
This is a repository copy of Continuous Glucose Monitoring in Pregnancy: Importance of 
Analyzing Temporal Profiles to Understand Clinical Outcomes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/157911/

Version: Accepted Version

Article:

Scott, EM orcid.org/0000-0001-5395-8261, Feig, DS, Murphy, HR et al. (2 more authors) 
(2020) Continuous Glucose Monitoring in Pregnancy: Importance of Analyzing Temporal 
Profiles to Understand Clinical Outcomes. Diabetes Care, 43 (6). pp. 1178-1184. ISSN 
0149-5992 

https://doi.org/10.2337/dc19-2527

© 2020 by the American Diabetes Association. This is an author produced version of a 
paper published in Diabetes Care. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

Continuous Glucose Monitoring in Pregnancy: Importance of 

Analysing Temporal Profiles to Understand Clinical Outcomes  

Authors: Eleanor M Scott1, Denice S Feig2, Helen R Murphy3 Graham R Law4 

On behalf of the CONCEPTT Collaborative Group* 

(1) Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and 

Metabolic Medicine , University of Leeds, UK 

(2) Department of Medicine, Sinai Health System, Toronto, ON, Canada 

(3) Division of Maternal Health, St Thomas’s Hospital, Kings College London, UK 

(4) School of Health and Social Care, University of Lincoln, UK. 

CONCEPTT Collaborative Group (listed according to recruitment numbers): 

Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK: Helen Murphy, 

Jeannie Grisoni, Carolyn Byrne, Sandra Neoh, Katy Davenport, (43); Alberta Health 

Services, University of Calgary, Calgary, Canada: Lois Donovan, Claire Gougeon, Carolyn 

Oldford, Catherine Young (39); King’s College Hospital, London, UK: Stephanie Amiel, 

Katharine Hunt, Louisa Green, Helen Rogers, Benedetta Rossi (29); Mount Sinai Hospital, 

Toronto, Canada: Denice Feig, Barbara Cleave, Michelle Strom (22); Hospital de la Santa 

Creu i Sant Pau, Barcelona, Spain and CIBER‐BBN, Zaragoza, Spain: Rosa Corcoy, Alberto 

de Leiva, Juan María Adelantado, Ana Isabel Chico, Diana Tundidor (22); The Ottawa 

Hospital General Campus, Ottawa, Canada: Erin Keely, Janine Malcolm, Kathy Henry (15); 

Ipswich Hospital NHS Trust, Ipswich, UK: Damian Morris, Gerry Rayman, Duncan Fowler, 

Susan Mitchell, Josephine Rosier (13); Norfolk and Norwich University Hospital, Norwich, 

UK: Rosemary Temple, Jeremy Turner, Gioia Canciani, Niranjala Hewapathirana, Leanne 

Piper (13); St. Joseph's Health Centre, London, Canada: Ruth McManus, Anne 

Kudirka, Margaret Watson (13); Niguarda ca’ Granda Hospital, Milano, Italy: Matteo 

Bonomo, Basilio Pintaudi, Federico Bertuzzi, Giuseppina Daniela Corica, Elena Mion (12); 

Sunnybrook Health Sciences Centre, Toronto, Canada: Julia Lowe, Ilana Halperin, Anna 

Rogowsky, Sapida Adib (11); Glasgow Royal Infirmary, Glasgow, UK: Robert Lindsay, 

David Carty, Isobel Crawford, Fiona Mackenzie, Therese McSorley (10); McMaster 

University, Hamilton, Canada: John Booth, Natalia McInnes, Ada Smith, Irene Stanton, 

Tracy Tazzeo (8); Centre hospitalier universitaire de Québec, Quebec City, Canada: John 

Weisnagel (6); Queen’s Medical Centre, Nottingham, UK: Peter Mansell, Nia Jones, Gayna 
Babington, Dawn Spick (6); Royal Victoria Infirmary, Newcastle Upon Tyne, Newcastle, 

UK: Malcolm MacDougall, Sharon Chilton, Terri Cutts, Michelle Perkins (6); Leeds 

Teaching Hospitals NHS Trust, Leeds, UK: Eleanor Scott, Del Endersby 



2 

(6); Royal Infirmary of Edinburgh, Edinburgh, UK: Anna Dover, Frances Dougherty, Susan 

Johnston (6); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK: Simon 

Heller, Peter Novodorsky, Sue Hudson, Chloe Nisbet (6); Izaak Walton Killam Health 

Sciences Centre (IWK), Halifax, Canada: Thomas Ransom, Jill Coolen, Darlene Baxendale 

(5); University Hospital Southampton NHS Foundation Trust, Southampton, UK: Richard 

Holt, Jane Forbes, Nicki Martin, Fiona Walbridge (6); Galway University Hospitals, Galway, 

Ireland: Fidelma Dunne, Sharon Conway, Aoife Egan, Collette Kirwin (4); Central 

Manchester University Hospitals NHS Foundation Trust, Manchester, UK: Michael Maresh, 

