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Development of a combined leaching and ion-exchange system for 

valorisation of spent potlining waste 

 

SUPPORTING INFORMATION 

 
Thomas J. Robshaw, Keith Bonser, Glyn Coxhill, Robert Dawson and Mark D. 

Ogden 

 

Information on Lanthanum-loaded PurometÔ MTS9501 resin (La-MTS9501) 

 

 
 

 
Figure S1. (a) La-loading mechanism for commercial resin PurometÔ MTS9501 resin, showing 

chelation of La ion to aminophosphonic acid functionality. (b) Probable mechanisms of aluminium 
hydroxyfluoride (AHF) uptake by La-MTS9501. Initial strong chemisorption interaction between La 
centre and aqueous AHF, then complexation with further weakly-bound AHFs (coordinating water 

ligands are omitted for clarity), accompanied by ligand-exchange reactions, resulting in the dominant 
bound AHF species having stoichiometry of ~Al(OH)2F [1, 2]. 

a 

b 
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Figure S2. Conceptual diagram of La-MTS9501 column system for treatment of SPL leachate. 

 

 

 

 

 

Images of selected SPL samples 

 

 

Figure S3. Photographs of the three different unprocessed SPL samples selected for leaching trials. 

Sample A (left), containing a large fraction of cementious and brick material. Sample B (middle), 
containing visible cementious material. Sample C (right), appearing to be mainly graphitic material. 
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Figure S4. Experimental setup for a fixed-bed column fluoride-loading experiment. 

 

 

Dynamic breakthrough models 

 

Dose-response model [3] 

 
!
!" = 1 − &

&'()*+, -
. (S1) 

 

𝑞0 = 1!"
2  (S2) 

 

In these equations C is the fluoride concentration in the effluent at a given time (mg 

L-1), Ci is the fluoride concentration in the effluent at full breakthrough (mg L-1), Vef is 

the volume of solution eluted from the column (mL), a and b are constants of the 

Dose-Response model, q0 is the theoretical maximum uptake capacity of the resin in 

a dynamic environment (mg g-1) and m is the dry mass of resin (g). 
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Thomas model [4] 
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where kTh = Thomas rate constant (mL min-1 mg-1), Q = flow rate (mL min-1). All other 

terms as previously described. 

 

Yoon-Nelson model [5] 

 
!
!" =

&
&'35AB(D>E) (S4) 

 

where kYN = Yoon-Nelson rate constant (min-1), t = time (min) and 𝜏 = the time at 

which C/Ci = 0.5 (min). All other terms as previously described. It should be noted 

that the Thomas and Yoon-Nelson models are mathematically analogous. Therefore, 

their fitting to experimental data using Microsoft SOLVER [6] produces identical R2 

values. 

 

 

PXRD spectra of SPL samples at various process stages 

 

 

 
Figure S5. PXRD spectrum of sample A <1.18 mm size fraction as received. 
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Figure S6. PXRD spectrum of sample A <1.18 mm size fraction after caustic leaching treatment. 

 

Figure S7. PXRD spectrum of sample A <1.18 mm size fraction after full leaching treatment. 

 

Figure S8. PXRD spectrum of sample A 1.18–9.51 mm size fraction as received. 
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Figure S9. PXRD spectrum of sample A 1.18–9.51 mm size fraction after caustic leaching treatment. 

 
Figure S10. PXRD spectrum of sample A 1.18–9.51 mm size fraction after full leaching treatment. 

 
Figure S11. PXRD spectrum of sample B <1.18 mm size fraction as received. 
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Figure S12. PXRD spectrum of sample B <1.18 mm size fraction after caustic leaching treatment. 

 

Figure S13. PXRD spectrum of sample B <1.18 mm size fraction after full leaching treatment. 

 

Figure S14. PXRD spectrum of sample B 1.18-9.51 mm size fraction as received. 
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Figure S15. PXRD spectrum of sample B 1.1–9.51 mm size fraction after caustic leaching treatment. 

 
Figure S16. PXRD spectrum of sample B 1.18–9.51 mm size fraction after full leaching treatment. 

 
Figure S17. PXRD spectrum of sample C <1.18 mm size fraction as received. 
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Figure S18. PXRD spectrum of sample C <1.18 mm size fraction after caustic leaching treatment. 

 
Figure S19. PXRD spectrum of sample C <1.18 mm size fraction after full leaching treatment. 

 
Figure S20. PXRD spectrum of sample C 1.18–9.51 mm size fraction as received. 
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Figure S21. PXRD spectrum of sample C 1.18–9.51 mm size fraction after caustic leaching 
treatment. 

