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Abstract

Event monitoring is an essential application of Smart City platforms. Real-time monitoring of gully and drainage blockage is

an important part of flood monitoring applications. Building viable IoT sensors for detecting blockage is a complex task due

to the limitations of deploying such sensors in situ. Image classification with deep learning is a potential alternative solution.

However, there are no image datasets of gullies and drainages. We were faced with such challenges as part of developing a flood

monitoring application in a European Union-funded project. To address these issues, we propose a novel image classification

approach based on deep learning with an IoT-enabled camera to monitor gullies and drainages. This approach utilises deep

learning to develop an effective image classification model to classify blockage images into different class labels based on the

severity. In order to handle the complexity of video-based images, and subsequent poor classification accuracy of the model,

we have carried out experiments with the removal of image edges by applying image cropping. The process of cropping in

our proposed experimentation is aimed to concentrate only on the regions of interest within images, hence leaving out some

proportion of image edges. An image dataset from crowd-sourced publicly accessible images has been curated to train and test

the proposed model. For validation, model accuracies were compared considering model with and without image cropping.

The cropping-based image classification showed improvement in the classification accuracy. This paper outlines the lessons

from our experimentation that have a wider impact on many similar use cases involving IoT-based cameras as part of smart

city event monitoring platforms.
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1 Introduction

Image classification methods group images into predefined

class labels after analysing image features. Deep convolu-

tional neural networks (DCNN), with several layers and a

large number of nodes in each layer, have been extensively

used for image classification [1–5]. In a deep-learning-based

model, the performance of the model is dependent upon the

number of training datasets used to train the classification

model [6]. To achieve higher classification accuracy, image

classification with deep learning requires to be trained with a

large number of images [7, 8]. However, in recent years, the

use of DCNN has been growing in many application areas

where a significant number of training datasets are not always

available [2]. Deep learning-based image classifications have

shown higher accuracy in several application areas such as

extracting characteristic features to distinguish objects and

classify images into different class labels. Also, applying
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DCNN, higher accuracy has been achieved for recognising

objects in an image [9].

With access to affordable GPU resources, the use of deep

learning has shown to outperform some of the conventional

methods of image classification in many cases [1]. Despite

the promising results on applying deep learning techniques

for image classification, significant challenges exist in its

application domains with limited access to training datasets.

Without sufficient training data, the accuracy of the learning

phase of the classification model can suffer from the problem

of underfitting, ultimately leading to a degraded classifica-

tion model [5]. Apart from the limited availability of datasets

for training, the wider context and the number and types of

distinct objects within images play a crucial role in image

classification [2, 7, 8]. Often, the same image can be classi-

fied into different classes based on the context and objects.

Besides this, the context for different classes can be quite dif-

ferent which adds additional complexity in classifying into

multi-labels [10].

We encountered the issue of limited image datasets and

identification of context in the use case of flood monitoring as

part of an EU Interreg project SCORE1 (Smart Cities + Open

Data Re-use). The project involves nine cities, and three uni-

versities to explore the use of IoT and big data technologies

for solving challenges facing cities in water, environment,

and mobility themes. As a part of the SCORE project, our

research focuses on addressing challenges relevant to water

theme, in particular, flood monitoring. The level of block-

age of gullies and drainage systems is one of the important

parameters for local authorities and city councils to monitor

in real time. IoT sensors for detecting blocked gullies and

drainage are notoriously hard to build because of the limi-

tations of deploying them in situ. Hence, as a replacement,

we implemented a DCNN classifier for image classification

with a low number of image dataset collected from Google

images, YouTube videos and other sources to classify block-

age incidents. Whilst our longer term ambition is to develop

in situ IoT sensors that can automatically detect drain block-

ages as soon as they occur, this paper focuses on the scalable

approach to classifying images by exploring the regions of

interest from images achieved by applying image cropping at

data pre-processing stages. We applied edge removal using

image cropping to localise the region of interest in images

before images are utilised for the training and validation

phases. The experimental results showed that image classifi-

cation using image cropping at data pre-processing stage has

higher accuracy in comparison to the classification accuracy

of image classification without cropping. We also compared

the performance of the proposed approach with support vec-

tor machine (SVM) classifiers. The comparative analysis

1 https://northsearegion.eu/score/.

showed that the proposed classification approach has higher

accuracy than the SVM classifiers.

