

This is a repository copy of *Structural transformation of sulfidized zerovalent iron and its impact on long-term reactivity*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/157638/

Version: Accepted Version

Article:

Mangayayam, MC, Perez, JPH, Dideriksen, K et al. (4 more authors) (2019) Structural transformation of sulfidized zerovalent iron and its impact on long-term reactivity. Environmental Science: Nano, 6 (11). pp. 3422-3430. ISSN 2051-8153

https://doi.org/10.1039/c9en00876d

© The Royal Society of Chemistry 2019. This is an author produced version of an article published in Environmental Science: Nano. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Structural transformation of sulfidized zerovalent iron and its impact on long-term
2	reactivity [†]
3	Marco C. Mangayayam ^{a*} , Jeffrey Paulo H. Perez ^{b,c} , Knud Dideriksen ^d , Helen Freeman ^{b,e} ,
4	Nicolas Bovet ^{a,f} , Liane G. Benning ^{b,c} , Dominique J. Tobler ^{a*}
5	^a Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100
6	Copenhagen, Denmark
7	^b GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
8	^c Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
9	^d Geological Survey of Denmark & Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
10	^e School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
11	^f Danish Hydrocarbon Research and Technology Centre (DHRTC), Danish Technical University, Kongens Lyngby,
12	Denmark
13	*Corresponding authors: <u>mc.marco@chem.ku.dk and dominique.tobler@chem.ku.dk</u>
14	⁺ Electronic supplementary information (ESI) available.
15	
16	Environmental significance
17	Sulfidized nanoscale zerovalent iron (S-nZVI) has been shown to efficiently degrade contaminants for in-situ
18	groundwater remediation applications. Yet, less is known about the S-nZVI core-shell structure and how this
19	heterogenous architecture transforms once exposed to groundwater conditions. This is important as it gives
20	insights into the stability of S-nZVI under relevant environmental settings thereby elucidating the key surface
21	processes that permit S-nZVI to sustain reactivity over prolonged periods.

Table of Contents Art

25 Abstract

26 Sulfidized nanoscale zerovalent iron (S-nZVI), synthesized via two-step using Na₂S, is an emerging in-27 situ material for groundwater remediation, composed of a metallic iron core and iron sulfide shell. 28 The shell efficiently transfers electrons from the core to its surface for contaminant reduction, while 29 simultaneously protecting the core from anoxic corrosion. However, what controls the S-nZVI 30 longevity is poorly understood. In this study, we characterized at high resolution the structure of S-31 nZVI and assessed its reactivity with trichloroethene (TCE) with increasing aging. Our data of freshly synthesized material show that the S-nZVI shell primarily consists of ~5-nm-thick nanocrystalline 32 mackinawite (FeS_m) with structural imperfections and heterogeneous crystal orientations. As S-nZVI 33 34 was aged in anoxic artificial groundwater for up to 180 days, the shell remained mostly intact, while 35 the iron core significantly corroded, resulting in hollow particle structures. We interpret that FeSm defects caused the deterioration of the core. Between 0 and 120 days of aging, rate constants for TCE 36 37 reduction decreased by only ~41%. This shows that FeS_m remained accessible for TCE reduction; but 38 as the core became depleted, the reduction rate decreased. Re-spiking experiments with TCE oxidized 39 \sim 1/4 of the core while the FeS_m structure was unaffected. This indicates that the FeS_m does not oxidize 40 during TCE reduction, but merely transfers the electron from the core. Overall, these results

41 demonstrate that S-nZVI is able to sustain its reactivity over extended periods due to the persistence

42 of FeS_m against oxidation, while its defects control the extent of core corrosion.