Gretta Kearney, Juliet Morris, Susan Quinn (4); South Tees Hospitals, NHS Foundation 

Trust, Middlesbrough, UK: Rudy Bilous, Rasha Mukhtar (4); Centre de Recherche du Centre 

Hospitalier de Université de Montréal (CR‐CHUM), Montreal, Canada: Ariane Godbout, 

Sylvie Daigle (3); The Dudley Group NHS FT, Russells Hall Hospital, Dudley, UK: 

Alexandra Lubina Solomon, Margaret Jackson, Emma Paul, Julie Taylor (3); Kingston 

General Hospital, Queen’s University, Kingston, Canada: Robyn Houlden, Adriana Breen 

(3); Guys and St Thomas’ NHS Foundation Trust, London, UK: Anita Banerjee, Anna 
Brackenridge, Annette Briley, Anna Reid, Claire Singh (2); Royal University Hospital, 

Saskatoon, Canada: Jill Newstead‐Angel, Janet Baxter (2); Grampian Diabetes Centre, 

Aberdeen, UK: Sam Philip, Martyna Chlost, Lynne Murray (2); William Sansum 

Diabetes Center, Santa Barbara, USA: Kristin Castorino, Lois Jovanovic, Donna Frase (2). 

The Centre for Clinical Trial Support (CCTS) at the Sunnybrook Research Institute, Toronto, 

Canada: Sonya Mergler, Kathryn Mangoff, Johanna Sanchez, and Gail Klein. The Jaeb 

Center for Health Research, Tampa, USA: Katrina Ruedy and Craig Kollman. Juvenile 

Diabetes Research Foundation (non‐clinical collaborators):Olivia Lou and Marlon Pragnell. 

Corresponding author: Professor Eleanor M Scott, Leeds Institute of Cardiovascular and 

Metabolic Medicine, LIGHT Laboratories, Level 7, Clarendon Way, University of Leeds, 

Leeds, LS2 9JT; Tel: +44 (0)113 3437762; E-mail: e.m.scott@leeds.ac.uk 

Word Count: Abstract:237; Text: 2,756; Figures: 4; Tables: 4. 

The authors’ academic degrees are as follow: Eleanor M Scott MD, Denice Feig MD, Helen 

R Murphy MD, Graham R Law PhD.  

  

Running title: Temporal glucose profiles in T1 pregnancy

mailto:e.m.scott@leeds.ac.uk


3 

Abstract  

Objective: To determine if temporal glucose profiles differed between: 1) women who were 

randomized to continuous glucose monitoring (RT-CGM) or self-monitored blood glucose 

(SMBG); 2) women who used insulin pumps or multiple daily injections (MDI); 3) women 

whose infants were born large for gestational age (LGA) or not, by assessing CGM data 

obtained from the CONCEPTT trial. 

Research Design and Methods: Standard summary metrics and functional data analysis 

(FDA) were applied to CGM data from the CONCEPTT trial (n=100 CGM; n=100 SMBG) 

taken at baseline, 24 and 34 weeks gestation. Multivariable regression analysis determined if 

temporal differences in 24 hour glucose profiles occurred between comparators in each of the 

three groups. 

Results – FDA revealed that women using RT-CGM had significantly lower glucose [0.4-0.8 

mmol/l (7-14mg/dL)] for 7 hrs/day (08.00-12.00 and 16.00-19.00) compared to SMBG. 

Women using pumps had significantly higher glucose [0.4-0.9 mmol/l (7-16mg/dL)] for 12 

hrs/day (03.00 - 06.00, 13.00-18.00 and 20.30-00.30) at 24 weeks with no difference at 34 

weeks compared to MDI. Women who had an LGA infant ran a significantly higher glucose 

by 0.4-0.7 mmol/l (7-13 mg/dL) for 4.5 hrs/day at baseline; by 0.4-0.9 mmol/l (7-16 mg/dL) 

for 16 hrs/day at 24 weeks; and by 0.4-0.7mmol/l (7-13 mg/dL) for 14 hrs/day at 34 weeks. 

Conclusions: FDA of temporal glucose profiles gives important information about 

differences in glucose control and its timing, undetectable by standard summary metrics. 

Women using RT-CGM were able to achieve better daytime glucose control reducing fetal 

exposure to maternal glucose.  
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Introduction 

Maternal glucose is the major determinant of fetal growth, predicting large for gestational age 

(LGA) infants and neonatal outcomes (1). However, maternal glucose is dynamic, with 

glucose tolerance and insulin sensitivity varying across the 24h day with a circadian 

rhythmicity (2,3). Superimposed upon this there are the peaks and troughs in glucose, 

determined by the balance between insulin resistance and lifestyle/behavioural factors 

including diet, physical activity, energy expenditure, stress, sleep and shift work. Insulin 

sensitivity also varies across pregnancy, with insulin resistance increasing with gestation (4). 

