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ABSTRACT 8 

Ball indentation is a technique capable of assessing powder flowability down to very low consolidation 9 

stresses ;ч 1 kPa). With this method, powder flowability is determined by measuring the hardness of a 10 

powder bed, which allows the unconfined yield strength to be inferred via the constraint factor. The 11 

latter is well established for continuum materials, whereas for particulate systems its dependency on 12 

stress level and powder properties is not well defined. This work investigates these factors by simulating 13 

the ball indentation method using DEM. The constraint factor is shown to be independent of pre-14 

consolidation stress. Constraint factor generally increases with interface energy for relatively 15 

cohesionless powders, though not for cohesive powders. An increase in plastic yield stress leads to a 16 

decrease in the constraint factor. Increasing the coefficient of interparticle static friction reduces the 17 

constraint factor, while increasing the coefficient of inter-particle rolling friction significantly increases 18 

the constraint factor. 19 
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1 Introduction 27 

The inability of cohesive powders to flow consistently and reliably constitutes one of the major 28 

concerns of industries that deal with bulk solids handling, such as pharmaceuticals, food and fast-29 

moving consumer goods, since it can lead to process downtime and reduced manufacturing efficiency. 30 

Therefore, the study of powder flowability is vital, albeit complex, since ƉĂƌƚŝĐƵůĂƚĞ ƐǇƐƚĞŵƐ͛ ďĞŚĂǀŝŽƵƌ 31 

is multivariable, depending on both intrinsic particle properties such as particle size, size distribution, 32 

shape, density, surface roughness, porosity, cohesive and frictional forces between particles and 33 

system properties such as the stresses applied during storage and processing, and strain rate, as well 34 

as on external factors such as temperature and humidity (Rios, 2006).  35 

Over the years, there have been a diverse array of techniques developed for assessing powder 36 

flowability, which mostly focused on silo and hopper design and/or qualitative assessment of bulk 37 

solid flow, yet there is still a limited understanding on precisely how particle properties, stressing 38 

conditions and environmental factors affect flowability in a way that could lead to a reliable prediction 39 

of powder flow behaviour. None of the flow evaluation methods are universally applicable, since they 40 

usually measure a certain property of the powder that reflects the state of the powder in this specific 41 

experiment, and therefore their usage is meaningful in limited applications. Nevertheless, shear cells 42 

are the most widely accepted quantitative technique, with approaches developed for utilising the 43 

measurements for silo and hopper design (Jenike, 1961; 1964). Shear cells operate in the quasi-static 44 

regime, typically at moderate to high stresses that exist in large storage bins or hoppers, and measure 45 

the shear stress required to initiate flow under a given normal stress, and subsequently allowing the 46 
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unconfined yield strength to be estimated from the measured yield locus. As with most traditional 47 

flowability assessment techniques, they typically fail to evaluate the flow behaviour of cohesive 48 

powders at low consolidation stresses (ч 1 kPa). At such stresses shear cells are normally unable to 49 

generate steady-state shear, or the reproducibility of the measurement of unconfined yield strength 50 

is greatly reduced, or does not correlate with observed process behaviour (Schulze, 2008; Søgaard et 51 

al., 2014). The common practice is to assume linearity for yield loci, which are extrapolated towards 52 

zero normal stress, leading to an overestimation of unconfined yield strength and cohesion, since yield 53 

loci tend to curve downwards in the region of low stresses (Schulze, 2008). There are many processes 54 

of great interest during which granular materials are exposed to such low stresses and their flowability 55 

needs to be determined, such as flow in small scale hoppers, filling and dosing of powders in capsules, 56 

feeding powders for packing and tableting machines, and dispersion in dry powder inhalers (DPI). 57 

Under such stresses, small contact areas exist between constituent particles, and very little particle 58 

deformation occurs, leading to a low structural strength (Harnby et al., 1987). An aerated powder 59 

needs a lot less energy to make it flow than is required when the same powder is consolidated 60 

(Freeman, 2005). For all the aforementioned reasons, there is a need for established methods for 61 

powder flow measurement at low stresses, so that the results are generalisable to a broad class of 62 

powders. One such technique for assessment of powder flow at low stresses is ball indentation, which 63 

was introduced by Hassanpour and Ghadiri (2007), with its operational window being thoroughly 64 

established experimentally by Zafar et al. (2017) and computationally by Pasha et al. (2013). The first 65 

step of this method is to create a powder bed inside a cylindrical die (made of low friction material) 66 

and consolidate it by uniaxial compression to a desired stress. Then the compressed bed is penetrated 67 

by a spherical indenter, whilst its penetration depth and the resulting vertical force are measured until 68 

a desired depth is reached, and then the indenter is unloaded (Hassanpour and Ghadiri, 2007), as 69 

shown in Fig. 1. 70 

 71 
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 72 

Fig. 1. Indentation step of the procedure. 73 

 74 

From the force-displacement response of the powder bed, the hardness of the material is directly 75 

measured via Eq. (1), which corresponds to the resistance of the bed to plastic deformation. 76 