43 Keywords: sulfidation, mackinawite, ZVI, remediation, groundwater, nanoparticles, corrosion

44

45 1. Introduction

A large number of studies show that sulfidation of nanoscale zerovalent iron (S-nZVI) with sodium 46 47 sulfide (Na₂S) enhances the removal of a range of groundwater contaminants compared to nonsulfidized nanoscale ZVI (nZVI).¹⁻⁵ This enhanced reactivity depends on the used S/Fe ratio during 48 49 sulfidation, which seems to control the thickness and structure of the iron sulfide shell that forms around the metallic iron (Fe⁰) core.^{3,4} The shell is suggested to have conductive properties, allowing 50 for electron transfer from the Fe⁰ core to the S-nZVI surface.^{1,3,4} Synergistically, the shell limits 51 oxidation of the Fe⁰ core by water (i.e., anaerobic corrosion), thus decreasing loss of electrons 52 compared to nZVI,⁶ which in turn gives S-nZVI higher longevity in groundwater settings. 53

54 Despite the extensive literature on S-nZVI, surprisingly, we still know very little about the nature of this iron sulfide shell and how it enables such efficient contaminant reduction, particularly after 55 prolonged exposure to anoxic waters and contaminants. Some initial characterization using high-56 resolution X-ray diffraction (XRD) has shown that the shell consists of poorly crystalline mackinawite 57 58 (FeS_m) with an expanded basal plane spacing.² The chemical composition of this FeS_m shell structure 59 has been confirmed by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDXS),^{4,7} and its low reactivity with water has been demonstrated by low H₂ formation 60 rates.^{4,6} In terms of S-nZVI longevity, Fan et al.⁶ observed that when S-nZVI was aged for 21 days in 61 deoxygenated, deionized water, its reactivity with indigo carmine decreased by only ~5-10%, with little 62 indication of Fe⁰ corrosion during these 21 days. When S-nZVI is aged for longer time spans, however, 63 the Fe⁰ core becomes substantially corroded and S-nZVI reactivity decreases more profoundly as 64

65 demonstrated by Xu et al.⁵ Specifically, they reported a ~45% decrease in Fe⁰ content and ~50 % 66 decrease in trichloroethene reduction rate for S-nZVI aged for 60 days in deoxygenated, deionized water. Similarly, Fan et al.² showed that S-nZVI aged with pertechnetate (TcO₄⁻) for 2 months led to 67 hollow S-nZVI particles with depleted Fe cores. To compare, nZVI, the current state of the art reductant 68 particle in groundwater remediation, exhibited substantial corrosion and complete loss in TCE 69 reactivity after only 1-2 weeks of aging in anoxic waters.^{5,8,9} While these studies clearly demonstrated 70 71 the higher longevity of S-nZVI compared to nZVI upon exposure to anoxic waters, little has been done to assess the progressive structural changes of S-nZVI upon aging. As such we have limited insight into 72 Fe⁰ and/or FeS_m corrosion processes on S-nZVI surfaces nor do we know the parameters that 73 74 accelerate or limit them. This understanding is critical to make accurate predictions about S-nZVI 75 corrosion behavior and ultimately its long-term fate in groundwater settings.

76 To close this gap, we have performed high-resolution structural and compositional characterization of 77 freshly synthesized S-nZVI and S-nZVI aged in anoxic artificial groundwater for up to 180 days using 78 high resolution electron microscopy, high energy X-ray scattering and spectroscopic techniques. These 79 observations were complemented with reactivity data, by determining TCE reduction rates for 80 progressively aged S-nZVI. In addition, S-nZVI structural and reactivity changes were further assessed 81 in TCE re-spiking experiments, to mimic S-nZVI fate in a contaminated subsurface. Finally, these data 82 were used to build a conceptual model of S-nZVI redox sites and their stability and fate upon exposure 83 to groundwaters, in order to predict S-nZVI performance in field scale applications.

84

85 2. Materials and Methods

All syntheses, aging, and sample preparations for characterization were done inside an anoxic, vinylwalled glove box (95% $N_2/5\%H_2$; Coy laboratories) using reagent grade chemicals (supplementary information, SI, Text S1) and deoxygenated, deionized water (MilliQ, resistivity > 18 Ω cm).