It is this dynamic glucose signal to which the fetus is exposed in pregnancy. Continuous 

glucose monitoring (CGM) provides the most objective method of assessing this dynamic 

glucose signal in daily life (5). With up to 288 interstitial fluid glucose measurements per 

day, CGM accurately reflects blood glucose variations (5). Although standard summary 

metrics are recommended for the reporting of CGM (5,6)  they do not give dynamic 

information about the timing of glucose excursions, thereby losing much of the detailed 

temporal glycemic information generated. We’ve pioneered the application of functional data 

analysis (FDA) to CGM data to extract shape information and identify glucose dysregulation 

that is undetectable by summary statistical measures (7,8). We have found that FDA is 

sensitive at detecting shorter periods of relative hyperglycemia that may not be detectable by 

summary metrics and enables accurate definition of time periods across the 24 hour day 

where differences in temporal glucose control occurs between groups and in relation to 



5 

clinical outcomes (7,8). Detecting this is particularly important in the context of pregnancy 

where even small increases in maternal glucose are related to poorer clinical outcomes (1).  

The recent CONCEPTT trial showed that use of real-time continuous glucose monitoring 

(RT-CGM) during pregnancy in women with type 1 diabetes was associated with improved 

neonatal outcomes, including a lower incidence of large for gestational age (LGA), neonatal 

hypoglycemia and neonatal intensive care unit admission (9) compared to women who used 

only self-monitored blood glucose (SMBG). Whilst these improvements are likely to be 

attributable to improved glucose control, standard CGM metrics showed no differences in 

mean glucose, and showed only that pregnant RT-CGM users spent more time in the 

pregnancy glucose target range (3.5-7.8 mmol/l or 63-140mg/dL) and less time 

hyperglycemic (9). The effect of using pumps or multiple daily insulin injections (MDI) was 

also explored and unexpectedly showed that women using pumps had poorer pregnancy 

outcomes, with significantly more neonatal hypoglycaemia and neonatal intensive care 

admissions, (10). Standard CGM metrics showed only that pump users spent 5% more time 

above the glucose target range at 24 weeks gestation and 5% less time in range at 24 weeks 

than women on MDI (10). The lack of comprehensive differences in standard CGM metrics, 

whilst showing differences in neonatal outcomes suggests that there may be differences in 

temporal glucose profiles that were not detected by the standard CGM metrics. 

The objective of the present study was therefore to perform FDA on the CGM data obtained 

in the CONCEPTT trial to determine if temporal differences in 24 hour glucose profiles 

occurred between: 1) women who were randomized to RT-CGM or SMBG; 2) women who 

used insulin pumps or MDI; 3) women whose infants had LGA or not. 

 

Research design and methods 
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Study design  

Full details of the CONCEPTT clinical trial protocol have previously been published (9, 11). 

Women with type 1 diabetes were eligible if they were aged 18–40 years, had 12 months’ 

duration of diabetes, and were on an intensive insulin regimen using either a pump or MDI. 

Pregnant women had to have a live singleton fetus confirmed by ultrasound before 14 weeks’ 

gestational age and an HbA1c level between 6.5 and 10% (48–86 mmol/mol). After a run-in 

period where eligible women wore a masked CGM (iPro2 Professional CGM, Medtronic, 

Northridge, CA, USA) for at least 96 h, women were randomized to the intervention, where 

they received a RT-CGM (Guardian REAL-Time or MiniMed Minilink system, both 

Medtronic, Northridge, CA) that required calibration by SMBG, or to the control group, 

where they were instructed to continue with their usual SMBG testing at least seven times per 

day (pre meals and 1hr post meals, plus before bed). The women were reviewed as per 

standard clinical care 1-2 weekly and algorithms were used to help patients and their teams 

decide on treatment adjustments in both arms. Randomization was stratified by insulin 

delivery system (pump or MDI) and by baseline HbA1c level (<7.5 vs. ≥7.5% or 58 

mmol/mol during pregnancy). Women in the SMBG pregnant group were asked to wear a 

masked CGM on two further occasions at 24 and 34 weeks. RT-CGM data was obtained at 

24 and 34 weeks gestation from the RT-CGM group for comparison. LGA was defined as 

birthweight ≥90th percentile using Gestation Related Optimal Weight (GROW) software (12) 

which adjusts for infant sex and gestational age, maternal height, weight, parity, and 

ethnicity. This current analysis includes data from women who were in the pregnant arm of 

the original study who had complete birthweight data (n=200) and where we had >96 hours 

of continuous data.  

Study oversight 
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The study was approved by the Health Research Authority, East of England Research Ethics 

Committee (12/EE/0310) for all UK sites, and at each individual centre for all other sites. 

Participants provided written informed consent. 