ܪ ൌ ܣ௠௔௫ܨ    ሺͳሻ 77 

where Fmax is the maximum indentation load and A is the projected area of the impression of the 78 

indenter, calculated from Eq. (2): 79 

ܣ ൌ ൫݀௕݄௖ߨ െ ݄௖ଶ൯   ሺʹሻ 80 

where ݀௕ is the indenter diameter and hc is the indent depth after unloading. If unloading has 81 

negligible effect ŽŶ ƚŚĞ ŵĂƚĞƌŝĂů͛Ɛ ƌĞĐŽǀĞƌǇ, the penetration depth at maximum indentation load can 82 

be used in place of hc (Hassanpour and Ghadiri, 2007). 83 

Ball indentation offers the capability of obtaining hardness measurements at any stress level, as long 84 

as a flat surface is available for indentation. However, it is commonly of interest to measure the 85 

unconfined yield strength, as determined by shear cells. Tabor (1951) demonstrated for continuum 86 

materials that for a given material, hardness is directly linked to the yield strength via the constraint 87 

factor, C, as shown in Eq. (3). 88 

ܪ ൌ ௖ߪ ܥ    ሺ͵ሻ 89 
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where ʍc is the unconfined yield strength. The constraint factor represents the phenomenon of plastic 90 

constraint seen in penetration tests of continuum solids. The penetration of continuum materials 91 

leads to the formation of a local plastic zone around the indenter, where the volume of material under 92 

yielding condition is surrounded by an elastically deformed region, which cannot easily flow. This leads 93 

to an increase in the local yield strength, represented by the hardness (Kozlov et al., 1995). This 94 

phenomenon has been found to be existent in particulate systems as well (Hassanpour and Ghadiri, 95 

2007; Zafar, 2013). In the case of continuum solids, the constraint factor has been stated to have a 96 

value of 3 for rigid-perfectly plastic materials (Hill, 1950), while according to Tabor (1951) this value is 97 

applicable only for ductile metals. Furthermore, for continuum materials C is known to depend on 98 

material properties (Tabor, 1996). Johnson (1985) introduced a relationship between indentation 99 

hardness and yield strength for elastic-perfectly plastic materials, based on YŽƵŶŐ͛Ɛ ŵŽdulus, radius 100 

of the impression and the indenter radius. FŽƌ ƉĂƌƚŝĐůĞ ƐǇƐƚĞŵƐ ƚŚĞ ĐŽŶƐƚƌĂŝŶƚ ĨĂĐƚŽƌ ĚŽĞƐŶ͛ƚ ŚĂǀĞ Ă 101 

fixed value, with different values determined for a variety of powders (Hassanpour and Ghadiri, 2007; 102 

Wang et al., 2008; Zafar 2013). Currently the constraint factor of a powder is not known a priori, nor 103 

is its behaviour throughout a wide stress range, since shear cells cannot be operated at low 104 

consolidation stresses. In addition to this, it is unknown which particle properties influence C, and to 105 

what extent. Shedding light on all of the above is of particular importance, because it will render it 106 

possible for Eq. (3) to be utilised to infer unconfined yield strength from ball indentation 107 

measurements, which are applicable at low stresses that cannot usually be reached by shear cells 108 

(Zafar, 2013). 109 

The Distinct Element Method (DEM) constitutes the most well-established and widely used 110 

computational technique capable of describing the mechanical behaviour of particles, since it takes 111 

into account the physical and mechanical properties of each individual particle within a system. This 112 

can provide fundamental understanding of powder behaviour, with a characteristic example being 113 

determination of the internal stresses exerted in a powder bed, which typically cannot be determined 114 

experimentally. DEM was first introduced by Cundall (1971) and further developed by Cundall and 115 
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Strack (1979). In recent years, the continuous improvement of computer performance and 116 

development of rigorous models more accurately representing the true contact mechanics between 117 

particles have resulted in a substantial increase in DEM use as a research tool. This has been applied 118 

in the field of powder flow, with Hare and Ghadiri (2013), Pasha et al. (2013) and Höhner et al. (2014) 119 

being examples of researchers that have employed DEM simulations on powder flow studies. 120 

In this work, the ball indentation method is simulated using DEM to determine the constraint factor 121 

throughout a wide range of low and high pre-consolidation stresses, since the consistency of 122 

constraint factor towards low stresses has not been demonstrated elsewhere. Furthermore, the 123 

effects of individual particle properties, which cannot be easily modified experimentally, on the 124 

constraint factor and the flow resistance are investigated, which until now has not been reported 125 

using DEM. 126 

2 DEM simulation setup 127 

EDEM® DEM software provided by DEM Solutions (Edinburgh, UK) is used to simulate the ball 128 

indentation system, which is shown in Fig. 2a. The linear elasto-plastic and adhesive contact model of 129 

Pasha et al. (2014), shown in Fig. 3, is used to represent cohesive powders. This model is a simplified 130 

version of the model by Thornton and Ning (1998), which is less computationally expensive. Also, it 131 

considers aspects of Tomas (2007), Luding (2008) and Walton and Johnson (2009) models. 132 

 133 
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  134 

Fig. 2. Ball indentation in EDEM® (a: simulated ball indentation system, b: stress measurement cell). 135 

 136 

Fig. 3. The Pasha et al. (2015) contact model 137 

 138 

In this model, once the contact is established at an overlap, a, equal to zero (point A), the contact 139 

force immediately reduces to a negative force, representing van der Waals forces, with magnitude 140 

equal to 8/9 times the JKR elastic pull-off force, fce, given by Eq. (4) (Johnson et al., 1971): 141 

