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Abstract 27 

Pesticides have underpinned significant improvements in global food security, albeit with 28 

associated environmental costs. Currently, the yield benefits of pesticides are threatened as 29 

overuse has led to wide-scale evolution of resistance. Yet despite this threat, there are no large-30 

scale estimates of crop yield losses or economic costs due to resistance. Here, we combine 31 

national-scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with 32 

crop yield maps and a new economic model to estimate that the annual cost of resistance in 33 

England is £0.4bn in lost gross profit (2014 prices), and annual wheat yield loss due to resistance 34 

is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1bn and 3.4 35 

million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, 36 

so the global impact of resistance could be enormous. Our research provides an urgent case for 37 

national-scale planning to combat further evolution of resistance, and an incentive for policies 38 

focused on increasing yields through more sustainable food-production systems rather than 39 

relying so heavily on herbicides. 40 

41 
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Resistance to xenobiotics (e.g. antibiotics, antimycotics, pesticides), caused by high frequency of 42 

application1–4, is a severe and growing economic5, food security1,6 and public health crisis3,6,7. In 43 

the past, pesticides have enabled increases in food production but growing loss of their efficacy is 44 

now reducing yields1,8. This is a threat to global food security. Despite this, there are currently no 45 

large-scale estimates of the effects of pesticide resistance on crop yields.  46 

Future food security will rely on sustainable intensification9,10, which aims to boost yields 47 

from the same area of land but with reduced environmental impact. Pesticide resistance threatens 48 

both these goals: yields are threatened by higher pest densities1,8, and the environment is 49 

threatened because the usual response to resistance has been increased pesticide use11,12 – despite 50 

the knowledge that pesticides harm water and soil quality and biodiversity12–15. In an era of 51 

increasing population and extreme competition for land, there is strong motive to investigate any 52 

phenomenon that jeopardises food security. Furthermore, as pesticide resistance is implicated in 53 

three elements of the UN’s water-food-energy-ecosystems nexus, there is an obvious incentive to 54 

assess its impacts. 55 

National- and global-scale economic costs of xenobiotic resistance are poorly quantified 56 

but, where this has been attempted in human healthcare settings for anti-microbial resistance, 57 

costs run into billions16 or trillions17 of dollars and even these enormous numbers are thought to 58 

be underestimates5. In agriculture, large-scale cost estimates are lacking but anecdotal evidence18 59 

combined with crop areas suggests that, in the US, increased chemical costs due to glyphosate 60 

resistance may exceed $10bn annually. Costs due to yield loss would further increase this figure. 61 

The likely magnitude of the social, economic and environmental costs means a co-62 

ordinated global policy response, driving governance integration across sectors, is urgently 63 

needed19. In healthcare, the World Health Organisation endorsed a Global Action Plan for anti-64 

microbial resistance in 2015; however, there is no equivalent in animal and crop production. This 65 

is despite the fact that agriculture accounts for 37% of land use globally (World Bank Open Data, 66 

2018), an estimated 4 million tonnes of pesticides are applied worldwide each year (FAOStat, 67 
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2019), resistance to pesticides is well documented20–23, and there is a long-term upward trend in 68 

pesticide use24. United Nations resistance advice (Guidelines on Prevention and Management of 69 

Pesticide Resistance, FAO 2012) and a handful of informal, largely agrochemical industry-led, 70 

groups exist (e.g. CropLife International, IRAC, AHDB resistance action groups), but the lack of 71 

government involvement means that problems of resistance continue. Furthermore, even in 72 

healthcare where a global plan exists, creation of national action plans is hampered by a lack of 73 

evidence, particularly on the true costs of resistance and the cost-effectiveness of policies25. 74 

Determining the national costs associated with xenobiotic resistance is a critical first step in 75 

creating a national action plan. 76 

We address this issue for herbicide resistance in the UK. Mirroring the global state of 77 

affairs, the UK has a national Antimicrobial Resistance Strategy but no national resistance policy 78 

in place for other classes of xenobiotic such as pesticides. This is despite (a) a continuing upward 79 

trend in the area to which pesticide is applied (FERA PUS stats, 2019), (b) evidence that 80 

resistance is impacting output1 and (c) UK government awareness of the issue (POSTnote 501, 81 

2015). Here, we combine a national-scale dataset of the density and resistance status of the most 82 

economically significant weed in western Europe26, black-grass (Alopecurus myosuroides), with 83 

10 years’ worth of past management history, corresponding yield data (Figure 1) and a new 84 

economic model (Supplementary Methods) to estimate the economic and food production impacts 85 

of herbicide-resistant black-grass in England. Using this approach, we provide the first national-86 

scale estimate of yield losses and the full economic costs due to herbicide resistance. We 87 

distinguish between losses due to weed infestation, I (i.e. both resistant and susceptible plants) and 88 

losses due to resistant plants, R. The magnitude of our results suggests a pressing need for 89 

governmental action to address resistance issues, and for other countries to undertake their own 90 

national-scale assessments. 91 

 92 

 93 
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Costing resistance at the field scale 94 

Estimated yield loss due to black-grass infestation in winter wheat was, on average, 0.4 t ha-1 95 

(Table 1), or 5% of the average estimated potential wheat yield (8.3 t ha-1) in the absence of black-96 

grass. We estimated this by applying yield penalties due to black-grass infestation (Figure 1) to 97 

the crop yield estimation component in our economic model (details in Methods and SI). 98 