Standard CGM metrics 

The standard range of summary metrics was calculated for each CGM measurement period 

(baseline, 24 and 34 weeks gestation) including: mean CGM glucose levels; the percentage of 

time spent within the pregnancy glucose target range (3.5-7.8 mmol/L [63-140 mg/dL]); time 

spent above (>7.8mmol/l [>140 mg/dL]) and below (<3.5 mmol/l [<63 mg/dL]) target range.  

Measures of glycemic variability: standard deviation (SD) and coefficient of variation (CV) 

of mean CGM glucose levels were calculated. Comparisons of means between groups were 

made using a student’s t-test. 

Functional Data Analysis  

For each individual the mean of the four or more days of temporal CGM data obtained at 

each glucose time point across the 24 hour day was taken. In this way, there was no missing 

data for performing the FDA. Each of the glucose values recorded during the measurement 

episodes (at baseline, 24 and 34 weeks gestation) was assumed to be dependent upon (rather 

than independent of) the preceding glucose levels.  Changes in glucose over time were 

therefore assumed to be progressive, occurring in a trend or sequence that could be 

considered ‘smooth’ (in a mathematical sense) without step changes from one measurement 

to the next. For this reason, sequential glucose measurements from each measurement 

episode were modeled as trajectories by calculating continuous mathematical functions of 

CGM-derived glucose measurements collected every five minutes throughout that 

measurement episode. These trajectories were modeled using the technique of fitting B-
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splines to the repeated measures (7,8,13). This technique generates a polynomial function that 

describes the curve (or ‘spline’) used to model changes in glucose levels over time for each 

participant, with splines required to pass though measured glucose values at discrete time 

points (called ‘knots’) during each 24 hour period. At each of these knots the spline function 

was required to be continuous (i.e. with no breaks or step changes) so that the function 

remained mathematically smooth.  Knots were placed at 30 minute intervals over each 24-

hour measurement period, with data from measurements recorded during the 4 hours either 

side of midnight (i.e., from 20h00-04h00) repeated at the beginning and end to eliminate 

artefactual edge effects. In this way the splines provided a smooth mathematical function 

describing glucose levels recorded across each measurement episode – hence its name 

‘functional data analysis’.  

Multivariable regression analysis was used for the FDA generated glucose function to 

establish the relationship between maternal glucose levels in 1) women who were randomized 

to RT-CGM compared to those on SMBG (combining the 24 and 34 weeks data); 2) women 

who used insulin pumps compared to MDI (at baseline, 24 and 34 weeks gestation); 3) 

women whose infants had LGA compared to those that didn’t (at baseline, 24 and 34 weeks 

gestation). No adjustment was made for multiple comparisons: these specific questions were 

defined prior to performing FDA; and confidence intervals were used to assess the 

significance of the relationship. All statistical analyses were conducted in Stata (14) and R 

(15) 

Results 

CGM and neonatal outcome data was available from 200 women in the pregnant arm of the 

CONCEPTT trial (100 RT-CGM and 100 SMBG). The participant characteristics are shown 

in Table 1.  
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1) RT-CGM versus SMBG  

Standard CGM Metrics 

The results of the CGM metrics are shown in Table 2A. There were no differences in mean 

glucose between groups at any time point across pregnancy. However, when mean 

glucose was calculated separately for day and night there was a significantly higher 

glucose overnight at 24 weeks, with a significantly lower glucose during the day at 24 

weeks. There were no differences in any other standard measures at 24 weeks. At 34 

weeks, women randomized to RT-CGM had significantly more time in pregnancy glucose 

target range and less time spent above target compared to SMBG controls. Women using 

RT-CGM had significantly less glucose variability at 34 weeks, with lower SD and CV 

glucose.  

 

Functional Data Analysis 

Figure 1 illustrates the difference in CGM glucose across the 24 hour day in women who 

were randomized to RT-CGM compared to SMBG after applying FDA. Women who used 

RT-CGM ran a significantly lower glucose by 0.4-0.8 mmol/l (7-14mg/dL) for 7 hours during 

the daytime (08.00-12.00 and 16.00-19.00). There were no significant differences in glucose 

overnight. 
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Figure 1. Difference in mean temporal glucose levels across the 24 hour day, assessed by 

FDA (at 24 and 34 weeks gestation combined), between those women who were 

randomized to RT-CGM (represented by the dark wavy line) compared to those using 

SMBG (represented by the horizontal zero dotted line) with 95% pointwise CIs (gray 

section). Where both of the CIs sit to the same side of 0.0 it indicates a significant 

difference. Significant differences using 95% CIs are shown by *. Dashed vertical lines 

represent ‘daytime’ 0700 h and 2300 h. 

2) Pumps versus MDI 

Standard CGM Metrics 

Standard CGM metrics, shown in Table 2B, showed a significantly higher mean glucose, 

with higher mean glucose shown both overnight and during the day at 24 weeks gestation in 

those women on pumps, and more time spent above target.There were no differences in 

glucose variability measures at any point. 