The major contribution of this paper is in applying

deep learning-based image classifier to monitor drain and

gully blockages using image capturing devices. Use of deep

learning-based image classification in smart cities, with flood

monitoring as a use case, shows that this proposed approach

has high potential as an alternative approach to the complex

sensor-based real-time monitoring systems. This is because

the installation of physical sensor devices in some geograph-

ical areas is not feasible. Use of camera imagery and deep

learning-based image classifier for the detection of drain and

gully blockage using a reusable dataset is a unique contribu-

tion of this work. The second contribution of this work comes

from the use of image cropping at data pre-processing stage

to reduce any form of noise present at the edges of the image.

The image cropping techniques are advantageous as it pro-

vides a more focused region of interest within an image to

improve feature extraction from images. Since our source of

images is from a camera focused and pointing towards a gully

or drainage, this approach has resulted in increased accu-

racy in our experimentation. The concept of image cropping

at data pre-processing stage as in our work offers a useful

comparison for other applications where the characteristic

features from images are also focused in the central region.

The third contribution of this work is the image dataset that

we have systematically curated from scratch since none exists

in the public domain so far.

The rest of the paper is organised as follows: Sect. 2

reviews image classification approaches. Section 3 describes

the concept of deep learning, image cropping and image clas-

sification, whereas Sect. 4 describes the experimental design,

data generation and result analysis. We conclude the paper

and describe future work in Sect. 5.

2 Literature review

Several methods have been applied for image classification

tasks such as k-nearest neighbours, maximum likelihood

minimum distance, decision tree, and logistic regression [10].

Most of these methods suffer from the “curse of dimensional-

ity” [11] as there occur a number of dimensions within image

dataset, making dimensionality reduction an essential task in

image analysis. In general, the reduction of the dimension of

image dataset is performed at the initial stages to improve the

classification performance. Reduction in dimensionality to fit

the input image data into small-scale feature extraction has

been explored using techniques such as principal component

analysis (PCA) [11, 12], pairwise constraint discriminant

analysis, and non-negative sparse divergence (PCDA–NSD)

[13]. Non-negative matrix factorization (NMF) [14], trans-

formation [15] and band selection [16] have also been applied
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for feature extraction. In addition to these, the spectral-spatial

feature-based classification (SSFC) framework [17] has been

applied as well for feature extraction. The SSFC framework

used both dimensionality reduction and deep learning tech-

niques for spectral and spatial feature extraction.

Image classification has been performed using algorithms

such as decision tree (DT) [18], random forest (RF) [19,

20], K-nearest neighbour (KNN) [21, 22] and support vec-

tor machine (SVM) [10, 23, 24]. DT algorithms used rules

to interpret the appropriate class of the input datasets [18]

whereas RF algorithms were used for non-normally dis-

tributed and high-dimensional data and were also more stable

than DT algorithms [25]. K-nearest neighbour (KNN) clas-

sifiers had also been used for image classification. A KNN

classifier uses characteristic features and similarity between

the features to classify images into k class labels. The SVM

method has been reported to have promising results in pattern

recognition for supervised classification [23]. SVMs were

initially defined as binary classifiers, and their use for multi-

label classifications had been more challenging. SVM has

been used for image classification as a supervised classifier

[10]. In SVM, an optimal hyperplane is generated to sepa-

rate the classes using the training dataset that lies at the edges

and centroid. For smaller datasets, SVM is one of the highly

suitable classifiers as support vectors can identify an optimal

separating hyperplane [26].

Over many years, two common approaches (pixel-based

and object-based analysis) have been implemented for image

classification problems [27]. It was found that object-

oriented classification had higher accuracy in comparison to

pixel-based classification [28] when a supervised maximum

likelihood classification algorithm was applied for object-

oriented classification and region-growing multi-resolution

cropping with nearest neighbour classifier was applied for

pixel-based image classification. However, in general, image

classification accuracy between pixel-based and object-based

classification approaches was statistically not significant

when the same machine learning algorithms were used [29].

In other words, there were no reported advantages of favour-

ing one approach over another when the same algorithm had

been implemented.