Resistance frequencies were then used (c.f. Methods) to calculate that most of this lost yield (0.38 99 

t ha-1) was due to resistant plants. At low densities of black-grass the yield loss was negligible, 100 

whereas at the highest weed densities mean yield loss was 1.8 t ha-1, 100% of which was due to 101 

resistant plants (Table 1 and Figure 3). 102 

 The mean economic cost of resistance (CR, defined as the production losses and additional 103 

costs due to resistant black-grass) in winter wheat was £75 ha-1 at low black-grass density and 104 

£450 ha-1 at very high density (Table 1 & Figure 2c). Estimates of CR will vary, potentially 105 

greatly, according to the input and output prices used, but the costs calculated here using 2014 106 

prices represent 7% and 37%, respectively, of potential gross profit from winter wheat in these 107 

fields in the absence of resistant black-grass, and compare to average total agricultural costs 108 

(English cereal farms, 2014) of £1,076 ha-1 (Farm Business Survey Region Reports, 2019). Across 109 

all density states, the mean CR in winter wheat was £155 ha-1 (Table 1), or 14% of potential gross 110 

profit. CR within density states varied widely, ranging from £0-493 ha-1 in winter wheat fields 111 

with low black-grass density, to £355-773 ha-1 in fields with very high densities (raw data not 112 

shown). At very high density states, 100% of the total costs of black-grass infestation came from 113 

resistant plants (Table 1 and Figure 3). 114 

 Across a rotation, the mean CR in low density fields was £58 ha-1, and £280 ha-1 in very 115 

high density fields (Table 1). Again, 100% of the costs were due to resistant plants in fields with 116 

very high black-grass density, whereas in low density fields just under 70% of costs came from 117 

resistant plants. The per-hectare CR in winter wheat was higher than the per hectare CR across a 118 

rotation (Table 1 and Figure 2c & d) due to the negative impact of the weed on wheat yield (no 119 
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yield penalties were applied to other crops in the rotation). Overall, as average black-grass density 120 

increases, so does the proportion of the cost or yield loss that is due to resistant plants (Table 1), in 121 

line with previous findings1 that resistance drives weed abundance. Field-scale resistance impacts 122 

are thus greater in regions with higher black-grass densities, especially in winter wheat crops 123 

(Figure 2), and resistance impacts in the UK reduce along a gradient from south to north (see 124 

Figure 4). See Methods for a discussion of the assumptions that underpin these estimations. 125 

The use of herbicides targeting black-grass in winter wheat did not differ across different 126 

final (pre-harvest) densities of weed infestation (Ȥ2
1=0.0982, p=0.754, Figure 3b and 127 

Supplementary Figure 5). Thus, in fields with low final black-grass density, herbicide costs 128 

constituted 82% of total costs (this applies to both the cost of infestation, CI, and to CR), whereas 129 

in fields with high and very high final black-grass densities, the biggest source of lost income was 130 

yield loss (60% and 77% respectively, Figure 3). In some of the low density fields, relatively 131 

intense herbicide use will be justified where high levels of susceptibility remain in the weed 132 

population and, therefore, where these herbicides are still effective in reducing yield loss 133 

potential. However, in low density fields with high levels of herbicide resistance (in our data, 75% 134 

of fields with low and medium black-grass density had high resistance (>60% survival) to 135 

Atlantis), intense herbicide application may be counter-productive as (a) herbicide costs will 136 

outweigh benefits of black-grass control, (b) it will impose an unnecessary environmental 137 

burden12,27–29 and (c) it will have the unwanted effect of selecting for even higher frequencies of 138 

resistance within populations1,30. In these situations, a reduction in herbicide use may bring 139 

economic benefits but would need to be accompanied by cultural and physical control methods to 140 

maintain low weed population sizes as part of an integrated weed management programme. We 141 

expand on this in the discussion. 142 

 143 

 144 

 145 
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The impact of resistance at a national scale 146 

Total annual wheat yield loss for England was 0.86 million tonnes (mt; Supplementary Table 5), 147 

almost all of which (0.82 mt) was due to resistant plants (Figure 4a and Supplementary Table 6). 148 

Sensitivity analyses suggest that annual wheat yield losses due to resistant black-grass (YLR) in 149 

England may be as low as 0.3 mt or as high as 3 mt (Supplementary Table 11) given uncertainties 150 

in our yield penalty estimates (further details in SI). Whichever figure we accept, our estimates 151 

run counter to global goals of increased yields31–33 and are particularly concerning in view of the 152 

current wheat yield stagnation in NW Europe34,35. UK annual domestic wheat consumption hovers 153 

around 15 million tonnes (DEFRA); the highest yield loss values from our sensitivity analyses 154 

represent nearly a fifth of this. 155 

In terms of economics, the total annual cost of black-grass infestation in England was 156 

£0.44bn across all crops (termed rotation cost from now on, Supplementary Table 5), £0.38bn p.a. 157 

of which was due to resistant plants (Figure 4b, Supplementary Table 6). In winter wheat crops, CI 158 

was £0.35bn p.a., of which CR was £0.31bn (Figure 4c, Supplementary Table 6). At a regional 159 

scale, some rotation costs are higher than those in winter wheat. This is because, although field-160 

scale rotation costs are lower than those in winter wheat, the total cereal crop area is much larger 161 

than the winter wheat area and so the scaled-up rotation costs are relatively higher. In the West 162 

Midlands (WM) and South East (SE) the average CR per ha in winter wheat crops was particularly 163 

high compared to other regions (WM £387 ha-1, SE £270 ha-1, EM £159 ha-1, EE £206 ha-1, YH 164 