 

Functional Data Analysis 

Figure 2A shows that women who used insulin pumps had significantly lower glucose levels 

by 0.4-0.9 mmol/l (7-16mg/dL) for 5.5 hours of the 24 hour day (07.30-11.30 and 20.00-
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21.30) at baseline; but significantly higher glucose levels by 0.4-0.9 mmol/l (7-16mg/dL) for 

a total of 12 hours a day (03.00 - 06.00, 13.00-18.00 and 20.30-00.30) at 24 weeks gestation 

and no difference in glucose levels at 34 weeks gestation. These differences were 

predominantly seen during daytime hours. 

 

Figure 2. Difference in mean temporal glucose levels across the 24 hour day, assessed by 

FDA in: A) women who used pumps (represented by dark wavy line) compared to those 

on MDI (represented by the horizontal zero dotted line) with 95% pointwise CIs (gray 

section); B) women who gave birth to an LGA infant (represented by the dark wavy 

line) compared to those who didn’t (represented by the horizontal zero dotted line) with 

95% pointwise CIs (gray section).  Significant differences using 95% CIs are shown by 

*. Dashed vertical lines represent ‘daytime’ 0700 h and 2300 h. 
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3) LGA versus non-LGA 

Standard CGM Metrics  

Women who went on to have an LGA infant had significantly higher mean glucose at 24 and 

34 weeks gestation, shown in Table 2C. Both day and night-time mean glucose were 

significantly higher in the LGA group at 24 weeks, but at 34 weeks only the night-time 

glucose was significantly higher. Time spent in pregnancy target range was significantly 

lower in each trimester in those women who had an LGA infant, with significantly more time 

spent above the pregnancy target range of 3.5-7.8 mmol/l (63-140mg/dL) throughout 

pregnancy. There was significantly greater glucose variability in the first and second 

trimesters in those women who went on to have an LGA infant as demonstrated by SD and 

CV glucose. 

 

Functional Data Analysis 

Figure 2B shows that women who had an LGA infant ran a significantly higher glucose by 

0.4-0.7 mmol/l (7-13 mg/dL) for 4.5 hours from 21.00 at baseline; a significantly higher 

glucose by 0.4-0.9 mmol/l (7-16 mg/dL) for 16 hours a day at 24 weeks gestation; and 

significantly higher glucose by 0.4-0.7mmol/l (7-13 mg/dL) for 14 hours a day at 34 weeks 

gestation. These higher glucose levels were predominantly seen during daytime hours. 

 

Conclusions 

 
By applying FDA to the CGM data obtained in CONCEPTT, we are able to clearly identify 

differences in maternal glucose and determine when and for how long across the 24 hour day 

this is occurring, even when standard CGM metrics fail to detect a difference. In doing so, 

this study demonstrates that pregnant women randomized to RT-CGM have lower glucose 
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during the daytime than women using SMBG alone. It shows that although women using 

insulin pumps start pregnancy with better glucose control, they have a higher glucose for 12 

hours during the daytime during mid pregnancy, only achieving comparable glucose control 

to women using MDI, in late pregnancy. Finally, it shows that women who delivered an LGA 

infant, ran a higher glucose throughout pregnancy, sustained for up to 16 hours per day at 24 

weeks gestation.  

 

The CONCEPTT trial showed a beneficial effect of using RT-CGM on neonatal outcomes 

and its data has supported the adoption of ‘time in range’ targets for using CGM in type 1 

diabetes pregnancy (6,9). Whilst improving ‘time in range’ by 5% improves pregnancy 

outcomes, it is not clear which periods of the day are best targeted to achieve this (9). Our 

current analysis helps to define this. Although there was no difference in mean glucose 

between RT-CGM and SMBG using standard CGM metrics, it did not mean that there were 

no significant differences in glucose at certain time points across the day. FDA allows this 

visualization showing that using RT-CGM leads to reduced fetal exposure to daytime 

maternal glucose. This suggests that RT-CGM data helps women to observe the impact of 

carbohydrate ingestion on the daytime glucose profiles better than SMBG does, and allows 

them to take appropriate action to prevent/manage this. It is worth noting that the women 

using RT-CGM only had significantly better glucose control for 7 hrs/day and that although 

LGA was reduced in the RT-CGM group, LGA rates remained high (9). Given that we 

showed that women who go on to have LGA infants run higher glucose for 16hrs/day, it 

suggests that there is room for further improvement in daytime glucose control in the RT-

CGM group.  
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It was interesting that contrary to expectations women using pumps had poorer neonatal 

outcomes than women using MDI (10) yet the original analysis was unable to show any 

significant differences in glucose between the two groups using standard CGM metrics, 

except that pump users spent significantly less time below 3.5 mmol/l (63 mg/dL) compared 

to MDI, throughout pregnancy and 5% less time in range at 24 weeks (10). The differences in 

temporal glucose profiles seen between women using pumps or MDI using FDA provide new 

insights into why these outcomes occurred. The FDA clearly shows that women using insulin 

pumps entered pregnancy with better first trimester glucose control. This advantage is 

however lost as pregnancy progresses, with evidence of substantially worse daytime glucose 

control at 24 weeks gestation. It again suggests that mealtime glucose control is particularly 

important, and that clinicians and patients are possibly less effective at optimizing mid-

trimester insulin to carbohydrate during pregnancy using insulin pumps. No differences were 

seen in total insulin doses between pumps and MDI, but data was not available on the 

insulin:carbohydrate or the basal:bolus ratios used (10,16).  