௖݂௘  ൌ ͵ʹ  ሺͶሻ 142   ߁כܴߨ

where ȳ is the interface energy and R* is the reduced radius computed from Eq. (5): 143 
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כܴ ൌ ൬ ͳܴଵ ൅ ͳܴଶ൰ିଵ    ሺͷሻ 144 

where R1 and R2 are the radii of the two elements in contact. In case one of the elements in contact 145 

is a wall and not a particle, its radius is considered to be infinite (ь). 146 

Initial elastic deformation is ignored and the deformation of the contact is plastic during loading up 147 

to the maximum loading force reached at point B, with the contact force, Fn, given by Eq. (6): 148 

௡ܨ ൌ ݇௣ܽ െ ͻͅ ௖݂௘   ሺ͸ሻ 149 

where kp is the plastic stiffness. 150 

After amax (point B) is reached, unloading proceeds with elastic stiffness (ke), reaching first an overlap, 151 

ap, at which point the unloading force becomes zero, with the contact force in this part of the graph 152 

given by Eq. (7): 153 

௡ܨ ൌ ݇௘൫ܽ െ ܽ௣൯   ሺ͹ሻ 154 

If reloading occurs, the contact force follows Eq. (7) until point B is reached, beyond which the contact 155 

deforms plastically with stiffness kp. Otherwise, unloading continues until the maximum tensile force, 156 

known as the pull-off force, fcp, is reached at an overlap of acp (point C). Unloading beyond this point 157 

ŝƐ ŐŽǀĞƌŶĞĚ ďǇ Ă ͚ƐƚŝĨĨŶĞƐƐ͛ ĞƋƵĂů ƚŽ -ke until the contact breaks at an overlap of ɲfp (point D), with the 158 

force being 5/9 times the pull-off force, fcp. On the CD line the contact force is calculated from Eq. (8): 159 

௡ܨ ൌ െ݇௘൫ܽ െ ʹܽ௖௣ ൅ ܽ௣൯   ሺͺሻ 160 

The plastic deformation described by this model is reversible. If the two particles come towards each 161 

other again after the contact has been broken, the contact is re-established at an overlap slightly larger 162 

than ɲcp, because the particles relax after contact breakage, with the contact force being 8/9 times 163 

the pull-off force, fcp. The pull-off force, fcp, and the overlap at contact breakage, ɲfp, are determined 164 

based on the interface energy, ȳ, the reduced radius (R*), the elastic stiffness (ke) and the maximum 165 
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contact force, fmax, which is achieved at the maximum overlap, amax (point B). As the degree of plastic 166 

deformation, ɲcp, increases, so does the pull-off force. For computational cost-efficiency purposes, the 167 

ůŝŶĞĂƌŝƐĞĚ ǀĞƌƐŝŽŶ ŽĨ ƚŚĞ ĐŽŶƚĂĐƚ ŵŽĚĞů͛Ɛ ƉƵůů-off force curve is used in this work, where the pull-off 168 

force is given by Eq. (9): 169 

௖݂௣ ൌ െ݇௖௣ܽ௖௣ ൅ ଴݂௣   ሺͻሻ 170 

where kcp is the slope of the linear fit to the pull-off force curve and f0p is the intercept of the fit with 171 

the force axis (see Pasha et al. (2014) for further detail). 172 

For tangential displacement, the tangential stiffness, Ft, is taken to be linear, and is given by Eq. (10): 173 

௧ܨ ൌ ݇௧ܽ௧   ሺͳͲሻ 174 

where kt is the tangential stiffness at the contact and at is the tangential overlap. 175 

The criteria for sample, die and indenter dimensions established by Pasha (2013) and Zafar (2013) are 176 

adhered to in this work. The indenter velocity is set to 0.057 m/s during loading and unloading, which 177 

results in a strain rate of 2 s-1, assuming strain rate is equal to indenter velocity divided by indenter 178 

radius. This corresponds to a dimensionless strain rate of around 0.03 according to Eq. (11) introduced 179 

by Tardos et al. (2003), therefore testing in the slow, frictional regime. 180 

כ௢ߛ ൌ ௢ඨ݀௣݃ߛ    ሺͳͳሻ 181 

where ɶo* is the dimensionless shear strain rate, ɶo is the shear strain rate, dp is the particle diameter 182 

and g is the gravitational acceleration. 183 

Around 68 000 spherical particles of 33.3 % w/w 1 mm, 33.3 % w/w 1.43 mm and 33.3 % w/w 1.86 184 

mm radius were generated inside a cylindrical die of 65 mm radius and 500 mm height, with an initial 185 

downward velocity of 0.5 m/s, and allowed to settle under gravity, so that a powder bed height of 186 

approximately 72 mm is obtained. The particles created were given a size distribution in order to avoid 187 
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ordered packing. Once the particles had settled, which is indicated by their average velocity having 188 

ƌĞĂĐŚĞĚ Ă ŶĞŐůŝŐŝďůĞ ǀĂůƵĞ ;у 0.001 m/s), a cylindrical piston of 65 mm radius was generated above the 189 

powder bed, and driven downwards at a velocity of 0.057 m/s until contact was made, at which point 190 

a servo-control mechanism modified the piston velocity until the target vertical stress was achieved. 191 

