February 2017. https://

www.sciencemag.org/news/2017/02/how-battle-lines-over-crispr-were-drawn.

Council of Europe. 1997. “Convention on Human Rights and Biomedicine (Oviedo Convention).”

ETS No. 164. Accessed 6 March 2018. https://www.coe.int/en/web/conventions/full-list/-/

conventions/treaty/164.

Cynober, T. 2019.“ CRISPR: One Patent To Rule them All.” LabtechEU. 11 February 2019. Accessed

April 2019. https://labiotech.eu/features/crispr-patent-dispute-licensing/.

Doudna, J. A., and S. H. Sternberg. 2017. A Crack in Creation: Gene Editing and the Unthinkable

Power to Control Evolution. New York: Houghton Mifflin Harcourt.

New Genetics and Society 21



European Union. 2000. Charter of Fundamental Rights of the European Union (2000/C 364/01).

FDA. 2019. “FDA Announces April 25 Webinar on Genome Editing in Animals, Signalling Commit-

ment to Implementing its Plant and Animal Biotechnology Innovation Action Plan.” 2 April 2019.

https://www.lexology.com/library/detail.aspx?g=1a0db56b-04d9-4e0b-8662-18d0ef95e3e4.

Franklin, S. 2006. “The Cyborg Embryo: Our Path to Transbiology.” Theory, Culture & Society 23 (7–

8): 167–187. doi:10.1177/0263276406069230.

Fuenfschilling, L., and B. Truffer. 2014. “The Structuration of Socio-Technical Regimes — Concep-

tual Foundations From Institutional Theory.” Research. Policy 43 (4): 772–791.

Geels, F. W. 2018. “Disruption and low-Carbon System Transformation: Progress and New Chal-

lenges in Socio-Technical Transitions Research and the Multi-Level Perspective.” Energy

Research & Social Science 37: 224–231.

Isasi, R., E. Kleiderman, and E. B. M. Knoppers. 2016. “Editing Policy to Fit the Genome?” Science

351 (6271): 337–339.

Jasanoff, S., J. Hurlbut, and K. Saha. 2015. “Crispr Democracy: Gene Editing and the Need for Inclus-

ive Deliberation.” Issues in Science and Technology 32 (1): 25–32.

Keating, P., and A. Cambrosio. 2003. Biomedical Platforms: Realigning the Normal and the Patho-

logical in Late-Twentieth-Century Medicine. Cambridge: MIT Press.

King &WoodMallesons. 2018. “United States Court of Appeals upholds PTAB Decision on CRISPR

Patent Interference.” Lexology, 24 September, 2018. Accessed 25 April 2019. https://www.

lexology.com/library/detail.aspx?g=e28a705f-30f6-4208-87fc-afd8544ee633.

Kirkpatrick, J., Gregory D. Koblentz, Megan J. Palmer, Edward Perello, David A. Relman, Sarah W.

Denton. 2018. Editing Biosecurity: Needs and Strategies for Governing Genome Editing. Insti-

tute for Philosophy and Public Policy, George Mason University. http://mars.gmu.edu/bitstream/

handle/1920/11342/Editing-Bio-%2bReport-Final.pdf?sequence=1&isAllowed=y.

Knoppers, B. M., R. Isasi, T. Caulfield, E. Kleiderman, P. Bedford, J. Illes, U. Ogbogu, V. Ravitsky,

and M. Rudnicki. 2017. “Human Gene Editing: Revisiting Canadian Policy.” Regenerative

Medicine 2 (3): 1–3.

Koo, T., J. Lee, and J. S. Kim. 2015. “Measuring and Reducing Off-Target Activities of Programma-

ble Nucleases Including CRISPR-Cas9.” Molecules and Cells 38 (6): 475–481. doi:10.14348/

molcells.2015.0103.

Kozubek, J. 2016. Modern Prometheus: Editing the Human Genome with Crispr-Cas9. Cambridge:

Cambridge University Press.