£88 ha-1, abbreviations as in Figure 4); as a result, the scaled-up costs in these two regions 165 

remained higher in winter wheat than across rotations. Values for the SE region should be treated 166 

with caution as we used just eight fields from this region in our analysis and all of them were 167 

concentrated in one area (where there are high densities of resistant black-grass1, see 168 

Supplementary Figure 3). The estimates for this region are therefore unlikely to be very 169 

representative of the entire region. 170 
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Sensitivity analyses showed that annual rotation CR might be as low as £0.3bn p.a. or as 171 

high as £0.8bn p.a. (Supplementary Table 11). Nevertheless, even at the lower end, the costs are 172 

very large. To put these figures into perspective, total income from all types of farming in 173 

England was £3.9bn in 2014. Herbicide resistance is therefore having a severe impact on English 174 

arable farming, and these results underscore the need to manage resistance through coordinated 175 

action at a national level. 176 

 177 

Potential costs and crop losses 178 

Because resistance is increasing over time and driving black-grass density1, we also estimated 179 

yield losses and costs in winter wheat under a total loss of herbicide control (Figure 2b & e) by 180 

assuming that all quadrats in every field were in a very high density state and that 100% of costs 181 

and yield losses were due to resistant plants (cf. Methods). Under this scenario of ubiquitous very 182 

high black-grass density, wheat YLR ranged from 1.4 – 2.3 t ha-1 and on average was 2 t ha-1, 183 

representing over a quarter (28%) of average potential estimated wheat yield (8.3 t ha-1) in the 184 

absence of black-grass. The CR in winter wheat under this scenario ranged from £294 ha-1 to £904 185 

ha-1, and on average was £467 ha-1. This means that, if the problem continues unchecked, the costs 186 

of infestation in winter wheat could approach half of the average agricultural costs on English 187 

cereal farms (£1,076 ha-1). We do not suggest that such a scenario will occur; however, it is worth 188 

estimating these impacts (a) to illustrate the potential consequences of inaction and loss of 189 

glyphosate and/or pre-emergence black-grass herbicides, and (b) to present a frame of reference, 190 

allowing the extent of the current situation to be assessed in relation to the worst possible case. 191 

Scaling up these ‘worst-case’ estimates we find that potential YLR in English winter wheat 192 

under a scenario of total loss of herbicide control is 3.4 mt yr-1 (95% CI 3.3 – 3.6 mt, 193 

Supplementary Table 7), representing just under a quarter of UK domestic wheat consumption. 194 

Potential annual rotation CR is £1bn (95% CI £0.9bn – £1.0bn, Supplementary Table 7). To 195 

present a more conservative worst-case estimate, we also estimated YLR and CR using just those 196 



9 
 

fields in the top quintile and top decile of the black-grass density range: these gave potential 197 

annual yield losses in winter wheat of 2.1 mt and 2.6 mt respectively, and rotation CR of £0.8bn 198 

(Supplementary Table 8). 199 

A comparison of current and potential yield loss (Supplementary Tables 6 versus 7) shows 200 

that yield loss in the worst case scenario could be four to six times greater than it is now, except 201 

towards the northern edge of the black-grass range where it is seventeen times higher, reflecting 202 

the fact that herbicide resistant black-grass is not yet such a pressing problem in this area. The 203 

only region in which current resistance impacts are closer to potential impacts is in the South East, 204 

where a large proportion of fields have very high average black-grass density (Supplementary 205 

Figure 3); however, as previously mentioned, estimates for the South East are unlikely to be very 206 

representative of the region and should be viewed with caution. 207 

CR under the worst case scenario is around two-and-a-half to three times the current CR, 208 

except in winter wheat in northern regions: here, potential CR in winter wheat is around nine times 209 

current CR, again reflecting the fact that resistance is not yet so widespread in northern areas of 210 

England. To contextualise these costs in terms of the agrochemicals market, in 2014 herbicides 211 

contributed £0.2bn to the UK National Agrochemical Market, the total value of which was £0.6bn 212 

(ECPA Industry Statistics, 2018). Some of our estimates of the costs of resistance in England are 213 

greater than the entire value of herbicides to the UK agrochemicals market.  214 

Our estimates indicate that low black-grass densities currently account for just over half of 215 

England’s wheat producing area (Supplementary Figure 3) so there is a strong incentive to prevent 216 

densities increasing. In Europe, resistant black-grass has been recorded in 14 countries, including 217 

Europe’s top wheat producers (Germany and France; Eurostat, 2018). European wheat 218 

consumption is forecast to increase slightly over the next 10 years, so we urge wheat-producing 219 

countries to undertake their own national-scale resistance impact assessments. 220 

 221 

 222 
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Discussion 223 

Here we report the first national-scale estimate of the impacts of human-induced evolution of 224 

herbicide resistance. The scale of our findings illustrates that pesticide resistance has implications 225 

for national food security and economics. Annual potential losses of the order of 3 mt and £1bn 226 

are large enough that national-scale policy measures are needed to reduce the impact and spread 227 

of resistance. 228 

Resistance management is currently the responsibility of individual practitioners, whose 229 

collective actions constitute a national response. However, when pesticides are effective, there is 230 

an economic incentive for individual practitioners to use them and to crop mostly high value crops 231 

such as winter wheat. This behaviour is unsustainable as it drives resistance1,30, which we show 232 

has a negative impact on crop yields and income nationally. Our results thus imply that leaving 233 

resistance management to individual practitioners is an inadequate approach and that a national, 234 

targeted response is required. There is precedent for regulating pesticide use through policy in 235 

environmental and health arenas: there is now an urgent need for national-scale policy to regulate 236 

pesticide use in relation to resistance impacts on yield and economics. 237 

When designing resistance management policy, governments should adopt a nexus 238 

approach and explicitly link the economic, agricultural, environmental and health aspects of this 239 

issue. Joined-up legislation could help encourage this: in Europe, for example, resistance 240 

management could be incorporated into existing legislation such as the EU Directive on the 241 