90 2.1 S-nZVI Synthesis

Sulfidized nanoscale zero valent iron (S-nZVI) synthesis was based on a modified procedure from
Rajajayavel et al.⁴ in which nZVI was produced by reduction of FeCl₂ using sodium borohydride. The,
nZVI was reacted with a Na₂S solution in acetate-buffer (pH ~6.0±0.1) for 3 hours. The resulting S-nZVI
particles were washed thrice with 96% ethanol, vacuum filtered, and then used for characterization,
aging, and reactivity studies. Additional synthesis details are given in SI, Text S2.

96

97 2.2 S-nZVI aging experiments

98 The freshly synthesized S-nZVI particles were aged for up to 180 days (mass loading of 1 g L^{-1}) in 150 99 mL anoxic artificial groundwater (water composition given in SI, Table S1), prepared using a previously established procedure.¹⁰ The reactors were capped with Viton rubber stoppers and kept inside the 100 101 anoxic glovebox without shaking throughout the aging process. Between 0 and 180 days, aliquots were 102 removed to isolate the aged particles for structural and compositional characterization (SI, Text S3). 103 To assess the reactivity of these progressively aged S-nZVI, identical S-nZVI groundwater aging reactors 104 were set up as explained above. After specific aging times, a reactor was sacrificed and spiked with 105 110 μ M TCE to initiate the reaction. Once the TCE was added, the decrease in TCE concentration was monitored over the following 50 hours using gas chromatography - mass spectroscopy (GC-MS) to 106 107 derive reaction rates. Specific details are given in SI, Text S4, including set-up of controls and GC-MS 108 measurement procedures.

109 In a separate reactor, freshly synthesized S-nZVI (mass loading of 1 g L^{-1} in 150 mL anoxic artificial 110 groundwater) was exposed to 7 sequential 110 μ M TCE amendments over a total of 11 days. Re-111 spiking of TCE occurred once the former injected TCE concentration was reduced to < 5%. TCE removal was regularly monitored using GC-MS and rates for each re-spike were derived using identical
 protocols as explained for TCE reactivity experiments (SI, Text S4).

114

115 2.3 S-nZVI characterization

116 The bulk structure of S-nZVI was determined with synchrotron-based X-ray diffraction (XRD) and pair distribution function (PDF) analyses at beamline 11-ID-B (58 keV, λ = 0.2114 Å) at the Advanced Photon 117 Source, Argonne National Laboratory (USA).^{8,11} The S-nZVI surface composition was determined with 118 X-ray photoelectron spectroscopy (XPS) using a Kratos Axis Ultra^{DLD} with a monochromated Al Ka X-119 120 ray source (hv = 1486.6 eV, power = 150 W), pass energy of 20 eV and analysis spot size of about 700 121 μm x 300 μm. The size, morphology, and spatial chemical composition of S-nZVI were characterized 122 by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The TEM images, 123 selected area diffraction patterns (SAED), as well as electron dispersive X-ray (EDX) spectra and 124 elemental maps were acquired using an FEI tecnai G20 F20 X-Twin FEG S/TEM operated at 200 kV and 125 equipped with a Gatan imaging filter (GIF) TridiemTM, a Ficshione high angle annular dark field (HAADF) 126 detector and an EDAX X-ray analyzer. SEM images were acquired using FEI Quanta 3D FEG SEM at 7 127 kV and 8.7 pA using a secondary electron detector. Full details of sample handling, data measurement 128 and analyses are given in SI, Text S3.

129

130 **3. Results and Discussions**

131 3.1 Structure of initial S-nZVI

132 In synchrotron XRD patterns (I(Q)), unaged S-nZVI exhibits broad peaks at 3.09 Å⁻¹ (2.03 Å) and 5.35 Å⁻¹ 133 ¹ (1.17 Å), which correspond to the (110) and (211) planes of nanocrystalline α -Fe (i.e., Fe⁰ core, Figure 134 1a).¹² An additional smaller peak exists at ~1.19 Å⁻¹ (5.28 Å), matching the (001) reflection of 135 mackinawite (FeS_m) but with a ~5% expanded basal plane spacing, relative to a nanocrystalline