The target stress was maintained for a short period (0.2 - 0.3 s), before unloading the piston at the 192 

same velocity until the vertical stress reached zero, and finally removing it from the simulation. 193 

Following this consolidation step, a 28.5 mm radius spherical indenter was generated above the 194 

consolidated powder bed, and driven downwards at the same velocity as the piston until a penetration 195 

depth of approximately 26 mm was obtained. 196 

 197 

 198 

 199 

All the particles simulated were given properties similar to nylon, having a particle density of 1,000 200 

kg/m3, Ă YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ŽĨ Ϯ GPĂ ĂŶĚ Ă PŽŝƐƐŽŶ͛Ɛ ƌĂƚŝŽ ŽĨ Ϭ͘Ϯϱ͘ The properties of both particle-201 

particle and particle-wall interactions that were used for all simulations are shown in Table 1, with the 202 

particle-particle and particle-wall values reported referring to the values given for the interactions 203 

between two mid-sized particles, and a mid-sized particle and the geometries, respectively. 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

Table 1. Properties used in DEM simulations (default values indicated in bold). 213 

Symbol   Property  Particle-Particle  Particle-Wall  

ke (kN/m)   Elastic stiffness 165  165  
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kp (kN/m)   Plastic stiffness 100  100  

kt (kN/m)   Tangential stiffness 165  165  

kcp (kN/m)   Slope of the linear fit to the pull-off 

force of Pasha et al. curve 

1.43  0  

f0 (N)   Contact force at zero overlap  -0.117  0  

f0p (N)   Intercept of the linear fit to the pull-off 

force with the force axis 

-0.0148  0  

        

        

e (-)   Coefficient of restitution 0.3  0.3  

ʅs (-)   Coefficient of static friction 0.1, 0.3, 0.5  0.1  

ʅr (-)   Coefficient of rolling friction 0.01, 0.05, 0.1  0.01  

ȳ (J/m2)   Interface energy 1, 2, 5, 10, 20  0  

ʍy (MPa)   Plastic yield stress 11.25, 22.5, 45  -  

 214 

The default values for the coefficients of restitution, static friction and rolling friction werechosen to 215 

be close to the ones used in the work of Pasha (2013). The rolling friction model used in this work is 216 

the standard rolling friction model of EDEM®. TŚĞ ƌĂĚŝŝ͕ YŽƵŶŐ͛Ɛ ŵŽĚƵůŝ ĂŶĚ PŽŝƐƐŽŶ͛Ɛ ƌĂƚŝŽƐ ŽĨ ƚŚĞ 217 

two particles in contact, along with the interface energy and the plastic yield stress, are direct inputs 218 

for a proprietary MATLAB code provided by Dr. Massih Pasha (The Chemours Company) that was used 219 

to compute ke, kp, kt, kcp, f0 and f0p, which in turn are inputs for the contact model used. Since each 220 

simulation contains a range of particle sizes, the different interface energy between particles of 221 

different radii needs to be considered. In this regard, the interface energy of particles of different size 222 

was scaled following the recommendation of Thakur et al. (2016) using Eq. (12).  223 

௣ଵ߁௣ଶȀ߁ ൌ ሺܴ௣ଶȀܴ௣ଵሻଶ   ሺͳʹሻ 224 

where ȳp1, ȳp2 and Rp1, Rp2, are the values of interface energy and the radii of particle size 1 and particle 225 

size 2, respectively. Subsequently, the stiffness values, f0 and f0p changed with size. 226 

In each simulation the integration time-step, tsim, was computed based on a mass-spring system by Eq. 227 

(13) (Pasha, 2013): 228 

௦௜௠ݐ ൌ ͲǤʹඨ݉௦௠௔௟௟௘௦௧݇௟௔௥௚௘௦௧    ሺͳ͵ሻ 229 
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where msmallest is the mass of the smallest particle in the system and klargest is the largest stiffness in the 230 

system. 231 

In all simulations carried out throughout this work, hardness was calculated using Eq. (1). For the 232 

calculation of the projected area of the impression of the indenter (Eq. (2)), the penetration depth at 233 

maximum indentation load was considered, assuming unloading has negligible effect on the simulated 234 

ŵĂƚĞƌŝĂů͛Ɛ ďĞĚ ƌĞĐŽǀĞƌǇ͘ A 13.5 mm length cubic measurement cell (containing approximately 90 - 590 235 

particles) was created directly beneath and centrally aligned with the indenter, and its position was 236 

fixed relative to the indenter (Fig. 2b). The forces acting on every particle whose centre is within the 237 

measurement cell were calculated, and the ij-component of the stress tensor in the measurement cell, 238 

ʍij, was determined following the approach of Bagi (1996) via Eq. (14): 239 

௜௝ߪ ൌ െ ͳܸ௠ ෍ ෍หݔ௜௖ െ ௜௣หே೎ே೛ݔ ݊௜ܨ௝   ሺͳͶሻ 240 

where Vm is the volume of the measurement cell, Np is the number of particles in the measurement 241 

cell, Nc is the number of contacts around particle p, xi
c, xi

p and ni are the i-components of contact 242 

location, particle centre location and normal vector directed from a particle centroid to its contact, 243 

respectively, and Fj is the j-component of the contact force. The term |xi
c ʹ xip| is approximately equal 244 

to the particle radius, therefore is replaced by particle radius in Eq. (14). 245 