Sustainable Use of Pesticides (Directive 2009/128/EC), which already legislates to reduce 242 

pesticide risk to human health and the environment. Integration of these different policy arenas 243 

could help ensure that legislation for reduced pesticide use based on environmental or health 244 

concerns also delivers resistance management benefits, and vice versa : from environmental and 245 

sustainability policy perspectives, the impacts estimated here could be used as a lever to further 246 

justify, in both food security and economic terms, reduced pesticide use through practices like 247 

integrated pest management (IPM). 248 
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Resistance management policy could be implemented via a national action plan, which 249 

should aim to (a) reduce the spread of resistance into unaffected areas, and (b) find, and 250 

communicate, non-chemical ways of reducing high weed populations in regions that already have 251 

high resistance. A key aspect of such an action plan will be to reduce use of, and reliance on, 252 

pesticides, because use is driving resistance. Reduced use has already been recommended for 253 

other classes of xenobiotic, such as in the management of insect vectors of human disease36, and 254 

has been implemented for prostate cancer37. This reduction in pesticide use could be achieved by 255 

improving crop rotation and employing other IPM practices such as seedbed sanitation, careful 256 

choice of sowing dates and densities, direct sowing, physical control methods, field hygiene 257 

measures and regular monitoring38–40. 258 

Because resistance management is likely to be a contentious issue, we suggest that a 259 

national action plan should be formulated after public consultation and a process of consensus-260 

building and collaboration41. Providing the public with high-quality evidence and information is 261 

crucial to the success of these consultations: an assessment of the economic outcomes of reducing 262 

herbicide use, and of the cost-effectiveness of a range of potential policies or mitigation strategies, 263 

would thus be a useful next step, both for the consultation process and for subsequent policy 264 

design. 265 

It is likely that statutory limits on pesticide use will be necessary, and that incentives and 266 

enforcement will be required to achieve behaviour change. Agricultural policy could be used to 267 

incentivise and support farmers to change their management practices, for example by stipulating 268 

improved crop rotation to qualify for income support or by providing support payments during the 269 

initial phase of reducing pesticide use and increasing IPM. This would be especially important in 270 

those areas where resistance is not currently a problem, and it would therefore be useful to 271 

estimate the short-term opportunity cost to individual practitioners of reducing pesticide use in 272 

areas with low resistance. Alternatively, governments could incorporate resistance management 273 

into Payments for Ecosystem Services schemes (or set up such schemes where none exist) 274 
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whereby farmers are rewarded for outcomes such as improved water quality or biodiversity, or 275 

maintenance of pesticide susceptibility in pest populations. Governments could also leverage 276 

commercial interest, for example by introducing tax incentives for water companies to set up 277 

farmer advisory or support schemes to help reduce pesticide use. Enforcement could take the form 278 

of caps on pesticide use and fines for breaking those limits or for spreading resistant weed seeds. 279 

Additionally, governments could legislate for disincentives to the herbicide manufacturing 280 

industry – for example by higher taxation rates on sales over a threshold volume – and could help 281 

reduce the influence of the agrochemicals industry by allocating public money to fund farm 282 

advisory services as well as research and development. 283 

Finally, any pesticide resistance policy must also target glyphosate resistance. Glyphosate 284 

resistant weeds are already found on almost every continent20 but are not yet present in the UK. 285 

However, English farmers are increasingly reliant on glyphosate to control herbicide-resistant 286 

black-grass and as a result there has been a dramatic increase in its use42, ramping up the 287 

evolutionary pressure on black-grass to develop resistance to glyphosate, too30. In the US, 288 

widespread glyphosate resistance is already a reality and the scale of the problem dwarfs that 289 

being faced with black-grass in England. A US-wide assessment of resistance-related costs and 290 

yield losses should be undertaken as a matter of urgency to inform national food-security 291 

planning. Worldwide there are many pesticide-resistant species23,43,44. Our findings should 292 

therefore be a catalyst to other countries to develop national-scale estimates of the impacts of 293 

resistance as a first step in assessing the need for their own pesticide resistance strategies. 294 

 295 

 296 

 297 

 298 

 299 

 300 



13 
 

Methods 301 

Field data. Field management data was obtained for years 2004 – 2014. Black-grass (BG) density and resistance, and 302 

winter wheat yield, was sampled from 2014-2017. For details see reference 1. BG density states are given in 303 

Supplementary Table 10. To estimate costs of resistance, we used a subset of 66 fields from the full dataset (138 304 

fields), and field management histories up to 2014. This subset comprised fields with ш3 years’ management history 305 

and with complete historical data on tillage operations and herbicide applications. Where soil type was not specified 306 

by the farmer, we extracted soil type from the National Soil Resources Institute NATMAP1000 database (Soils Data 307 

© Cranfield University (NSRI) and for the Controller of HMSO [2016]). We used BG density data from all 138 fields 308 

in the scaling-up process. 309 

The cost of BG infestation (CI) comes mainly from two factors: (i) the direct impact of BG on wheat yield 310 

through competition; (ii) the cost of herbicides targeting BG (which may also be applied in crops other than wheat) 311 

and their application. There are also some additional, lesser costs, for example those incurred for an inversion plough. 312 