Other alternative image classification approaches had

also been used. Multi-object detection approaches had been

applied to classify images which constitute multiple objects

representing multiple scenarios [30, 31]. To classify multi-

object images [30], one classifier had been trained for each

object to be analysed and a score based on probability

was provided to test images. These classified outputs were

combined with the probabilities of the individual classes

to classify images. Traditionally, pixel-based classification

methods have been used for image analysis in many applica-

tions while the integration of the concept of object-based

analysis into the image classification process showed an

increment in the accuracy [27, 32]. This implies that to reach

higher precision in image classification, the integration of

additional information within an image needs to be analysed.

In another approach to detect multiple objects, a number

of trained detectors were applied to determine characteristic

visual features from images [31]. Also, semantic representa-

tion is also utilised for multi-object image classification. In

such an approach, objects rather than features had been used

as attributes to characterise images [33].

The accuracy of image classification tasks depends on the

volume of data available for training and validation. Some

models [7, 8] have used thousands of images to train the

classification model. While typical supervised models need

large volumes of training image dataset to learn their model

parameters, specific problem-based image classifiers have

been trained with only a limited number of sample images.

Deep learning models have had reasonably higher accuracy

for image classification, where large image dataset was not

available for training [4, 34]. Simple image classification

tasks have also been observed with relatively higher accu-

racy using smaller datasets.

In recent years, intelligent system approaches such as

neural network models have also been used to improve per-

formance on image classification tasks [1, 2, 35, 36]. Deep

belief network (DBN) has been used for spectral-spatial

classification of hyperspectral images by applying a hybrid

framework with PCA hierarchical learning-based feature

extraction, and logistic regression. The DBN model has used

a single-layer restricted Boltzmann machine and multilayer

deep network-based models to learn the shallow and deep

features of hyperspectral data, correspondingly [36]. In the

DBN model, linear regression was applied to classify images

based on the extracted features. Residual learning framework

was used for training of networks [37] to increase the training

efficiency by explicitly fitting stacked layers to the desired

underlying mapping instead of direct mapping. DBN with

restricted Boltzmann machine (RBM) was applied [38] for

image classification by extracting features of images.

Over the years, deep convolutional neural network

(DCNN) with multiple layers of neurons has been commonly

used for image classification. Each neuron in DCNN extracts

a different level of non-linear characteristic features from an

image. DCNN was applied to classify image data using large

volumes (1.2 million high-resolution images) of training data

in imageNet LSVRC-2010 contest into 1000 different classes

[8]. Not only with large image dataset but DCNN has also

been applied with smaller numbers (few thousands) of train-

ing image data for classification [1]. DCNN has been found

to be a useful tool for image classification tasks.

A wide range of image classification approaches has been

applied in diverse applications where images were classified

using either pixel-based analysis or object-based analysis. It

has been found that image classification models were mostly
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Fig. 1 Building blocks of image

classifier
Image 

Cropping
Define DCNN 

Model
Train Model Validate Model Test Model

being implemented on static image classification. However,

in real-time scenarios such as monitoring flooding where the

camera acts as a sensor, the classification needs to be applied

on real-time streamed images. A number of alternative meth-

ods have been implemented for image classification, but in

recent years deep learning approaches have been widely used

for image classification. It has also been observed that the

classification of an image using deep learning gives higher

accuracy, which is highly desirable for multi-label, real-time

image classification tasks.

3 Deep learning and image cropping: our
approach

We propose a deep learning-based image classifier where

images are categorised into classified images. These unclas-

sified images can be classified into either “fully blocked” or

“partially blocked” or “no blockage” classes. The building

blocks of image classifier are shown in Fig. 1. To start with,

image cropping is applied at the data pre-processing stage

where images are cropped with 10% edge removal from all

sides. At the second stage, DCNN parameters such as type of

activation functions, number of classes, batch size, error rate,

number of iterations are defined. Once the models’ param-

eters are defined, the model is trained and validated with

a training image dataset. After training and validation, the

model has been tested with test images. For the improve-

ment in classification accuracy, the model has been trained

and validated iteratively by adjusting the model’s parameters

such as error rate, batch size, and the number of iterations.

3.1 Image cropping

Image cropping gives the freedom to pick the selected region

of interest within the image for the analysis. Image cropping

allows to explore target objects or concentrate on a single

target region [27]. The process of image cropping into a tar-

geted region is one way to explore the contextual features in

terms of area of interest of an image. We analysed that most

of the images in our image dataset have non-essential objects

such as vehicles, human, and houses. With a low number of

image dataset for training, finding a distinct context within

an image is challenging, and may lead to poor performance

in terms of classification accuracy.