mackinawite (Figure 1a),^{13,14} as previously observed for these materials using XRD.² The PDFs were 136 extracted from the I(Q) to determine the interatomic distances (Figure 1b). Overall, the PDF of S-nZVI 137 resembles the pattern for the non-sulfidized ZVI, where the peaks for the first (r = 2.48 Å) and second 138 (r = 2.56 Å) shell Fe⁰-Fe⁰ are broadened and cannot be readily distinguished,⁸ indicative of local 139 disorder in the structure of the Fe⁰ core. Oscillations decay quickly with increasing r-value, showing 140 that long range order was limited. To isolate the PDF of the shell, a differential PDF (d-PDF) was 141 extracted by subtracting the PDF of nZVI from that of S-nZVI (Figure 1c).^{8,15,16} The d-PDF exhibits peaks 142 at positions matching a synthetic mackinawite (Figure 1c).^{17–19} This implies that while its interlayer was 143 expanded slightly (i.e., ~5% increased basal spacing), its local atomic configuration within the layers 144 maintained the mackinawite-like structure.^{20,21} 145

146

Figure 1. (a) I(Q) and (b) PDFs of sulfidized and non-sulfidized zero-valent iron (S-nZVI and nZVI). (c) d-PDF (= $PDF_{S-nZVI} - PDF_{nZVI}$) showing pair correlations that match a mackinawite-like phase. The PDF of synthetic pure mackinawite is given as reference.

TEM images of freshly prepared S-nZVI show spherical particles of high contrast about 50-150 nm in
size (Figure 2a). The majority of the particles were coated by a shell of less electron dense material
about ~5 nm thick (Figure 2b). EDX maps reveal that the shell material contained both Fe and S (Figure

155 2c) and selected area electron diffraction (SAED) only shows reflections for Fe⁰ and FeS_m (SI, Figure S2). At high resolution, parts of the shell show lattice fringes with d-spacings of 5.4 ± 0.2 Å (Figure 2d), 156 similar to the expanded (001) FeS_m reflection in I(Q) (Figure 1a).²² Moreover, the FeS_m crystals were 157 often curving around the Fe⁰ core, and oriented to expose its (001) surface to the bulk solution (SI, 158 159 Figure S3). Other parts of the shell exhibit FeS_m layers with no apparent structural coherence (SI, Figure 160 S3), an indication of defects in the shell. In addition, the shell in places showed a sheet-like morphology 161 and different crystal orientations (Figure 2e), with a d-spacing value of 3.1±0.1 Å appearing in 2D fast 162 Fourier transforms (Figure 2e, inset). This distance is consistent with FeS_m (011) plane,²³ which may 163 indicate that the observed area are FeS_m sheets emplaced perpendicularly with respect to the electron 164 beam. This variability in crystal orientation along with the observed lattice mismatches implied a 165 degree of heterogeneity in the FeS_m shell architecture.

In summary, our characterization reveals that the shell of freshly synthesized S-nZVI was composed of a ~5 nm thick FeS_m layer with expanded interlayers surrounding the Fe⁰ core. While the FeS_m shell surface dominantly exposes its (001) surface, parts of the FeS_m shell exhibit structural discontinuities, caused by defects and variability in crystal orientations. This shell architecture is distinct from that of sulfidized ZVI particles produced via the one-pot dithionite synthesis, which was observed to be substantially thicker, more flakey and dominated by amorphous ferrous hydroxide (white rust) with some amorphous FeS close to the Fe⁰ core interface.^{3,8,24}

173

Figure 2. TEM and EDX analyses of freshly synthesized S-nZVI. (a) S-nZVI aggregate showing particle size distribution and areas where high-resolution analyses were performed. b) S-nZVI particle showing electron dense core surrounded by ~5 nm thick, less electron dense shells. (c) EDX map (top) and line intensity profile (bottom) normalized to unity of an isolated particle confirm the Fe-rich core, surrounded by a shell enriched in both sulfur and iron.^{7,24} (d) Lattice fringes in the shells have dspacings consistent with the I(Q) peak for FeS (001).²² (e) Isolated area showing FeS_m crystal orientation leading to lattice fringes with d-spacing consistent with (011).