 

The standard CGM metrics readily showed significant differences when it came to LGA, with 

a higher mean glucose at 24 and 34 weeks gestation; significantly lower time spent in 

pregnancy target range in each trimester, significantly higher time spent above the pregnancy 

target range of 3.5-7.8 mmol/l (63-140mg/dL) throughout pregnancy; and greater glucose 

variability in the first and second trimesters in those women who went on to have an LGA 

infant. This is consistent with the recent findings of an observational study of 186 pregnant 

women with type 1 diabetes using CGM in Sweden which showed that higher mean CGM 

glucose levels in the second and third trimester were significantly associated with LGA, as 

well as less time spent in pregnancy target range, and greater SD in second trimester (19). 

The FDA performed in our study again provides further insights, showing that there are 
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actually periods of relatively higher glucose as early as the first trimester that are associated 

with LGA and that it is predominantly higher daytime glucose control that is contributing to 

the higher overall mean glucose observed with standard CGM metrics. This supports our 

earlier work on FDA in a much smaller cohort of women with type 1 and type 2 diabetes 

where we showed that a significantly higher glucose across the daytime in mid and late 

gestation is associated with LGA in women being treated to tight, postprandial glucose 

targets (7). It seems likely that the greater the duration of time exposed to even small amounts 

of extra glucose is important in the context of fetal growth in pregnancy.  

 

It is interesting that we have previously observed a different glucose profile associated with 

LGA in women being treated for gestational diabetes (8). In that study we saw that daytime 

glucose control was achieved, but that nocturnal glucose control was suboptimal, with 

women who went on to have LGA infants running significantly higher glucose for 6 hours 

overnight (8). This difference may reflect the different emphasis in management between the 

two types of diabetes: the focus of management in gestational diabetes is very much on 

making significant dietary changes, whereas we do not consider that this is always the case in 

type 1 diabetes where the focus is more on adjustment of insulin to accommodate ’normal 

eating’ (18).  

 

Overall this analysis of temporal glucose profiles shows that women who have poorer 

pregnancy outcomes (women on SMBG, pumps, and those with LGA infants) run relatively 

higher glucoses during the daytime than women who don’t. The reason for this is likely to be 

related to carbohydrate ingestion, indicating that greater attention is needed to improving the 

management of mealtime and snack hyperglycemia in women with type 1 diabetes during 

pregnancy. The higher daytime glucose is particularly pronounced at 24 weeks gestation, and 
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we hypothesize that this also reflects changes in insulin responsiveness at this stage in 

pregnancy (16). Whilst there are no changes in glucose bioavailability or postprandial 

glucose appearance between early and late gestation in type 1 diabetes there are significant 

delays in postprandial glucose disposal as pregnancy advances, possibly due to a combination 

of increased peripheral insulin resistance and a slower achievement of maximum insulin 

concentration leading to a more prolonged hyperglycemia (17). We know from dietary 

assessment of women in CONCEPTT that their food choices, especially of between meal 

snacks tended to be of highly processed carbohydrates of low nutritional value (18) and that 

this leads to a rapid increase in glucose with a lag time for any extra insulin to catch up and 

bring it down. Going forward the solutions are to bolus insulin 15 minutes before the meal, 

increasing to 40 minutes later in pregnancy (17), replace rapidly absorbed carbohydrate rich 

meals for more slowly absorbed ones, or advise postprandial physical activity to enhance 

peripheral glucose uptake. It would seem sensible to emphasize making more healthy dietary 

changes in women with type 1 diabetes whilst pregnant to help reduce daytime 

hyperglycemia, given that currently ‘normal’ eating habits are far from ideal (18).  

The strengths of this study are that it used data from a large, multi-center, international, 

randomized controlled trial. It is thus representative of the women being managed for type 1 

diabetes in routine clinical care internationally. CGM provides far more frequent glucose 

measurements than SMBG, and far more information on short-to-medium term trends in 

glucose levels than either SMBG or HbA1c. CGM nonetheless has recognized imitations, 

particularly with regard to the quality of glucose readings during rapid blood glucose changes 

and in situations of hypoglycemia. The measurement of interstitial glucose may also not 

reflect precisely the levels of blood glucose. CGM data was only obtained at three time points 

across gestation in this study, which may not be representative of glucose control at other 

times in pregnancy, and we acknowledge that recently published consensus guidelines 
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suggest that 2 weeks of CGM data are preferred for analysis (although this recommendation 

is based on data outside of pregnancy) (5). It is worth noting that although significant 

differences were observed, these are still small sample sizes, and larger numbers would be 

beneficial in future work. Other limitations of this study were that we didn’t have detailed 

dietary information on timing of meal/snack/drink ingestion, which means that although it is 

likely, we cannot definitively say that the raised daytime glucose was due to this.  