The deviatoric stress, ʏD, corresponding to the shear stress, was calculated using Eq. (15): 246 

߬஽ ൌ ඨሺߪଵ െ ଷሻଶߪ ൅ ሺߪଵ െ ଶሻଶߪ ൅ ሺߪଷ െ ଶሻଶ͸ߪ    ሺͳͷሻ 247 

where ʍ1, ʍ2 and ʍ3, are the major, intermediate and minor principal stresses, respectively, which were 248 

determined from the nine components of the stress tensor. 249 

In order to determine the constraint factor, it is necessary to know the hardness and the unconfined 250 

yield strength. The hardness can be determined in the DEM simulations using Eq. (1), however the 251 
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unconfined yield strength cannot be determined in the ball indentation simulations. As such, an 252 

alternative method is needed. Stavrou (2019) experimentally assessed the flowability of a wide range 253 

of powders in the FT4 shear cell. Fig. 4 shows the shear stresses and unconfined yield strengths of 254 

measurements using a pre-shear stress of 6 kPa and applied stresses of 1, 2, 3, 4 and 5 kPa, for 63 - 75 255 

ʅŵ silanised glass beads (S), alumina CT800SG (A), limestone (L) and maize starch (M). There is a 256 

strong, approximately linear, relationship between the shear stress and the unconfined yield strength, 257 

particularly at the lower applied stress of 1 kPa, which is closer to the failure Mohr circle. Therefore, 258 

the term C͛ is used instead of the constraint factor, by using the deviatoric (shear) stress in place of 259 

the unconfined yield strength, as shown in Eq. (16): 260 

Ԣܥ ൌ ஽ܪ߬    ሺͳ͸ሻ 261 

It is noted that C͛ will be larger than C, since deviatoric stress close to the failure Mohr circle (1 kPa in 262 

Fig. 4) is smaller than unconfined yield strength, however it is proportional to C. Therefore, any trends 263 

observed for C͛ also apply to C. 264 

 265 

 266 
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 267 

Fig. 4. Shear stress vs unconfined yield strength at a pre-shear normal stress of 6 kPa, showing 268 

steady-state and three points of incipient failure (first, third and fifth point). For 63 - 75 ʅŵ silanised 269 

glass beads, alumina CT800SG, limestone and maize starch, the abbreviations S, A, L and M are used 270 

respectively in the legend of this Figure. 271 

 272 

3 Results and discussion 273 

3.1 Effect of consolidation stress 274 

In order to assess the behaviour of the constraint factor as a function of the applied stress, five 275 

different stresses, namely 0.1, 0.5, 1, 5 and 10 kPa, were applied to consolidate the powder bed prior 276 

to indentation. The default values of particle-particle and particle-wall interactions, highlighted in bold 277 

in Table 1, were used for all five simulations. Fig. 5 shows hardness against penetration depth based 278 

on the penetration depth at maximum indentation load, hm, which is non-dimensionalised via Eq. (17) 279 

and presented as dimensionless penetration depth, hd, in the range of 0.2 - 0.9, at all five pre-280 

consolidation stresses. 281 

݄ௗ ൌ ʹ݄௠݀௕    ሺͳ͹ሻ 282 
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Hardness is overestimated at very shallow depths due to the limited number of contacts and therefore 283 

inaccuracy in estimating the projected area of the impression, hence the dimensionless penetration 284 

depth of 0.2 was considered as the minimum depth for data analysis. Hardness is found to increase 285 

with applied stress, and is virtually independent of penetration depth beyond a dimensionless 286 

penetration depth of 0.4, though some fluctuations are present. Greater pre-consolidation stresses 287 

lead to more tightly packed powder beds, hence hardness increases due to an increased packing 288 

fraction, as shown in Fig. 6, where the packing fraction at maximum compression is plotted against 289 

pre-consolidation stress. Also, it can be seen that as the pre-consolidation stress is increased, the 290 

minimum depth required to reach the stable hardness region increases, with the threshold being a 291 

dimensionless penetration depth of about 0.2 and 0.4 in the cases of beds compressed at 0.1 and 10 292 

kPa, respectively. 293 

 294 

 295 

Fig. 5. Hardness against dimensionless penetration depth at five pre-consolidation stresses. 296 

 297 
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 298 

Fig. 6. Packing fraction against pre-consolidation stress. 299 

 300 

Fig. 7 shows the deviatoric stress against dimensionless penetration depth for the five pre-301 

consolidation stresses. There is a general increase in deviatoric stress with pre-consolidation stress, 302 

while it does not exhibit any general increases or decreases with penetration depth. It is noteworthy 303 

that significant fluctuations occur, which are more significant than the fluctuations of hardness. Such 304 

fluctuations are common in DEM simulations, due to the sudden changes in force at individual 305 

contacts and the high sampling frequency. Simulations could be repeated using different initial particle 306 

positions in order to determine average values against depth, and therefore reduce the inherent 307 

fluctuations, however the data presented in this work is taken from individual simulations of each 308 

condition. 309 
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 310 

Fig. 7. Deviatoric stress against dimensionless penetration depth at five pre-consolidation stresses. 311 