182

183 3.2 S-nZVI aged in anoxic artificial groundwater

The continued exposure of S-nZVI to anoxic artificial groundwater led to progressive structural and compositional changes as shown by XRD, PDF and XPS (Figure 3a-d). In XRD patterns, peaks from the Fe⁰ core decrease in intensity with material age while peaks associated with carbonate green rust (GR_{cO3}) and white rust (WR) increase (Figure 3a). Consistent with XRD, PDFs show a progressive

increase in Fe^{II/III}-O (~2.11 Å) and Fe^{II}-Fe^{II/III} (~3.19 Å) distances stemming from the formation of 188 corrosion products (i.e., GR_{c03}, WR, Figure 3b), while peak intensity for Fe⁰-Fe⁰ distance decrease (e.g., 189 190 2.53 Å, Figure 3b). Using these relative changes in PDF peak intensities, we have approximated the decrease in Fe⁰ core material with aging (details of results in SI, Table S3 and Figure S4; methods in 191 Text S3). Over the first 10 days of aging, no significant changes in Fe⁰-Fe⁰ PDF peak heights are 192 observed, suggesting that Fe⁰ oxidation (i.e., corrosion) was negligible. From day 10 to 60, the Fe⁰-Fe⁰ 193 194 peak progressively decreased, indicating the decrease in molar fraction of Fe⁰ to about 50% of its initial 195 amount due to corrosion from aging. From day 60 to 120, only slight additional corrosion occurred. In 196 comparison, corrosion of nZVI started instantaneously and occurred substantially faster, with almost 80% of the Fe⁰ oxidized after 60 days (SI, Figure S5, S6). 197

198 These progressive structural changes are also evident in the observed surface compositional changes 199 based on our XPS data. The Fe 2p_{3/2} spectra (Figure 3c) show a progressive decrease in Fe²⁺-S/Fe⁰ species (peak at binding energy, BE = \sim 706 eV), while Fe²⁺-O species (broad peak at BE = \sim 710 eV) 200 increase with aging (SI, Table S4). Similarly, peaks for S^{2-} species (BE = ~161 eV) in the S 2p spectra 201 gradually decrease (Figure 3d), while the intensity for SO_4^{2-} species (BE = ~169 eV) progressively 202 203 increases (SI, Table S5). Peak deconvolution of the S 2p spectra shows that the amount of transient 204 sulfur species (i.e., S_n^{2-} , S(0), S_2^{2-}) was fairly constant with aging time (i.e., consistently below 12% of total surface sulfur, SI, Table S5). This suggests that transient sulfur species did not evolve from S²⁻ 205 206 oxidation by aging. These species may have likely formed from oxidation due to quick exposure (< 1 207 minute) of the samples to ambient atmosphere during transfer to the XPS sample entry chamber.²⁵ Given that no systematic changes in transient sulfur species were measured, the observed increase in 208 209 SO_4^{2-} is most likely linked to SO_4^2 adsorption from bulk solution (0.25 mM SO_4^{2-} initially present) by the corrosion products that progressively formed upon aging (SI, Table S6).²⁶ Similarly, the observed 210 progressive decrease in S²⁻ peak intensity is caused by the gradual increase in voluminous corrosion 211 212 products, which systematically decreased the amount of S-nZVI that were detected within the area of 213 analysis (i.e., S species; Table S6).

Figure 3. (a) XRD patterns of S-nZVI aged in artificial groundwater showing the gradual formation of secondary carbonate green rust (GR_{cO3}) and white rust (WR). (b) PDF patterns show changes in the local coordination of S-nZVI upon aging for 120 days. A PDF of green rust is also shown to ease identification of the developing Fe^{II/III}-O and Fe^{II}-Fe^{II/III} distances. XPS spectra of (c) Fe 2p_{3/2} and (d) S 2p, showing changes in surface Fe and S species as a function of aging time.