Kuiken, T. 10 March 2016. “Learn from DIY Biologists.” Nature 531: 167–168.

Landecker, H. 2007. Culturing Life: How Cells Became Technologies. Cambridge, MA: Harvard Uni-

versity Press.

Lander, E. S. 2015. “Brave New Genome.” The New England Journal of Medicine 373: 5–8.

Ledford, H. 4 June 2015. “CRISPR the Disrupter.” Nature 522: 20–24.

Lovell-Badge, Robin. 2019. “CRISPR Babies: AView from the Centre of the Storm.” Development

146: 1–5. doi:10.1242/dev.175778.

Marvin, C. 1990. When Old Technologies Were New: Thinking About Electric Communication in the

Late Nineteenth Century. Oxford: Oxford University Press.

McKie, R. 2018. “US Gene-Editing Ruling Delights Plant Scientists.” The Observer. 8 April 2018.

Accessed 2 May 2018. https://www.theguardian.com/science/2018/apr/07/gene-editing-ruling-

crops-plants.

McLeod, C., and B. Nerlich. 2017. “Synthetic Biology, Metaphors and Responsibility.” Life Sciences,

Society and Policy 13 (13). https://lsspjournal.springeropen.com/articles/10.1186/s40504-017-

0061-y.

McMahon, A. 2019. “0Patents as Private Governance Tools.” Working paper, 2019.

Morrison, M. 2012. “Promissory Futures and Possible Pasts: They Dynamics of Contemporary

Expectations in Regenerative Medicine.” BioSocieties 7: 2–22.

22 P. Martin et al.



Morrison, M., M. Mourby, A. Bartlett, and E. Bicudo. 2019. “Mapping the Biomodifying Technology

Landscape.” Impact 1: 63–65.

Mudziwapasi, R., A. Ndudzo, R. P. Nyamusamba, F. N. Jomane, T. T. Mutengwa, M. Maphosa. 2018.

“Unlocking the Potential of CRISPRTechnology for Improving Livelihoods in Africa.” Biotech-

nology and Genetic Engineering Reviews. doi:10.1080/02648725.2018.1482101.

NAS. 2017. “Human Genome Editing: Science, Ethics and Governance.” http://www.nationalacade

mies.org/gene-editing/consensus-study/index.htm.

Nerlich, B. 2019. “Crispr Culture”. Blog post on theMaking Science Public Blog. Accessed 12 March

2019. http://blogs.nottingham.ac.uk/makingsciencepublic/2019/03/15/crispr-culture.

Nuffield Council on Bioethics. 2018. Genome Editing and Human Reproduction: Social and Ethical

Issues. London: Nuffield Council. http://nuffieldbioethics.org/project/genome-editing-human-

reproduction.

O’Keefe, M., S. Perrault, J. Halpern, L. Ikemoto, M. Yarborough, and UC North Bioethics Collabora-

tory for Life & Health Sciences. 2015. “Editing’ Genes: A Case Study About how Language

Matters in Bioethics.” The American Journal of Bioethics 15 (12): 3–10.

Parliamentary Office of Science and Technology (POST). 2016. Genome Editing. Houses of Parlia-

ment POST Note 541.

Pierson, B. 2019. “University of California to be Granted Pioneering CRISPR Patent.” Reuters, 8 Feb-

ruary 2019. Accessed 25 April 2019. https://www.reuters.com/article/us-ucberkeley-ip-crispr/

university-of-california-to-be-granted-pioneering-crispr-patent-idUSKCN1PX25K.

Reardon, J. 2017. The Postgenomic Condition: Ethics, Justice, and Knowledge After the Genome.

Chicago: The University of Chicago Press.

Reardon, S. 2015. “Global Summit Reveals Divergent Views on Human Gene Editing.” Nature 528

(7581): 173. doi:10.1038/528173a.