 
Figure S22. PXRD spectrum of sample C 1.18–9.51 mm size fraction after full leaching treatment. 

 

Scanning electron microscopy (SEM) images 

 

Figure S23. SEM images of sample A <1.18 mm size fraction before (left) and after (right) full 
leaching treatment. 
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Figure S24. SEM images of sample B  <1.18 mm size fraction before (left) and after (right) full 
leaching treatment. 

 

 
Figure S25. SEM images of sample C  <1.18 mm size fraction before (left) and after (right) full 

leaching treatment. 

 

Energy-dispersive X-ray (EDX) spectra from point analysis (performed in 

conjunction with SEM imaging) 

 

 
Figure S26. EDX spectrum for point a (cementious particle) in sample A <1.18 mm size fraction.  
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Figure S27. EDX spectrum for point b (graphite particle) in sample A <1.18 mm size fraction. 

 

 
Figure S28. EDX spectrum for point g (crystalline region) in sample C <1.18 mm size fraction. Peaks 

labelled in red were manually assigned. 
 
 
 

Additional ICP-MS analysis of SPL leachate 

 
Table S1. Quantities of minor chemical species leached from each SPL sample, determined by  

ICP-MS. 

Leaching 

treatment 
Sample  

Ni Ba Be Cr Sr Li V Mn Y Zn 

caustic A <1.18 mm < 5 0.480 0.960 21.6 1.44 18.2 16.3 0.480 < 5 77.8 

caustic A 1.18-9.51 mm < 5 2.46 < 0.5 6.57 0.821 45.6 7.39 1.64 < 5 60.4 

caustic B <1.18 mm < 5 0.468 1.87 8.89 1.40 34.6 12.6 0.468 < 5 67.4 

caustic B 1.18-9.51 mm < 5 0.414 3.31 3.31 0.827 26.5 12.8 0.414 < 5 50.9 

caustic C <1.18 mm < 5 3.92 4.90 20.1 3.43 27.9 7.84 0.490 < 5 67.6 

caustic C 1.18-9.51 mm < 5 1.30 2.61 6.08 2.61 24.8 3.91 0.434 < 5 44.7 

 average < 5 1.51 2.36 11.1 1.76 29.6 10.2 0.655 < 5 61.5 

 
Standard 

deviation 
 1.42 1.61 7.78 1.05 9.44 4.54 0.485  12.1 

acidic A <1.18 mm 46.3 9.84 3.60 90.0 57.8 34.8 5.28 133.7 6.24 85.2 

acidic A 1.18-9.51 mm 9.45 7.46 3.23 14.9 64.7 32.1 8.71 42.5 7.71 162 

acidic B <1.18 mm 17.2 5.23 5.65 24.1 62.4 32.0 2.51 58.0 4.61 48.4 

acidic B 1.18-9.51 mm 8.02 4.86 2.67 15.8 33.0 16.5 0.729 18.7 2.43 52.7 

acidic C <1.18 mm 28.1 2.14 4.07 37.9 75.9 19.5 3.43 106 2.36 30.2 

acidic 
C 1.18 mm-9.51 

mm 
13.6 2.12 6.58 13.4 55.0 21.5 1.91 47.8 1.91 17.4 

 average 20.4 5.28 4.30 32.7 58.1 26.1 3.76 67.2 4.21 66.1 

 
Standard 

deviation 
14.6 3.02 1.51 29.5 14.3 7.79 2.87 43.2 2.38 52.5 
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Other SPL leaching treatments described in the literature 

 
Table S2. Comparison of SPL leaching treatments previously reported. 

 
SPL cut Number of 

stages 

Lixiviant(s) Length of 

treatment (hr) 

Leaching 

temperature 

(°C) 

Reference 

Mixed 2 1 M NaOH (with H2O2), 

0.5 M H2SO4 

3 (x 2)) + 2 20 This study 

First 1 Concentrated chromic 

acid 

< 0.3 100 [7] 

Not stated (presumed 

mixed) 

4 Water, HF, H2SiF6, water Not stated 60 - 90 [8] 

Second 1 0.01 M NaOH 18 23 [9] 

Not stated (presumed 

first) 

2 2.5 M NaOH, 

9.7 M HCl 

3 (x 2) 100 [10] 

First 2 Water, 0.36 M Al(NO3)3 4 + 24 25 [11] 

First 2 Water, Al anodizing 

wastewater / 0.7 M 

H2SO4 

4 (x 2) 25 - 60 [12] 

First 1 NaOH (ultrasound-

assisted) 

0.67 70 [13] 

Not stated (presumed 

first) 

2 Water, Al anodizing 

wastewater / 1.77 M 

H2SO4 

3 (x 2) 80 [14] 

 
 
 

Table S3. Composition of SPL from different common smelter cell types [15]. 
 