It is predicted that with continued S-nZVI aging, Fe^o corrosion processes would certainly proceed but at much lower rates seeing that little structural changes occurred between 60 and 120 days. To visualize the effects of continued aging, TEM imaging and EDX elemental mapping were performed on S-nZVI particles after 180 days of aging (Figure 4). Compared to the initial material (Figure 2a), the

226 aged particles show "hollow" cores, seemingly devoid of electron dense material (i.e., little contrast 227 remained), while the shell (i.e., interface) appears intact with some parts having laminar or sheet-like 228 structures (Figure 4a, b). EDX mapping and normalized line intensity profiles of the "hollow" particles show low Fe signals for the core but high Fe and S signals for the shell (Figure 4c). At higher resolution, 229 230 particle cores exhibit variations in contrast (Figure 4b, d), suggesting that material loss occurred 231 heterogeneously within a single particle, and also differed among particles. Closer inspection of the 232 shell show that the (001) mackinawite-like plane are still present, even after 180 days aging (d = 233 5.2±0.2 Å, Figure 4e). Similarly, the SAED pattern of the aged particles exhibit patterns that may be 234 indexed to a mackinawite-like phase with extended d-spacings (SI, Figure S7). In agreement with XRD, 235 PDF and XPS, both SEM and TEM analyses suggest that GR_{CO3} is the main corrosion product (Figure 5). 236 In addition, SEM and TEM images show that GR_{CO3} formed micron-sized, hexagonal platelets that seem 237 spatially separated from S-nZVI particles.

238

Figure 4. TEM and EDX analyses of S-nZVI particles that were aged for 180 days in anoxic artificial groundwater. (a) An aggregate of aged S-nZVI particles. (b) A particle showing a "hollow" core surrounded by an intact mackinawite-like shell. (c) EDX map (top) and the line intensity profiles of Fe and S normalized to unity (bottom). (d) High resolution TEM image of a particle with substantial core material and a ~5 nm shell with fringes. (e) High resolution TEM image of an isolated shell structure showing lattice fringes (d = 5.2 ± 0.2 , inset) that match the basal-spacing of the (001) FeS_m features observed for unaged S-nZVI (Figure 2d). This is further confirmed by the FFT of the same image.

247

248

Figure 5. SEM and TEM analyses of 180 day aged S-nZVI. (a) SEM image shows large, hexagonal crystal platelets characteristic of carbonate green rust (GR_{CO3}) and spherical S-nZVI particles (inset). (b) Low resolution TEM image of GR_{CO3} platelets surrounded by aged S-nZVI (c) HR-TEM of GR_{CO3} showing area where (d) FFT image was obtained. The FFT pattern matches (102) plane of GR_{CO3} with d-spacing = 2.6 Å.²⁷

In terms of TCE reactivity, all aged S-nZVI fully reduced the initially added 110 μM TCE within 50 hours
(SI, Figure S8), but aging time affected the reduction rate. Within the first 10 days of aging, the rate
constant (k_{obs}) minimally changed (~0.17 h⁻¹, SI, Table S7). It then decreased from 0.16 to 0.12 h⁻¹ for
S-nZVI aged from 20 to 60 days, before stabilizing around a value of 0.10 h⁻¹ after 120 days of aging.
Despite this decline in S-nZVI reduction rate over 4 months, the material is still highly reactive;
particularly when comparing to nZVI aging results in our previous study, where TCE reduction became
negligible after 7 days aging of nZVI under identical conditions.⁸