With respect to herbicides, we were interested only in calculating costs related directly to BG infestation: in the field 313 

management dataset, we therefore identified all herbicide applications specifically targeting BG. For all other 314 

herbicide costs (i.e. adjuvants, desiccants, and applications not specifically targeting BG) we calculated an average 315 

value per crop from our dataset and incorporated this into the sundry costs in BGRI-ECOMOD. For the thirteen 316 

observations where farmers had grown crops not included in BGRI-ECOMOD, we used proxy crops. Spring oilseed 317 

rape was the proxy for borage, millet and mustard (1 observation of each); ware potatoes were the proxy for onions (1 318 

observation); and barley was the proxy for oats (7 observations) and triticale (2 observations). 319 

Economic model. We custom-built an economic model, BGRI-ECOMOD, capable of incorporating a wide range of 320 

farm management options and including a user-specified yield penalty for varying levels of weed infestation. The 321 

model code supplied incorporates the mean yield penalties from our data (see Figure 1 and SI); however, we enable 322 

users to specify yield penalties so that BGRI-ECOMOD can be used for different weed species, or be updated in light 323 

of new BG yield penalty data, or for running sensitivity analyses on the yield loss-weed density function. The model 324 

performs gross margin analysis (see equations 3-16, SI) and incorporates the effect of variables such as soil type, 325 

sowing date, tillage practices and yield penalties associated with crop sequences. This allows us to estimate the costs 326 

associated with a range of management practices aimed at reducing BG populations. It is built in R45 and uses a 327 

simple data-entry system. For further details see SI and Code Availability statement. 328 

The baseline for this analysis was harvest 2014 because this was the first year in which we undertook field 329 

surveys of BG density and crop yield. All costings were therefore made using 2014 prices46,47 (e.g. we assumed a 330 

wheat price of £164 t-1, which was the average for feed wheat (£155 t-1) and milling wheat (£173 t-1) in 2014). Prices 331 
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given on GitHub, see Data Availability statement. For herbicide prices we calculated mean values from our dataset: 332 

selective herbicides targeting black-grass = £19.50 l-1, glyphosate = £2.43 l-1. Estimates of the cost of resistance will 333 

vary, potentially greatly, as input prices (especially herbicide) and output prices (especially winter wheat) change 334 

each year. 335 

The model can be run for multiple fields and years. This makes it useful for estimating economic impacts of 336 

current and historical weed infestations, for working with very large datasets – thereby enabling more reliable up-337 

scaling to policy-relevant scales – and for aiding within-year decision-making at the field scale or multi-year planning 338 

at a farm or landscape scale. 339 

Estimating yield loss due to black-grass. High-resolution yield data, available for 17 fields from years 2014-2017 340 

(Supplementary Figure 1), were used to estimate the BG density-wheat yield relationship (Figure 1, Supplementary 341 

Table 1) using a mixed effects model fitted using the lmer() function in the lme4 library48 in R45 (model details in 342 

Supplementary Methods and Supplementary Figure 2). From this model we predicted mean yield at each density state 343 

in an ‘average’ field (Figure 1a and Supplementary Table 2). Parametric bootstrap 95% confidence intervals around 344 

these means were estimated from 10,000 re-samples49 from the model posterior with the ‘bootMer()’ function from 345 

lme4. We calculated the percent reduction in yield (Figure 1b) from the reference state (‘low’) for the other three 346 

density states using 1 – (predicted yield for state D / reference state yield). These estimates of yield loss are in line 347 

with published yield losses due to BG in controlled plot experiments (Supplementary Table 3). We generated 95% 348 

confidence intervals on the percent reduction (used to inform limits in sensitivity analyses) by calculating the percent 349 

reduction for each density state for each of the 10,000 bootstrap samples, then taking the 95% quantiles of those 350 

distributions of estimated percent reductions. The resultant yield penalties applied in BGRI-ECOMOD are given in 351 

Supplementary Table 2. Further methodological details in SI. 352 

Estimating field-scale CR and YLR. Our aim was to estimate the average cost and yield loss per hectare for different 353 

densities of resistant BG at a baseline point in time (2014, see above). Costs were calculated using 2014 prices (and 354 

so will differ if using prices from other years).  355 

Stage 1 was to estimate costs and yield losses due to BG infestation (I). First, we derived a yield penalty for 356 

each weed density state as described above and applied them as parameters in BGRI-ECOMOD. We then ran the 357 

historical field management data and BG density data from the 66 fields through BGRI-ECOMOD to estimate (a) 358 

yield loss due to BG infestation (YLI), and (b) costs due to yield loss and herbicide application (chemical + operations 359 

costs) resulting from BG infestation (CI), for every field in every year (maximum date range 2004 – 2014). We did 360 

this by running the model both with and without BG infestation, then subtracting the estimated gross profit or yield 361 

obtained in the presence of BG from that estimated in the absence of BG (i.e. the potential profit or yield).  362 
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For wheat, running the model with BG infestation involved four model runs because different BG density 363 

states resulted in different wheat yield penalties, so we had to run our field management history through the model 364 

once for each density state: i.e. in subsequent model runs, BG density for all fields was set at absent/low, then 365 

medium, then high and then very high states, each time using the observed herbicide and spraying data. For each field 366 

we then calculated mean gross profit and yield weighted by the proportion of each density state in the field (see 367 