It is commonly observed that while recording an event

or capturing images of an incident, such as drainage block-

age through a camera, it is typical to have the centre of the

image in focus [39]. This implies the objects and other ele-

ments towards the edges, as we move away from the centre,

are less significant to analyse the context of an image. Thus,

centrally focused image analysis to build an image classifier

can be an effective method for image classification. In our

image classification approach, we have applied image crop-

ping technique to locate the central area of an image that

potentially reduces the impact of objects at the edges of the

image.

Traditionally, visual attention to analysing an image can

be either region based or object based [40]. The region-based

approach directs the attention to the areas of interest, whereas

the object-based approach directs the attention to an object

or set of objects. In our model, image cropping confines the

regions of interest leaving out non-essential objects of images

at the edges. Figure 2a is an example of a drain blockage

image in its originally captured form whereas Fig. 2b is the

same image after applying image cropping. In the resulting

image, with 10% pixels cropping applied, it is observed that

there has been no alteration in the focused region. Analysing

these two images before and after image cropping, it is visibly

clear that prominence of some of the non-essential objects

or context such as houses and parked van in the image is

minimised. We applied pixel-wise cropping to crop image

edges. Doing so, one of the challenges is to find the appro-

priate cropping proportion. We have implemented different

proportions ranging from 5 to 20% cropping of edge’s pixels

from all four sides to find the best-suited cropping propor-

tions. The deep learning-based image classifier model has

been trained with a dataset of cropped images for all these

cases. The accuracies and losses are compared for each case

to find the most feasible cropping proportion.

3.2 Region of interest

In general, humans indirectly apply structural knowledge to

analyse an image during manual classification processes by

considering contextual information along with the informa-

tion about the shape of objects and spatial relations between

image regions [32]. Objects, environment and region of inter-

est within an image are critical for feature extraction and

hence the classification task. Region of interest is the section

within the image which possesses the characteristic features

of the image that define the class of image. The region of

interest within an image varies with the application areas,

image contents, image orientation and classification goals.

Considering the supervised monitoring, it has been observed

that the edges of images more often do not contain more
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Fig. 2 a Image without

cropping. b Image after

cropping

characteristic features. Therefore, minimising the impact of

edges will enhance the extraction of characteristic features

from an image. The removal of edges from image concen-

trates the feature extraction within the region of interest. In

this work, we focused on the feature extraction from an image

by creating a centrally focused region of interest. The region

of interest within an image has been obtained by removing

pixels from the edges of the captured or monitored image

during the data pre-processing stage.

4 Experimental design

4.1 Dataset

The quality of training data, a sufficient number of repre-

sentative images, and diversity in image types representing

different classes are the key elements of developing an effec-

tive image classifier. Accessing such a dataset to build an

image classifier for flood monitoring has been a challeng-

ing task since there has been no dedicated and publically

available image source for the domain under investigation.

To overcome this, we have chosen public platforms such as

Google Images and YouTube to collect representative images

involving drains and gullies. The motivation for using images

from these data sources is as these images have been uploaded

or made available by the public which could be anticipated

in realistic situations.

Multiple keywords such as “drainage blockage”, “gully

blockage”, “drainage blockage and flooding”, “sewage

blockage”, “drainage overflow” were applied to search

images and videos. It was observed that the majority of search

results came up with only a small number of related images

which is one of the limitations of gathering image from pub-

lic platforms. In addition, the public platforms images are

noisy, distorted and blurred. In general, public platform data

are not completely related to a single area. So, after every

search, we applied manual cleaning to keep only the relevant

images, i.e. images which had gully/drainage and blockage

representing three classes we have in our experimentation.

Table 1 Image dataset breakdown

Class Training Validation Test

Fully blocked 230 100 60

Partially blocked 260 100 60

No blockage 230 100 60

The same process also removed noisy, distorted, blurred

and out-of-context images. This process was applied dur-

ing all the searches to generate the required dataset. Overall,

nearly 3000 images were manually inspected with the afore-

mentioned process. After further inspection and removing

irrelevant images, 1200 images were prepared for the DCNN

model.