 312 

Using Eq. (16), C͛ was quantified, and is plotted as a function of dimensionless penetration depth at 313 

all five pre-consolidation stresses in Fig. 8. C͛ is found to fluctuate around a fixed value for a given pre-314 

consolidation stress, being virtually constant and independent of the pre-consolidation stress applied. 315 

IŶ ĂĚĚŝƚŝŽŶ ƚŽ ƚŚŝƐ͕ ƚŚĞ ĂǀĞƌĂŐĞ C͛ was calculated through the dimensionless penetration depth range 316 

of 0.4 - 0.8, and is presented against pre-consolidation stress in Fig. 9, with error bars showing the 317 

standard deviation throughout this penetration depth range. Fig. 9 confirms that the average C͛ 318 

remains relatively constant throughout the range of pre-consolidation stresses. EǆƉĞƌŝŵĞŶƚĂůůǇ ŝƚ ŝƐŶ͛ƚ 319 

possible to compute C at such low stresses (ч 1 kPa), due to the inability of shear cells to give reliable 320 

and repeatable results in this stress range, however constraint factor has been shown experimentally 321 

to be independent of stress above this low stress range (Wang et. al, 2008; Zafar, 2013). The fact that 322 

constraint factor remains constant at low stresses means that it is possible to determine constraint 323 

factor from hardness and unconfined yield strength measurements at moderate to high stresses by 324 

performing ball indentation and shear cell experiments, respectively, and use the same value of 325 
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constraint factor in order to infer the unconfined yield strength of powders from ball indentation 326 

measurements at low stresses. 327 

 328 

 329 

Fig. 8. C͛ against dimensionless penetration depth at five pre-consolidation stresses. 330 

 331 
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 332 

Fig. 9. Average C͛ in the depth range of 0.4 - 0.8 against pre-consolidation stress. 333 

 334 

3.2 Effect of interface energy 335 

In this series of simulations, powder beds of five different values of interparticle interface energy, 336 

namely 1, 2, 5, 10 and 20 J/m2, were consolidated at 1 kPa and penetrated by the indenter. These high 337 

values of interface energy were chosen due to the large particle size, and correspond to Cohesion 338 

numbers, Coh, of 0.023 - 3.45 computed from Eq. (18) (Alizadeh et al., 2018), which are equivalent to 339 

interface energies of 9 × 10-3 to 0.18 mJ/m2 ĨŽƌ ϭϬϬ ʅŵ ƉĂƌƚŝĐůĞƐ͘  340 

݄݋ܥ ൌ ͳ݃ߩ ሺ ȞହכܧమܴכఴሻଵȀଷ   ሺͳͺሻ 341 

where ʌ is the envelope density of the particles and E* is the reduced Young͛Ɛ modulus given by Eq. 342 

(19): 343 
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where E1 and E2, and ʆ1 and ʆ2 ĂƌĞ ƚŚĞ YŽƵŶŐ͛Ɛ ŵŽĚƵůŝ ĂŶĚ PŽŝƐƐŽŶ͛Ɛ ƌĂƚŝŽƐ ŽĨ ƚŚĞ ƚǁŽ ĞůĞŵĞŶƚƐ in 346 

contact, respectively. 347 

All five simulations were carried out with the default values given in Table 1 (indicated in bold), except 348 

for the interparticle interface energy. In Fig. 10 hardness is shown against dimensionless penetration 349 

depth for all five values of interface energy. In the case of the two powder beds with the lowest values 350 

of interface energy, hardness increases continually with depth. This may indicate that for these 351 

relatively cohesionless powders the bed is consolidated during the indentation test, though it is not 352 

clear why this is the case. The fact that no stable hardness region is found for these cohesionless 353 

powders renders the measurement unreliable. For the middle value of interparticle interface energy, 354 

hardness is constant across the whole range of penetration depths, while for the two higher values of 355 

interface energy it exhibits the same behaviour beyond a dimensionless penetration depth of around 356 

0.25. An increased interface energy results in greater cohesion, and therefore greater resistance to 357 

plastic deformation. The deviatoric stress variation with depth is shown for each interface energy 358 

value in Fig. 11. Although notable fluctuations exist, there is an increase of deviatoric stress with 359 

increasing interface energy. Qualitatively similar findings have been reported in the work of Pasha 360 

(2013). 361 

 362 
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 363 

Fig. 10. Hardness against dimensionless penetration depth for five different values of interface 364 

energy. 365 

 366 

Fig. 11. Deviatoric stress against dimensionless penetration depth for five different values of 367 

interface energy. 368 
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 369 

Fig. 12 shows C͛ against dimensionless penetration depth, where for a given value of interface energy 370 

C͛ fluctuates around a fixed value beyond a dimensionless penetration depth of 0.4. There is a general 371 

increase of C͛ with interface energy, as the interface energy is increased from 2 to 5 J/m2. This 372 

behaviour is seen more clearly in Fig. 13, where the average value of C͛ in the dimensionless 373 

penetration depth range of 0.4 - 0.8 is presented against interface energy. An increase in interface 374 

energy from 1 to 2 J/m2 leads to a slight increase of C͛, while a further increase to 5 J/m2 results in a 375 

substantial increase in C͛, from around 2.5 to around 3.8. It should be noted that 5 J/m2 is the lowest 376 

value of interface energy applied for which the powder bed does not appear to be consolidated during 377 

indentation. A further increase of interface energy from 5 to 20 J/m2 leads to no significant change in 378 

the value of C͛. This suggests that for powder beds that are sufficiently cohesive to be tested by ball 379 

indentation, interface energy does not influence the constraint factor. 380 

 381 

Fig. 12. C͛ against dimensionless penetration depth for five different values of interface energy. 382 