Supplementary Figure 3). Finally, the model was run without BG infestation, so the density state of all fields was set 368 

to absent/low and herbicide applications and spraying operations targeting BG were set to zero. The weighted mean 369 

gross profit (or yield) was then subtracted from the potential profit (or yield) to give a cost and yield loss due to BG 370 

infestation in winter wheat crops for each field. For other crops the process was simpler as BG density and yield were 371 

not surveyed. Therefore, to estimate CI across all crops (which, for any given field, is effectively CI across a rotation), 372 

the model was run only twice, with and without BG infestation, and then the calculated costs were averaged over the 373 

number of year’s management history for each field, giving a mean rotation CI for each field. 374 

Stage 2 was the estimation of costs and yield losses due to resistant (R) plants. For each field, the frequency 375 

of resistance to mesosulfuron was then used to calculate the proportion of the costs or yield losses that were due to R 376 

plants, giving a cost of resistance (CR) and yield loss due to resistance (YLR). We chose the frequency of resistance to 377 

mesosulfuron because, of three actives tested, mesosulfuron (an ALS inhibitor) was the strongest driver of BG 378 

abundance in our fields in 2014 (Comont et al, in prep). Furthermore, ALS target-site resistance was identified as a 379 

particular concern back in 200726. 380 

Using these field-scale estimates, for both winter wheat crops and rotations, we derived an average CR and 381 

YLR per hectare for each of the four weed density states. This was our baseline CR and YLR. Further methodological 382 

details given in Supplementary Figure 3. 383 

To estimate the worst-case scenario in winter wheat crops (i.e. cost and yield loss under a total loss of 384 

herbicide control), we used the methodology described in (ii) above but assumed in the second model run that all 385 

quadrats in every field were in a very high density state. Because at very high density 100% of costs and yield losses 386 

were due to resistant plants, we assumed 100% of costs and yield loss were due to resistance. Herbicide applications 387 

remained unchanged – i.e. we used the herbicide application data from the management history – although, in reality, 388 

where black-grass was initially absent herbicide applications would have been likely to increase. The resulting per 389 

hectare costs differ very slightly to those calculated previously for very high density states because the management 390 

history data of all fields was used in this worst case estimate, rather than the data from just those fields with very high 391 

average density states. We also made two more-conservative estimates of a worst-case scenario by scaling up the 392 

average costs and yield losses from fields in the top decile and top quintile of observed black-grass density states. 393 
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The relative contribution of herbicide application, yield loss and operations costs to overall cost in winter 394 

wheat crops (Figure 3) was assessed by extracting individual components from ECOMOD output (output generated 395 

by running empirical field management data from 66 fields through ECOMOD, as described above). The effect of 396 

weed density on herbicide use in winter wheat crops was assessed using a generalized linear mixed effects model and 397 

performing a likelihood ratio test using maximum-likelihood simplification of the minimal adequate REML model. 398 

The model was fit with the lmer function in package lme448 and included farm as a random effect to account for 399 

multiple fields on the same farm. Model fit was assessed by visual inspection of residual plots, which indicated no 400 

signs of heteroscedasticity or non-normality. 401 

Scaling-up the cost of resistance. Fields were chosen to be representative of UK arable farming. Farms were 402 

predominantly arable, the geographic range (Oxfordshire to Yorkshire) encompassed the main winter wheat-growing 403 

areas of the UK, and a range of farm sizes was included. Within farms, field selection was based on those that were in 404 

winter wheat in the first survey year. Farmers were asked to select their ‘best’ and ‘worst’ fields in terms of BG 405 

infestation. We therefore assumed fields to be representative of both arable farming and BG resistance and density 406 

distributions within our wider study area and in England as a whole (evidence for which can be seen in the fact that 407 

ECOMOD provides similar gross profit estimates to those in the Farm Business Survey50, Supplementary Table 4). 408 

We scaled up the costs of resistance accordingly. 409 

CR and YLR in winter wheat were scaled up to regional winter wheat areas (DEFRA, 2014). For each region, 410 

we estimated the area of wheat at each BG density state by taking the proportion of that region’s surveyed fields at 411 

each density state, then multiplying the regional wheat area by these proportions (Supplementary Figure 3; all 138 412 

fields in the dataset were used in this process). Next, for each density state and region, these wheat cropping areas 413 

were used to scale up the per hectare CR and YLR (Supplementary Methods, equation (1)). For each region, costs for 414 

each density state were summed to give a regional total (Supplementary Methods, equation (2)). This methodology 415 

ensures that the up-scaling of costs and yield losses in winter wheat better reflects regional differences in BG density1. 416 

The costs across rotations were scaled up directly to regional cereal cropping areas (DEFRA, 2014) as we have no 417 

data on BG density in crops other than wheat. Further details in Supplementary Methods. 418 

Assumptions. We assume that the herbicide resistant BG phenotype is present in every field, based on previous 419 

work1 which found that only 1% of fields in our dataset had no resistance to any of the three herbicides tested. 420 