The next step was labelling of sample images for the train-

ing dataset by five experts in drainage division from the City

of Bradford Metropolitan District Council. These experts are

involved in the day-to-day monitoring of gullies as part of the

council and highways. The selection of classification cat-

egories was according to the need of the application, and

the utility of these classes to represent the severity of the

problem as experts see it as a standard in their work. Ran-

domly selected images from the dataset were shown to the

experts and were asked to provide binary and multi-label on

each image. In a binary labelling, “blocked” and “no block-

age” class labels were considered, whereas in multi-class

labelling, images were classified into three class labels: “fully

blocked”, “partially blocked” and “no blockage”. We applied

the majority poll to decide the class label of the image when

there were conflicts in experts’ opinion. Furthermore, with

analysis of other image classification model designed with

higher accuracy, the dataset is grouped into training data, val-

idation data and test data in proportion 60%, 25% and 15%,

respectively, as shown in Table 1.

4.2 Experimentation and results

A number of algorithms have been applied for image clas-

sification task in different domains. We have applied a deep

learning algorithm to build an image classifier for our flood
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Table 2 Simulation setup parameters

Class mode Categorical

Loss Categorical_crossentropy

Optimizer Optimizer_rmsprop(lr � 2e−5)

Steps per epoch 100

Epochs 100

Batch size 10

Validation steps 100

CNN network VGG Net

monitoring application. In addition to applying deep learning

algorithm for model training, validation and testing, we have

additionally applied image cropping to enhance classifica-

tion accuracy. In this section, we present the parameters and

design of our proposed image classification model. Table 2

shows the simulations set up for the training of our image

classification model. These parameters are set after applying

multiple ranges or experimenting various parameters such

as batch sizes ranging from 5 to 15, steps per epochs and

validation steps ranging from 50 to 100 during training and

validation phases along with different optimiser values. The

accuracies on classifying test images are analysed on each

alternative setup. During the analysis, we observed that set-

ting the higher batch size had lower accuracy on classification

in comparison with the lower batch size. Therefore, a lower

batch size has been set for this model. Among the number of

alternative setups, the simulation parameters with the highest

accuracy on classification are selected for our classification

model.

4.2.1 VGG net

VGG net consists of convolutional layers with a uniform

architecture. This network is defined using 3×3 convolu-

tional layers stacked on top of each other in increasing depth.

VGG Net is used for the feature extraction of images. The net-

work has convolution kernel, max-pooling, flatten and dense

layers. The detailed design of the VGG with the number of

layers, number of nodes and activation functions of our deep

learning model is summarised in Table 3.

4.3 Result analysis

The image classifier has been trained, validated and tested

for the image dataset with and without carrying out image

cropping. The process of image cropping is carried out by

varying image edge cropping proportions. While applying

image cropping, the major question has been “what propor-

tion of image edges can be cropped?” There is no accepted

standard in terms of deciding the right proportion of image

cropping without losing image’s characteristic features. To

Table 3 Model summary

Conv2D input (None, 150,150,3)

output (None, 148,148,64)

Ac�va�on input (None, 148,148,64)

output (None, 148,148,64)

MaxPolling2D input (None, 148,148,64)

output (None, 74,74,64)

Conv2D input (None, 74,74,64)

output (None, 72,72,32)

Ac�va�on input (None, 72,72,32)

output (None, 72,72,32)

MaxPolling2D input (None, 72,72,32)

output (None, 36,36,32)

Conv2D input (None, 36,36,32)

output (None, 34,34,64)

Ac�va�on input (None, 34,34,64)

output (None, 34,34,64)

MaxPolling2D input (None, 34,34,64)

output (None, 17,17,64)

Fla�en input (None, 17,17,64)

output (None, 18496)

Dense input (None, 18496)

output (None,64)

Dense input (None, 64)

output (None,3)

Ac�va�on input (None,3)

output (None,3)

decide the right proportion, we implemented a different range

of image cropping (5%, 10%, 15% and 20% image pixels)

to decide the best proportion value. For the evaluation of the

best cropping proportion, accuracy and loss values for train-

ing and validation are recorded for each case, as shown in

plots from Figs. 3, 4, 5 and 6. The accuracy and loss val-
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Fig. 3 Loss and accuracy plots

on model training and validation

with 5% cropping

Fig. 4 Loss and accuracy plots

on model training and validation

with 10% cropping

Fig. 5 Loss and accuracy plots

on model training and validation

with 15% cropping

Fig. 6 Loss and accuracy plots

on model training and validation

with 20% cropping

ues of the different cropping range (as listed in Table 4) are

compared to select the best cropping condition.