In summary, FDA of CGM glucose profiles gives important information about differences in 

glucose control, largely undetectable by standard CGM metrics, including detail on the 

timing and duration of these differences. Whilst FDA is best suited to explore population 

level differences in glucose profiles, the equivalent on an individual basis clinically would be 

the ambulatory glucose profile. Regular review of this throughout pregnancy would enable a 

focus on meal choices, together with a more aggressive approach to bringing forward insulin 

bolus timing and increasing insulin doses especially mid pregnancy, aiming for small, but 

sustained, improvements in daytime glucose levels.  

 

Acknowledgements: The authors would like to thank all the women with type 1 diabetes 

who participated. We also acknowledge the invaluable support from the 31 clinical care 

teams and the CONCEPTT Steering Committee: Denice S Feig, Helen R Murphy, Elisabeth 

Asztalos, Jon F R Barrett, Rosa Corcoy, Alberto de Leiva, Lois E Donovan, J Moshe Hod, 

Lois Jovanovic, Erin Keely, Craig Kollman, Ruth McManus, Kellie E Murphy, Katrina 

Ruedy and George Tomlinson. This data has been presented as abstracts at the American 

Diabetes Association 2019; and the EASD Diabetes in Pregnancy Study Group 2019. 

Contributors: GRL and EMS are the guarantors of this work and, as such, had full access to 

all the data in the study and take responsibility for the integrity of the data and the accuracy 



18 

of the data analysis. GRL and EMS wrote the manuscript, which all authors critically 

reviewed. 

Conflicts of Interest: EMS has received honoraria for speaking from Abbott Diabetes Care 

and Eli-Lilly; HRM serves on the Medtronic European Scientific Advisory Board. GRL and 

DF have no potential conflicts of interest relevant to this article. 

Funding: The CONCEPTT trial was funded by Juvenile Diabetes Research Foundation 

(JDRF) grants #17‐2011‐533, and grants under the JDRF Canadian Clinical Trial Network, a 

public‐private partnership including JDRF and FedDev Ontario and supported by JDRF #80‐
2010‐585. Medtronic supplied the CGM sensors and CGM systems at reduced cost. GRL and 

EMS were funded by HEFCE. HM was funded by NIHR (CDF-2013-06-035). The views 

expressed in this publication are those of the authors and not necessarily those of the NHS, 

the National Institute for Health Research or the UK Department of Health.  

Provenance and peer review: Not commissioned; externally peer reviewed. 



19 

Table 1: Participant characteristics 

 

 

 

 

 

 

 

 

 

 

 

 
Data are expressed as means (SD) or n (%). SD = Standard deviation 

 

Table 2: Standard summary metrics of CGM data across pregnancy comparing: A) RT-CGM group to SMBG controls; B) pump to 

MDI; C) LGA to non-LGA 

 

 Baseline  24 weeks  34 weeks  
 

A) 
 

CGM  
 

SMBG 
 

CGM  
 

SMBG 
 

CGM  
 

SMBG 

Number 100 100 89 90 77 76 

Mean glucose mmol/l (SD) 7.3 (1.2) 7.6 (1.1) 7.6 (1.2) 7.8 (1.3) 6.7 (0.9) 7.0 (1.1) 
00:01-06:00 Mean glucose mmol/l (SD) 6.7 (1.5) 7.1 (1.4) 7.2 (1.4) 7.0 (1.4) 6.2 (1.0) 6.3 (1.2) 

06:01-00:00 Mean glucose mmol/l (SD) 7.5 (1.3) 7.8 (1.2) 7.7 (1.3) 8.1 (1.4) 7.0 (1.0) 7.3 (1.2) 

% time 3.5-7.8 mmol/l (SD) 51.7 (13.0) 51.5 (13.7) 53.0 (15.5) 49.8 (15.0) 67.6 (12.6) 61.3 (15.5) 
% time below 3.5 mmol/l (SD) 10.0 (7.7) 7.8 (6.4) 4.8 (4.8) 5.5 (5.7) 4.6 (4.9) 5.7 (5.2) 

% time above 7.8 mmol/l (SD) 38.4 (14.9) 40.6 (13.8) 42.3 (17.6) 44.7 (16.0) 27.9 (13.4) 33.1 (15.0) 

Mean individual SD (SD) 3.1 (0.8) 3.2 (0.8) 2.7 (0.6) 2.9 (0.7) 2.2 (0.5) 2.5 (0.7) 