Furthermore, of the 126 fields from our dataset with the best-quality phenotyping data (these include Northern fields, 421 

where resistance is less of a problem), only 1 field had <10% survival when Fenoxaprop was applied at field rate. We 422 

are thus confident that that there is some level of herbicide survival in almost every field. In terms of the effect of 423 

herbicide, we assume that resistant (R) plants survive a field-relevant dose of herbicide. At the individual scale this 424 
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means that R is binary (0|1) after herbicide. At the population scale it is more continuous (0-1): herbicide reduces BG 425 

abundance by the proportion of susceptible (S) individuals. 426 

We assume that herbicide does not drive the BG seedbank to zero before the field evolves resistance. Weed 427 

eradication using herbicide alone is almost always impossible due to spatial and temporal refuges from herbicide 428 

treatments (e.g. field margins, seed bank, asynchronous germination, and transfer of weed seed between fields on 429 

machinery), so there are almost inevitably herbicide ‘escapes’ capable of maintaining a population. More broadly, 430 

feasibility studies of general weed eradication programmes have highlighted the concerted and prolonged effort 431 

required for eradication to be successful51. Despite relatively small field sizes, this degree of effort is unlikely to be 432 

met for most farms, particularly using herbicide alone. 433 

We assume that the resistant BG phenotype has the same impact on yield as the susceptible wildtype. There 434 

is good evidence illustrating how limited the effects of both non-target-site resistance (NTSR) and some predominant 435 

target-site resistance (TSR) mutations are on relative performance of R and S BG biotypes52–54, and thus any influence 436 

on competition with the crop is likely to be negligible. Comparisons of NTSR and susceptible BG found no consistent 437 

fitness costs, either when grown alone or in competition with winter wheat52,54. In a study of three ACCase TSR 438 

mutations in BG53, one mutant allele (Glyဨ2078) did result in a small reduction in biomass and seed production; 439 

however, this mutation is rare, with a frequency of only 0.34% based on previous genotyping of 8256 haplotypes 440 

from UK BG55. Additionally, there is some evidence that the small fitness costs associated with this mutation are 441 

rapidly lost in BG populations due to compensatory evolution56. Two mutations (Leu 1781 and Asn-2041), which are 442 

considerably more common in UK BG55, had no effect on vegetative biomass, height or seed production compared to 443 

S wild-type plants. We are thus confident in our assumption that R phenotypes of BG have the same impact on yield 444 

as the S wild-type. 445 

To calculate CR across the time span of our dataset (2004 – 2014) we assumed that the density state of a field 446 

as recorded in 2014 also applied to all the preceding years for which we had management history data (we had no 447 

density data pre-2014). Hicks et al1 found slight evidence for a within-field increase in density between 2014 and 448 

2016, and showed that resistance is driving black-grass density. However, this increase in density is not at a 449 

magnitude to change the categorical density state of a field unless over a fairly long timescale and could well simply 450 

represent normal inter-annual fluctuations. To test the validity of using the entire time span, we re-ran the analysis on 451 

just the later part of the time series (2010 – 2014 inclusive). Although this gave slightly higher costs (Supplementary 452 

Table 9), the costs estimated using 2010 – 2014 data fell within the 95% CIs estimated using 2004 – 2014 data, 453 

indicating that the assumption holds here. 454 
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To estimate the worst-case scenario in winter wheat crops, we assumed all quadrats in every field were at 455 

very high density state and that resistant plants were responsible for 100% of costs and yield losses. This scenario 456 

would arise only if no action were taken to address current problems of herbicide resistance and assumes that farmers 457 

keep applying herbicide even once its efficacy is limited. Although there is evidence for these types of 458 

behaviours1,57,58, this scenario is not currently anticipated and we present it only to highlight the worst possible effects 459 

of inaction. 460 

Model testing and evaluation. Model tests were carried out on yield and gross margin. For evaluation of yield 461 

estimates, we first removed from the dataset any observations (n =13) where a farmer grew a crop not modelled by 462 

BGRI-ECOMOD. The model accurately estimated yield both with (R2=0.91, slope=1.05, Supplementary Figure 4) 463 

and without (R2=0.97, slope=1.05, Supplementary Figure 4) failed crops in the dataset (BGRI-ECOMOD is unable to 464 

predict crop failure). We also evaluated yield estimates without the heavy crops (potatoes, sugar beet) to remove their 465 

influence on the relationship: the model still estimated yield well (R2=0.74, slope=1.01). Estimated regional gross 466 

margin fell within the 95% confidence intervals for the regional values obtained from Farm Business Survey data 467 

(Supplementary Table 4). Furthermore, the model was robust to sensitivity testing on tractor work rates during 468 

different tillage operations, which was the management variable for which published data were lacking. We varied the 469 

proportions used to calculate tillage work rates in relation to ploughing work rate: the range tested was +30% to -30% 470 

(+/-5%, +/-10%, +/-20% and +/-30%) of initial values. There was no effect on the per hectare CR (results not shown). 471 

The model was, however, sensitive to the yield penalty applied for BG infestation. We observed considerable 472 

variability in the yield loss~weed density relationship (Supplementary Figure 1), especially at the highest density, and 473 

so ran a sensitivity analysis based on the extremes from our data and the literature (Supplementary Table 10). The 474 

consequences of using different yield penalties are given in the results and in Supplementary Table 11. Full details of 475 

model tests and sensitivity analyses are given in Supplementary Methods. 476 

 477 

Data availability 478 

Model data and input template are available at https://github.com/alexavarah/BGRI-ECOMOD. 479 

Data used to generate the yield penalty can be accessed at  https://github.com/alexavarah/BGcosts. 480 

The field management data set has been deposited in the University of Sheffield Online Research 481 

data archive (ORDA) and can be accessed at  https://figshare.com/s/eb21f4d1862741d50ceb. 482 

 483 

 484 

https://github.com/alexavarah/BGRI-ECOMOD
https://github.com/alexavarah/BGcosts
https://figshare.com/s/eb21f4d1862741d50ceb
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Code availability 485 

Model code is available at https://github.com/alexavarah/BGRI-ECOMOD. 486 
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 636 