262

263 3.3 S-nZVI aged by re-spiking with TCE

Over 11 days, 1 gL⁻¹ S-nZVI suspended in the groundwater matrix was exposed to 7 TCE re-spikes (each 264 110 µM). The TCE was continuously and rapidly degraded by S-nZVI, with rates progressively 265 266 decreasing with each re-spike (SI, Figure S9, Table S8). XRD and PDF characterization of the solids at 267 the end of the 7th TCE re-spike showed the presence of GR_{co3} and magnetite (M) as corrosion products 268 (SI, Figure S10, S12), and a clear depletion in Fe core material by ~21% (based on PDF peak analyses), 269 which matched well with the theoretical electron consumption of ~25% (based on added S-nZVI and TCE and assuming an average consumption of 6 electrons to fully reduce one TCE molecule).²⁸ These 270 271 data further show that the FeS_m shell was still apparent (i.e., peak at 1.19 A⁻¹, SI, Figure S10) and that 272 no other iron sulfide phases could be detected. Overall, the observed changes in structure and 273 reactivity upon TCE re-spiking are very similar to aging in anoxic groundwater alone (section 3.2). 274 However, these changes occurred at different rates. For the groundwater aging experiments, little if 275 any structural changes were observed over the first 10 days; whereas in a similar time span, changes 276 were observed in the re-spiking experiments, indicating that TCE was the main oxidant and responsible 277 for Fe⁰ oxidation in the re-spiking experiment (Figure S11). Lastly, despite the presence of a stronger 278 oxidant in these experiments (i.e., TCE), synchrotron-based XRD indicates that the shell structure was 279 unaffected, with no signs of shell oxidation and/or re-crystallization.

281 3.4 Conceptual model of S-nZVI redox sites and their fate with aging

282 Overall, our experiments in simulated anoxic groundwater showed that:

i) Core corrosion of S-nZVI occurred slower in the absence of a strong oxidant (e.g., TCE, Figure 3b, S4)
in comparison to reactions where TCE is continuously present (Figure S11), allowing it to conserve its
electron pool (i.e., reactivity) for prolonged periods. In comparison, nZVI exhibited rapid core
corrosion by anoxic artificial groundwater (Figure S6), as well as almost complete reactivity loss after
only 7 days, as shown in our previous study.⁸

ii) There is no indication that the FeS_m shell underwent re-crystallization and/or oxidation, whether
exposed to TCE or anoxic artificial groundwater. This is in contrast to previous S-nZVI aging studies,
which argued that the instability of the shell controls reactivity loss.⁶ Our results, however, are more
consistent with another study on pure mackinawite systems, where the authors demonstrated the
stability of the mackinawite structure even after 106 days of aging in a highly reducing and alkaline
aqueous environment.²⁹

294 iii) The observed decrease in TCE k_{obs} with aging time seemed to follow the depletion in the Fe⁰ core 295 volume (Figure 6), suggesting that the cause of the decrease in TCE reactivity likely stems from the 296 loss in Fe⁰. Previous studies have proposed that shell re-crystallization and precipitation of corrosion products on the surface cause the decrease in k_{obs} .^{6,30,31} Our characterization showed that the 297 298 corrosion products formed external to S-nZVI particles aged in anoxic artificial groundwater (Figure 5). 299 These observations may indicate that kobs values are likely also influenced by the Fe⁰ core content and 300 the specific corrosion pathways, which in turn control type and location of secondary mineral formation. 301

302

303

Figure 6. The decrease in S-nZVI Fe⁰ content (in red) and TCE reduction rate constant, k_{obs} , (in green) as a function of aging time. The error bars represent the standard error of the fitted k_{obs} from linear regression calculations (Fig. S8).

308 To create a conceptual model of the active redox sites on S-nZVI surfaces that is consistent with our 309 observations, let us first consider the case of aging in groundwater (without TCE present). The formation of hollow S-nZVI particles, with depleted Fe⁰ cores and intact shell structures, has been 310 311 observed once before for S-nZVI (two-step synthesis, Na₂S precursor) when it was reacted with pertechnetate (TcO₄⁻) for 2 months.² The authors linked this transformation to nanoscale Kirkendall 312 effect based on similarities to structures observed for Cu⁰ nanoparticles transformed under sulfate 313 314 reducing conditions.^{2,32} However, such a process seems unlikely in our aging experiments because 315 solid state diffusion via Kirkendall effect typically requires elevated temperatures since the reaction is kinetically limited at ambient temperatures.³³ If not by solid state diffusion, the generated Fe²⁺ must 316 317 have been able to transfer into bulk solution by some other mechanisms. This is because we do not see any clear evidence for localized corrosion product formation inside these aged "hollow" S-nZVI 318 particles. Close examination of the FeS_m shell showed numerous shell defects and plane boundaries, 319 320 which indicate that the shell exhibits "weak" points, where diffusion processes could occur more 321 easily, i.e., allowing for water and ions to access the Fe⁰ core. Indeed, such a scenario is supported by