Reuters. 2018. “Sangamo in $3 Billion Gene-Editing Deal with Gilead.” News release 22 February

2018. https://uk.reuters.com/article/uk-sangamo-deals-gilead-sciences/sangamo-in-3-billion-ge

ne-editing-deal-with-gilead-idUKKCN1G61I4.

Rosemann, A., A. Balen, B. Nerlich, C. Hauskeller, M. Sleeboom-Faulkner, S. Hartley, X. Zhang, and

N. Lee. 2019. “Heritable Genome Editing in a Global Context: National and International Policy

Challenges.” The Hastings Center Report 49 (3): 30–42.

Royal Society. 2018. Genetic Technologies. Accessed 8 March 2018. https://royalsociety.org/topics-

policy/projects/genetic-technologies/.

SAM. 2017. New Techniques in Agricultural Biotechnology.High Level Group of Scientific Advisors,

Explanatory Note 02. Scientific Advice Mechanism (SAM). Brussels: EU Directorate-General

for Research and Innovation.

San Martín, B., and H. Smith-Willis. 2015. “Revolutionising Genome Editing with CRISPR/Cas9:

Patent Battles and Human Embryos.” Cell Gene Therapy Insights 1 (2): 253–262.

Sarewitz, D. 2015. “CRISPR: Science Can’t Solve it.” Nature 522 (7557): 413–414.

Scheufele, D. A., M. A. Xenos, E. L. Howell, K. M. Rose, D. Brossard, and B. W. Hardy. 2017. “US

Attitudes on Human Genome Editing.” Science 357 (6351): 553–555.

Sherkow, J. 2017. “Patent Protection for CRISPR: An ELSI Review.” Journal of Law and the Bio-

sciences 4 (3): 565–576.

Taconic. 2018. Application of CRISPR/Cas to the Generation of Genetically Engineered Mice.

Taconic Inc. www.taconic.com.

Thompson, C. 2013. Good Science: The Ethical Choreography of Stem Cell Research. Cambridge:

MIT Press.

Turkmendag, I. 2017. “It Is Just a “Battery”: “Right” to Know in Mitochondrial Replacement.”

Science, Technology and Human Values 43 (1): 56–85.

UNESCO. 1997. “Universal Declaration on the Human Genome and Human Rights 1997

(UNESCO)”.

New Genetics and Society 23



UNESCO. 2015. “Report of the IBC on Updating Its Reflection on the Human Genome and Human

Rights.” http://unesdoc.unesco.org/images/0023/002332/233258e.pdf.

Weisman, R. 2016. “CRISPR Takes the Wraps off Joint Venture with Bayer.” The Boston Globe. 19

August.

Winskel, M. 2018. “Beyond the Disruption Narrative: Varieties and Ambiguities of Energy System

Change.” Energy Research & Social Science 37: 232–237.

Zhai, X., R. Lei, W. Zhu, and R. Qiu. 2019. “Chinese Bioethicists Respond to the Case of He Jiankui.”

The Hastings Centre. Accessed 5 April 2019. https://www.thehastingscenter.org/chinese-

bioethicists-respond-case-jiankui/.

24 P. Martin et al.


	Abstract
	1. Introduction
	2. Conceptual framework
	3. Methods
	4. Introduction to the technology
	5. Clinical, agricultural, and industrial applications
	5.1. Human healthcare
	5.2. Transgenic plants and animals
	5.3. DIY genome editing and biosecurity

	6. Intellectual property and commercialization
	6.1. A contested patent landscape
	6.2. The commercial development of genome editing

	7. Metaphors, cultural framing, and enrolling public
	8. Ethics, regulation, and governance
	8.1. The legal regulation of human genome editing
	8.2. Ongoing ethical and policy debates
	8.3. The governance of agricultural and environmental applications
	8.4. The governance of DIYbio

	9. Discussion and conclusion
	9.1. What is stable and enduring?
	9.2. What is changing and what is being disrupted?

	Disclosure statement
	ORCID
	References