Accuracies and loss plots during the training of the model

with different image cropping range are analysed to choose

the best possible image cropping proportion. With 5% of
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Table 4 Loss and accuracy

values at different cropping

values after 100 epochs

Parameter Training accuracy Validation accuracy Training loss Validation loss

5% cropping 0.54 0.54 0.930 1.010

10% cropping 0.76 0.65 0.4 0.8

15% cropping 0.35 0.45 1.085 1.09

20% cropping 0.4 0.4 1.088 1.086

Table 5 Performance comparison between binary and categorical class

mode classification

Model/parameter Accuracy (training) Accuracy (test) Loss

Deep leaning with

cropping-binary

0.74 0.68 1.37

Deep leaning with

cropping-

categorical

0.76 0.66 0.4

edge cropping, it is observed that accuracy values for both

the training and validation of the model are almost uniform

throughout the 100 epochs. There has not been any notice-

able improvement in accuracy levels. The loss value has

oscillatory nature for training and uniform values for the val-

idation. In 10% of edge cropping, accuracy values for both

the training and validation of the model are changed over

the 100 epochs. There has been a significant improvement in

the training accuracy of the model. The loss value has been

increased but becomes stable only after 30 epochs. By apply-

ing 15% of edge cropping, the accuracy and loss values for

both the training and validation of the model do not improve

noticeably over the 100 epochs. While applying 20% of edge

cropping, we noticed that the accuracy and loss values for

both the training and validation of the model have improved

over the 100 epochs but the values are in the higher range in

comparison with the other cropping ranges. The loss values

stay nearly constant over all the epochs.

To choose the best option among these cropping options,

accuracy and loss values are listed as shown in Table 4. Table

data reflect the readings of the corresponding parameters after

100 epochs. Among the four options, it is observed from both

the tabular values and trends on accuracy and loss plots that

the 10% cropping has better accuracy and loss values. In

other words, considering higher values of accuracies (0.76

and 0.65 for training and validation), lower value of loss (0.4

for training and 0.8 for validation) and curve trends over 100

epochs, 10% cropping achieves the best results.

It has also been observed from this result analysis that

increasing edge cropping from 5 to 10% results in increased

noise removal. Considering the context of an image, this leads

to increased accuracy. On the other hand, increasing edge

removal from 15 to 20% has shown a decrement in perfor-

mance in terms of lower accuracy and higher losses. For the

image classification of gully and drainage images, 10% edge

image cropping is selected as it shows the best performance

among the alternatives.

4.3.1 Binary classification vs categorical classification

Analysing the gully and drainage images, it has been

observed that there are many images that do not fully

qualify for either of the classifications (‘blocked’ or ‘not

blocked’). These images better fit in the third condition of

blockage called “partially blocked”. Hence, the binary clas-

sification mode with “blocked” and “no blockage” classes

does not reflect the real-world monitoring conditions. There-

fore, there is a need for a multi-class mode classifier that

also allows classifying gullies and drainage images into

“partially blocked” classification. Arguably, considering the

small number of training dataset, there are more numbers of

images in each class in binary mode than that of categor-

ical mode. So, we have evaluated binary classification and

categorical classification with the experimental results by

comparing the classifier’s accuracies performance of both

cases. The experiment results, listed in Table 5, showed that

the accuracies of categorical class mode are nearly the same

as of the binary class mode classifier. These results demon-

strate that there is not much difference in the binary and

categorical mode of classification from the perspective of

classification accuracy. However, from the performance eval-

uation and the fact that the categorical class mode reflects

closer classifications condition of real-world monitoring

of such images, categorical classification mode is a better

choice.

4.3.2 Image classification with cropping

and without cropping

The classifier has been trained and tested for both the

cases: images with cropping and images without cropping.