 383 
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 384 

Fig. 13. Average C͛ in the depth range of 0.4 - 0.8 against interface energy. 385 

 386 

3.3 Effect of static friction 387 

Three simulations of ball indentation at 1 kPa pre-consolidation stress were run using different values 388 

of the coefficient of static friction for interparticle interactions. All the other simulation parameters 389 

were given the default values from Table 1. Fig. 14 shows the hardness variation with penetration 390 

depth for the different values of static friction coefficient. It can be seen that ʅs values of 0.1 and 0.3 391 

lead to a constant hardness throughout the range of dimensionless penetration depths presented, 392 

whereas when the interparticle friction is further increased to 0.5 the hardness is relatively constant 393 

in the depth range of 0.3 - 0.5, but then increases notably at a depth of around 0.5, from which point 394 

onwards it remains relatively constant. In contrast to this, it can be seen in Fig. 15 that the deviatoric 395 

stress fluctuates around a relatively constant value until a dimensionless penetration depth of 0.8, 396 

beyond which it increases for all coefficient of static friction values. Also, increasing the static friction 397 

coefficient from 0.1 to 0.3 leads to an increase of deviatoric stress, whilst increasing ʅs to 0.5 leads to 398 

no further increase. It is expected that increased friction will result in a greater internal resistance to 399 
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shear deformation, but after a certain level of static friction (ʅs = 0.3 in this caseͿ͕ CŽƵůŽŵď͛Ɛ ƐůŝĚŝŶŐ 400 

ĐƌŝƚĞƌŝŽŶ ŝƐ ŶŽƚ ŵĞƚ ďǇ ƚŚĞ ƉĂƌƚŝĐůĞ͛Ɛ ƚĂŶŐĞŶƚŝĂů ĨŽƌĐĞ in certain contacts, and as such contact sliding 401 

does not take place. For these non-sliding contacts, a further increase in coefficient of static friction 402 

does not lead to any increase in the shear stress, since these contacts remain in a non-sliding 403 

condition. This finding agrees with the work of Gröger and Katterfeld (2006) and Pasha (2013), who 404 

also showed a limiting ʅs beyond which the shear stress does not increase. 405 

 406 

Fig. 14. Hardness against dimensionless penetration depth for three different values of coefficient of 407 

static friction. 408 
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 409 

Fig. 15. Deviatoric stress against dimensionless penetration depth for three different values of 410 

coefficient of static friction. 411 

 412 

Fig. 16 shows C͛ against dimensionless penetration depth for all three values of ʅs. As can be seen, C͛ 413 

is relatively constant regardless of the applied penetration depth, but it is not clear whether static 414 

friction has any influence on C͛, since it fluctuates around a similar value for all values of the coefficient 415 

of static friction. Fig. 17 shows the average C͛ in the dimensionless penetration depth range of 0.2 - 416 

0.8, which displays a slight reduction with an increase of the coefficient of static friction. However, 417 

since the error bars are large, this result is considered to be statistically insignificant. 418 

 419 
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 420 

Fig. 16. C͛ against dimensionless penetration depth for three different values of coefficient of static 421 

friction. 422 

 423 

Fig. 17. Average C͛ in the depth range of 0.2 - 0.8 against coefficient of static friction. 424 
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3.4 Effect of rolling friction 426 

Ball indentation simulations at 1 kPa pre-consolidation stress were carried out for three different 427 

values of coefficient of interparticle rolling friction, whilst the default values from Table 1 were used 428 

for the other simulation parameters. Fig. 18 shows that an increase in ʅr from 0.01 to 0.05 leads to an 429 

increased hardness, whilst further increase to a value of 0.1 leads to an almost negligible reduction of 430 

hardness. In all cases, hardness remains constant beyond a dimensionless penetration depth of 0.4. 431 

Fig. 19 shows that the deviatoric stress exhibits the same behaviour against penetration depth as 432 

hardness, whilst it shows that increasing the rolling friction coefficient from 0.01 to 0.05 results in a 433 

slight increase of the shear stress, but further increasing it to 0.1 results in a clear reduction of shear 434 

stress. This reduction in shear stress could be due to a decrease in packing fraction, which translates 435 

to a smaller force required for shearing. 436 

 437 

Fig. 18. Hardness against dimensionless penetration depth for three different values of coefficient of 438 

rolling friction. 439 
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 440 

Fig. 19. Deviatoric stress against dimensionless penetration depth for three different values of 441 

coefficient of rolling friction. 442 

 443 

For all values of coefficient of rolling friction, C͛ is observed to fluctuate around a fixed value 444 

throughout the range of applied penetration depths, with the fluctuations being larger for ʅr = 0.1 (Fig. 445 

20). The average C͛ value in the range of 0.4 - 0.8 dimensionless penetration depth is found to be 446 

independent of the coefficient of rolling friction as it is increased from 0.01 to 0.05, and then to 447 

substantially increase from around 3.5 to around 4.5 with a further increase of ʅr to a value of 0.1 (Fig. 448 