Chemical species 
(mass %) 

Cell type 
A type prebake B type prebake Söderberg 

Fluorides  10.9 15.5 18 
Cyanides (mg kg-1) 680 4480 1040 
Total aluminium  13.6 11 12.5 
Metallic aluminium  1 1 1.9 
Carbon  50.2 45.5 38.4 
Sodium  12.5 16.3 14.3 
Calcium  1.3 2.4 2.4 
Iron 2.9 3.1 4.3 
Lithium 0.03 0.03 0.6 
Titanium 0.23 0.24 0.15 
Magnesium 0.23 0.09 0.2 

 

 

Mixing of caustic and acidic leachates and precipitation 

 
Table S4. Masses of precipitate attained from combination of 25 mL caustic leachate and 25 mL 

acidic leachate, maintaining pH of ~ 3. 
 

Sample Precipitate mass (g) 

A <1.18 mm 0.1039 
A 1.18–9.51 mm 0.0993 
B <1.18 mm 0.0661 
B 1.18–9.51 mm 0.0929 
C <1.18 mm 0.0748 
C 1.18–9.51 mm 0.0759 
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Figure S29. PXRD spectrum of precipitate obtained by mixing caustic and acidic leachates from 

treatment of sample A, 1.18–9.51 mm fraction. 

 

 
Figure S30. PXRD spectrum of precipitate obtained by mixing caustic and acidic leachates from 

treatment of sample B, <1.18 mm fraction. 
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Figure S31. PXRD spectrum of precipitate obtained by mixing caustic and acidic leachates from 
treatment of sample C, <1.18 mm fraction. 

 

 
Figure S32. Literature PXRD spectrum of cryolite from the ICDD for comparison [16]. 

 

Fixed-bed fluoride column-loading studies and fitting to dynamic models 

 

 
Figure S33. Raw breakthrough data for loading of La-MTS9501 resin column from combined leachate 

of SPL sample A, 1.18–9.51 mm size fraction. Column volume = 5.50 mL. Resin mass =  

1.792 g. Flow rate = 0.50 BV hr-1. T = 20°C. 
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Figure S34. Modelling of first breakthrough region for the above data. 

 
 

Figure S35. Modelling of second breakthrough region for the above data. 
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Table S5. Extracted parameters from modelling of breakthrough behaviour for leachates of sample A 
<1.18 mm and sample A 1.18–9.51 mm. For definition of model parameters, see p3. 

 
Model Parameter Breakthrough 

region 

Leachate 

Sample A < 1.18 mm Sample A 1.18–9.51 mm 

Dose-Response a first 5.50 ± 0.60 6.60 ± 0.67 

 b first 74.9 ± 1.7 58.5 ± 1.0 

 q0 first 5.01 ± 0.11 4.23 ± 0.07 

 R2 first 0.983 0.969 

 a second 5.45 ± 0.47 4.57 ± 0.48 

 b second 262 ± 4 185 ± 4 

 q0 second 26.7 ± 0.4 33.4 ± 0.7 

 R2 second 0.960 0.947 

 R2 botha 0.932 0.959 

Thomas kTh first 5.78 ± 0.86 (x 10-5) 7.60 ± 1.0 (x 10-5) 

 q0 first 5.10 ± 0.15 4.28 ± 0.09 

 R2 first 0.971 0.950 

 kTh second 1.02 ± 0.12 (x 10-5) 7.00 ± 0.98 (x 10-6) 

 q0 second 27.1 ± 0.5 34.0 ± 0.9 

 R2 second 0.937 0.921 

 R2 botha 0.942 0.971 

Yoon-Nelson kYN first 7.56 ± 1.1 (x 10-2) 0.107 ± 0.015 

 T50 first 76.2 ± 2.2 59.2 ± 1.3 

 R2 first 0.971 0.950 

 kYN second 2.03 ± 0.23 (x 10-2) 2.47 ± 0.35 (x 10-2) 

 T50 second 266 ± 5 188 ± 5 

 R2 second 0.937 0.921 

 R2 botha 0.942 0.971 
a The R2 values for both breakthrough regions are derived from an attempt to fit a single breakthrough curve to the whole 

dataset. 
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