We evaluate the performance of our deep learning model

for both datasets. From the plots, as shown in Fig. 7a, b,

we observed that there are improvements in the training

and validation accuracy and loss for the proposed image

cropping-based DCNN image classification. The accuracy

levels are increased by 21% and 25% for training and valida-

tion for image cropping-based DCNN image classification,

respectively, as listed in Table 6. There is a significant

improvement in the loss value from 0.9 (model without crop-
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Fig. 7 a Accuracy and loss plot on training for model training and validation with images without cropping. b Accuracy and loss plot on training

for model training and validation with images with cropping

Table 6 Result summaries of

training, validation and test of

the model

Parameter Accuracy Loss

Without cropping With cropping Without cropping With cropping

Training 0.55 0.76 0.9 0.4

Validation 0.45 0.7 1.1 0.85

Test 0.6 0.66

Fig. 8 Correctly classified

examples

Fully Blocked         Partially Blocked         No Blockage 

ping) to 0.4 (model with cropping) during training. Also,

there is an improvement in loss value for the validation of

the model. These improvements are decisive on classifying

images into their corresponding classes. Since lower the loss

value, better the classification model, image cropping-based

classifier showed better performance.

The model has been tested with randomly sampled images.

Figures 8 and 9 show some of the examples of the test results

on the classification of images using our model. Images in

Fig. 8 are the example of correctly classified images whereas

images in Fig. 9 are the examples where images are not cor-

rectly classified. Form these results, it is observed that the

model correctly classified those images which have charac-

teristic features closer to their corresponding classes as it can

be observed visually.

4.3.3 Comparison with another classification approach

The major focus of the work reported in this paper is to

present a novel use of image classification in identifying

gully and drainage blockages for flooding events in a flood

monitoring application. In doing so, we have validated our

classifier with another baseline classifier considering limita-

tions associated with the small training dataset. Following

the implementation of our deep learning-based image classi-

fier for gully and drainage images, the classifier performance

is compared with SVM classifier performance on the same

image dataset. The experimental results, as listed in Table 7,

showed that our proposed model has better accuracy for both

training and test results. Our model outperforms the SVM

classifier with the increments of 11% accuracy for train-
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Partial Blocked     No Blockage 

(Classified as Fully Blocked)    (Classified as partial blocked) 

Fig. 9 Incorrectly classified examples

Table 7 Performance comparison between deep leaning with cropping

image classification and SVM classification

Model/parameter Accuracy (training) Accuracy (test)

SVM 0.67 0.62

Deep leaning with cropping 0.76 0.66

ing dataset and 4% accuracy increments for the test dataset.

These results validated that the deep learning-based image

classifier can be used for the purpose of classifying gully

images.

5 Conclusions and future work

In our research, as part of a flood monitoring use case, we

applied image cropping-based DCNN model for image clas-

sification tasks that classify gully and drainage images into

either of three blockage classes based on severity: “fully

blocked”, “partially blocked” or “no blockage”. At the data

pre-processing phase, we applied pixel-wise 10% edge crop-

ping from all four sides of the image to localise the centrally

focused region of interest within images. The reduced image

size dataset, after applying image cropping, was used for the

training and validation of the model. We performed a compar-

ative analysis between categorical and binary classification

mode classification performances. The comparison analysis

showed that our proposed multi-label image classification

model has similar accuracy to that of binary classifica-

tion. However, considering the multi-category classification

in real-time monitoring scenarios as in our use case, the

multi-label classification is highly effective to indicate the

severity of blockages. Our model has been trained with a

small number of publicly available drain blockage images

and videos since no publicly available image dataset exists

for this use case domain. The experimental results indi-

cate that image classification using image cropping applied

at the data pre-processing stage has higher accuracy in

comparison to classification without cropping. This classi-

fication model also demonstrated an increased accuracy in

comparison with an SVM classifier. This proposed image

classification approach for real-time monitoring and iden-

tification of flooding events based on gully and drainage

blockages has enormous potential as an alternative to either

the sensor-based systems or the traditional manual visual

inspection, both options being highly expensive and often

infeasible.

This work has been performed with a small number of the

crowd-sourced image dataset. As part of the future work, a

finer analysis of the level of blockage will be explored with

a larger dataset diverse in context, environment, and types

of objects within images. With such dataset, the accuracy of

the classification can be increased which will further enhance

the scope of this work to real-time incident monitoring. Also,

with the availability of more diverse images, this work can

further be analysed with more than three labels of classifica-

tion. Apart from these aspects, the context and identification

of types of objects within the image will additionally help to

make a more accurate model with multi-label image classifi-

cation. The improved classification model will be utilised in

an IoT-enabled camera and will act as a real-time monitoring

sensor as a part of our future work.
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