Figure legends 637 

Fig. 1 | Estimating yield penalties using black-grass density and winter wheat yield data. a, The average effect of 638 

black-grass density on the yield of winter wheat. Black points are model-estimated average yields, bars show 95% 639 

confidence intervals generated from 10,000 parametric bootstrap re-samples (some confidence intervals are narrow 640 

enough to be obscured by the point; all values and confidence intervals given in Supplementary Table 2). Grey 641 

points show observed yield for each 20 x 20 m plot from 17 fields over 4 years. See SI for individual field estimates 642 

across years. b, Average yield loss of winter wheat relative to the reference state, calculated based on yield 643 

estimates and bootstrap resamples. Reference state = low density (note the estimate for low density is fixed at 0). 644 

Percent reduction for subsequent density states as follows: medium 0 %; high 7.45 %; very high 25.60 % 645 

(Supplementary Table 2). The y-axis of (b) is reversed so that the direction of the effect of black-grass density is the 646 

same between (a) and (b). Further details in SI. 647 

 648 
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Fig. 2 | Field-scale costs and yield loss due to resistant black-grass. These estimates were generated by running 649 

empirical field management and black-grass density data (number of fields = 66) through BGRI-ECOMOD. a and b 650 

show yield loss due to resistant black-grass (YLR, t ha-1): a, average field-scale yield losses in winter wheat; b, 651 

maximum field-scale yield loss in winter wheat in the event of total loss of herbicide control. c ʹ e show cost of 652 

resistance (CR, £ ha-1): average field-scale CR for c, years in winter wheat crops and d, Ăůů ǇĞĂƌƐ͛ ĚĂƚĂ͕ i.e. across a 653 

rotation; e, maximum field-scale CR in the event of total loss of herbicide control. Fields are overlaid on a map of 654 

modelled density (square root) of Alopecurus myosuroides averaged over 2015-2017. This density map was 655 

generated by fitting a generalized additive model to the data reported in Hicks et al. (2018)1, with spatial covariates 656 

representing latitude and longitude. 657 

 658 

Fig. 3 | The relative contribution of herbicide costs, lost yield and operations costs to total costs in winter wheat 659 

crops. Values are average per hectare costs estimated by running empirical field management and black-grass 660 

density data through BGRI-ECOMOD (number of fields = 66). a, Costs due to resistant black-grass plants and b, costs 661 

due to infestation. Herbicide costs consider only those herbicide applications targeting black-grass. (Error bars 662 

intentionally omitted as the purpose is to illustrate the contribution of component parts and, when data are 663 

presented in this way, error bars of individual components influence each other and are misleading). 664 

 665 

Fig. 4 | Annual impacts of herbicide resistant black-grass at regional and national scales. a, Annual winter wheat 666 

yield losses due to resistance (YLR). National YLR given in million tonnes; regional figures in thousand tonnes. b, 667 

Annual economic cost of resistance (CR) across all crops and c, in winter wheat crops. National CR in billion GBP, 668 

regional CR in million GBP. Figures in brackets are 95% confidence intervals. Regions are UK Government Office 669 

regions: EE East of England; SE South East; YH Yorkshire and the Humber; EM East Midlands; WM West Midlands. 670 

For each region, the mean per hectare CR and YLR at each black-grass density state were multiplied by the crop area 671 

estimated to have that density state. For full details of scaling-up process see Methods and SI. 672 

 673 

674 
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Tables 675 

Table 1 | Field-scale yield loss and economic costs due to black-grass infestation (I) and resistant plants (R) at 676 

different densities of black-grass in England. 677 

Ώ Values are means, estimated by running empirical field management and black-grass density data (number of fields = 66) 678 

through BGRI-ECOMOD, see Methods. 95% confidence intervals (generated by bootstrapping) in brackets. 679 

 R/I gives the proportion of the cost of infestation that is due to resistance. 680 

* infestation = resistant + susceptible plants. 681 

Average 

black-grass 

density 

state of 

field 

 

Average yield loss 

in winter wheatΏ 

 (t /ha) 

  

Average costΏ (£ /ha) 

in winter wheat  across rotations 

  R I* R/I  R I R/I  R I R/I 

absent/low 

 

 0.0 

(-0.1, 0.1) 

0.0 

(-0.1, 0.1) 

NA 

 

 75  

(56, 93) 

106  

(90, 123) 

0.71 

 

 58  

(44, 72) 

85  

(73, 98) 

0.68 

 

medium 

  

 0.3 

(0.2, 0.4) 

0.4 

(0.2, 0.4) 

0.75 

 

 135  

(120, 149) 

158  

(148, 168) 

0.85 

 

 103  

(91, 115) 

123  

(114, 132) 

0.84 

 

high 

 

 0.8 

(0.7, 0.9) 

0.9 

(0.8, 1.0) 

0.89 

 

 264  

(249, 280) 

276  

(261, 291) 

0.96 

 

 185 

(173, 197) 

193  

(182, 204) 

0.96 

 

very high 

 

 1.8 

(1.7, 1.9) 

1.8 

(1.7, 1.9) 

1.00 

 

 450  

(434, 466) 

450  

(434, 466) 

1.00 

 

 280  

(263, 297) 

280  

(263, 297) 

1.00 

 

Mean 

across all 

densities 

 
0.38 

(0.2, 0.6) 

0.41 

(0.2, 0.6) 

0.93 

 

 
155 

(135, 174) 

178  

(152, 204) 

0.87 

 

 
112 

(92, 132) 

131 

(114, 148) 

0.85 

 