Mean individual CV % (SD) 42.2 (8.7) 42.4 (8.1) 35.6 (5.9) 36.9 (7.2) 32.5 (5.8) 34.9 (7.6) 

B) Pump MDI Pump MDI Pump MDI 

  Intervention  Treatment  Birthweight  

 Total RT-CGM  SMBG Pumps MDI LGA Non-LGA 

Number 200 100 100 90 110 122 78 
BMI kg/m2 (SD) 25.7 (4.6) 26.2 (5.1) 25.2 (3.9) 26.0 (4.8) 25.4 (4.4) 25.5 (4.4) 26.0 (4.8) 

Primiparous n (%) 98 (49) 49 (49) 49 (49) 42 (47) 56 (51) 61 (50) 37 (47) 

Mean gestation at birth in weeks (SD) 36.9 (1.7) 37.2 (1.4) 36.8 (1.9) 36.8 (1.8) 37.1 (1.6) 36.9 (1.6) 37.1 (1.9) 
Birthweight in kg (SD) 3.56 (0.71) 3.55 (0.65) 3.58 (0.78) 3.53 (0.75) 3.59 (0.69) 3.91 (0.58) 3.03 (0.56) 

GROW birthweight centile (SD) 82.0 (25.8) 78.4 (26.8) 85.5 (24.4) 79.4 (28.4) 84.1 (23.4) 97.8 (28.2) 57.2 (26.2) 
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Number 90 110 81 98 71 82 

Mean glucose mmol/l (SD) 7.4 (1.2) 7.5 (1.1) 7.9 (1.3) 7.5 (1.1) 6.9 (0.9) 6.8 (1.1) 

00:01-06:00 Mean glucose mmol/l (SD) 7.6 (1.3) 7.8 (1.2) 7.4 (1.4) 6.9 (1.4) 6.3 (1.1) 6.2 (1.1) 

06:01-00:00 Mean glucose mmol/l (SD) 6.9 (1.6) 6.9 (1.4) 8.1 (1.4) 7.7 (1.3) 7.1 (1.0) 7.1 (1.2) 

% time 3.5-7.8 mmol/l (SD) 53.6 (13.4) 50.0 (13.1) 48.8 (16.5) 53.6 (13.9) 64.1 (13.3) 64.8 (15.4) 
% time below 3.5 mmol/l (SD) 8.1 (6.3) 9.5 (7.8) 4.5 (4.5) 5.7 (5.7) 5.0 (5.2) 5.2 (4.9) 

% time above 7.8 mmol/l (SD) 38.3 (15.2) 40.4 (13.6) 46.7 (17.8) 40.8 (15.5) 31.0 (14.2) 30.0 (14.7) 

Mean individual SD (SD) 3.1 (0.8) 3.2 (0.8) 2.8 (0.7) 2.8 (0.7) 2.3 (0.6) 2.3 (0.7) 
Mean individual CV % (SD) 41.3 (7.3) 43.1 (9.1) 35.6 (6.7) 36.7 (6.5) 33.7 (6.8) 33.7 (6.8) 

C) LGA Non-LGA LGA Non-LGA LGA Non-LGA 

Number 122 78 111 68 96 57 

Mean glucose mmol/l (SD) 7.6 (1.2) 7.3 (1.2) 7.9 (1.2) 7.3 (1.2) 7.0 (1.1) 6.6 (0.8) 
00:01-06:00 Mean glucose mmol/l (SD) 7.0 (1.4) 6.8 (1.6) 7.3 (1.4) 6.9 (1.4) 7.3 (1.2) 6.8 (0.9) 

06:01-00:00 Mean glucose mmol/l (SD) 7.8 (1.3) 7.5 (1.2) 8.1 (1.3) 7.5 (1.3) 6.4 (1.1) 6.1 (1.0) 

% time 3.5-7.8 mmol/l (SD) 49.6 (13.8) 54.7 (13.6) 48.2 (14.9) 56.6 (14.4) 62.6 (11.8) 67.6 (11.8) 
% time below 3.5 mmol/l (SD) 9.2 (7.0) 8.4 (7.5) 5.0 (15.3) 5.4 (5.1) 4.5 (4.6) 6.2 (5.6) 

% time above 7.8 mmol/l (SD) 41.2 (14.4) 36.8 (14.0) 46.9 (16.3) 38.0 (16.2) 33.0 (15.3) 26.2 (11.7) 

Mean individual SD (SD) 3.3 (0.8) 3.0 (0.9) 2.9 (0.6) 2.6 (0.7) 2.4 (0.7) 2.2 (0.5) 

Mean individual CV % (SD) 43.3 (8.5) 41.1 (8.1) 36.6 (6.8) 35.5 (6.3) 33.6 (7.2) 33.8 (6.2) 

Bold for p<0.05 in a t-test comparing the difference. 
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