21). 449 

 450 
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 451 

Fig. 20. C͛ against dimensionless penetration depth for three different values of coefficient of rolling 452 

friction. 453 

 454 

Fig. 21. Average C͛ in the depth range of 0.4 - 0.8 against coefficient of rolling friction. 455 
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3.5 Effect of plastic yield stress 457 

Ball indentation simulations at 1 kPa pre-consolidation stress were carried out for three different 458 

values of plastic yield stress (ʍy), while all other parameters were given the default values from Table 459 

1. The hardness variation with penetration depth is shown for the different values of ʍy in Fig. 22. Fig. 460 

22 shows that as the plastic yield stress is increased the hardness decreases, which can be explained 461 

as follows. Since a higher plastic yield stress means that a greater stress needs to be overcome in order 462 

for plastic deformation to initiate, then the number of particles which plastically deform, and 463 

therefore create cohesive contacts, decreases. Therefore, since fewer cohesive contacts exist for 464 

higher plastic yield stress, then the hardness of the bed is lower.  In addition to this, hardness is seen 465 

to remain relatively constant with depth for all values of ʍy. In contrast to hardness, the exerted shear 466 

stresses do not seem to be influenced by the plastic yield stress, as indicated in Fig. 23. 467 

 468 

0

2

4

6

8

10

12

14

16

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
a

rd
n

e
ss

 (
k

P
a

)

Dimensionless Penetration Depth

p.y.s.=45 MPa

p.y.s.=22.5 MPa

p.y.s.=11.25 MPa



31 

 

Fig. 22. Hardness against dimensionless penetration depth for three different values of plastic yield 469 

stress. 470 

 471 

Fig. 23. Deviatoric stress against dimensionless penetration depth for three different values of 472 

plastic yield stress. 473 

 474 

C͛ is plotted against dimensionless penetration depth in Fig. 24, and is shown to be relatively constant 475 

across the whole range of penetration depths, regardless of the plastic yield stress. Furthermore, in 476 

Fig. 25 the average C͛ in the range of 0.2 - 0.8 dimensionless penetration depth is depicted against 477 

plastic yield stress, and is found to decrease with the increase of plastic yield stress, though noticeable 478 

error is present. 479 

 480 
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 481 

Fig. 24. C͛ against dimensionless penetration depth for three different values of plastic yield stress. 482 

 483 

Fig. 25. Average C͛ in the depth range of 0.2 - 0.8 against plastic yield stress. 484 
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In both DEM and experiments, fluctuations always arise due to constant rearrangement and 486 

deformation of the particle contacts. Throughout all the simulations using the range of properties 487 

defined in Table 1, the fluctuations in C͛, which are predominantly caused by fluctuations in deviatoric 488 

stress (e.g. Fig. 23), are of similar magnitude. Comparing to the experimental results of Zafar (2013) it 489 

can be seen that the force fluctuations are greater in the DEM simulations. The increased fluctuations 490 

in DEM simulations, as compared to experiments, are attributed to the sampling frequency in DEM, 491 

100 Hz in this work, whereas most experimental equipment only provide data at much lower 492 

frequencies. Furthermore, real materials usually behave in a more ductile manner than represented 493 

in DEM, and hence reduced fluctuations would be expected. 494 

4 Conclusions 495 

The ball indentation method was simulated using DEM. Hardness and localised shear stresses directly 496 

beneath the indenter were calculated and the effective constraint factor was determined. Ball 497 

indentation simulations at different pre-consolidation stresses in the range of 0.1 - 10 kPa showed 498 

that both hardness and the shear stress increased with an increase in pre-consolidation stress, whilst 499 

C͛ was found to be independent of the applied pre-consolidation stress. This finding is in agreement 500 

with trends previously determined experimentally by Wang et al. (2008) and Zafar (2013), however 501 

these results demonstrate that this remains the case down to very low stresses, beyond the range 502 

that could be determined experimentally. 503 

In addition to this, the influence of a number of particle properties on the exerted stresses and the 504 

constraint factor was studied by independently varying each property, in an effort to reach the aim of 505 

defining constraint factor as a function of these properties. An increase in interparticle interface 506 

energy was shown to lead to an increase in hardness and deviatoric stress, and an increase in the 507 

effective constraint factor for relatively cohesionless particles, however the effective constraint factor 508 

was found to be independent of interface energy for cohesive particles. An increase of interparticle 509 

static friction coefficient resulted in an increase of hardness and shear stress, up to a certain point (ʅs 510 
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= 0.3), after which they remained relatively constant, whilst an increased interparticle rolling friction 511 

coefficient from 0.01 to 0.05 led to increases in both hardness and deviatoric stress, with a further 512 

increase causing them to reduce. The effective constraint factor steadily decreased with increased 513 

static friction, although the error bars are noticeable, while it significantly increased when ʅr was 514 

increased from 0.05 to 0.1. Lastly, an increase in the plastic yield stress led to a decrease in hardness, 515 

though did not influence the deviatoric stress, hence the effective constraint factor was reduced. 516 

Further work is required to fully account for the full range of particle properties which may influence 517 

constraint factor. One particular challenge is to determine a suitable shape descriptor to fully account 518 

for shape effects. 519 
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