our groundwater aging results, where little corrosion occurred in the first 10 days. However, after prolonged incubation (~10-20 days), which gave time for local dissolution and/or diffusion processes at these weak points, water started to interact with Fe⁰ sites, leading to continued Fe⁰ oxidation (i.e., core depletion) from then onwards. In such a scenario, it is expected however, that these weak points should be quickly passivated by surface precipitates due to the concomitant occurrence of anodic (Eq. 1) and cathodic reaction (Eq. 2) that favors Fe(OH)₂ (white rust) formation (Eq. 3):

$$328 \qquad Fe^0 \to Fe^{2+} + 2e^- (anodic sites) \tag{1}$$

$$329 \qquad 2e^- + 2H_2 0 \rightarrow \uparrow H_2 + 2OH^- (cathodic sites) \tag{2}$$

$$330 \qquad Fe^0 + 2H_2O \rightarrow Fe(OH)_2 \downarrow + H_2(g) \uparrow \tag{3}$$

331 There is no clear indication of surface passivation in SEM and TEM images and we see continued high TCE reactivity by the aged S-nZVI. Thus, for continued Fe⁰ core depletion without substantial internal 332 333 mineral formation, we propose that the anodic and cathodic sites must have been locally separated 334 on the S-nZVI surface. The separation allows for localized acidification and dissolution at anodic sites; 335 and localized basic conditions and H_2 evolution at the cathodic sites. At the anodic sites, the 336 acidification caused for the eventual opening of the shell weak points, which led to more favorable Fe²⁺ diffusion conditions towards the bulk solution. We presumed that the Fe²⁺ diffusion during aging 337 is possible because of the high Fe²⁺ concentration gradient between the area of local anodic sites and 338 339 the bulk solution. To sum up, in the absence of a strong oxidant (i.e., contaminant), water can 340 eventually penetrate weak points in the FeS_m shell (i.e., access Fe⁰ sites) to form anodic and cathodic sites. However, for gradual Fe⁰ core depletion to occur as observed here, and without clear indications 341 for corrosion products inhibiting the process, these reactions (Eq. 1-2) must occur at different weak 342 sites, mimicking a galvanic-like corrosion condition. Noteworthy, this mechanism holds true if the rate 343 344 of water reduction at FeS_m sites is low. We believe this is true because numerous studies have shown that the presence of FeS_m sites suppressed H₂ formation in comparison to non-sulfidized ZVI.^{4,6,34,35} 345

This is further corroborated by our own results where we see little if any corrosion within the first 10days of aging in anoxic artificial groundwater.

348 A last point to discuss in relation to corrosion mechanism is the observed heterogeneity in Fe⁰ core 349 content after 180 days of aging. Seeing almost completely "hollow" particles (Fig. 4b), along with particles that retained parts or most of their initial Fe⁰ core (Fig. 4d), suggest that the FeS_m shell "weak" 350 351 points (i.e., the number of shell structural discontinuities) varies amongst particles. As such, S-nZVI that exhibit shells with a high number of "weak" points likely corrode first and faster, while S-nZVI 352 with lower shell heterogeneities are able to preserve their Fe⁰ core thereby sustaining their reactivity 353 with TCE for prolonged periods. Presumably, this could explain why Fe⁰ corrosion and k_{obs} stabilized at 354 the latter stage in groundwater aging experiments (i.e., 60-120 days, Figure 6) and why k_{obs} almost 355 plateaued following the 4th TCE amendment in the re-spiking experiment (Figure S9). 356

357 In the case when TCE is consistently present, analogous to our re-spiking experiments, the general assumption is that the cathodic reaction (i.e., TCE reduction) occurs at FeS_m sites while Fe⁰ sites 358 359 become oxidized. This is heavily supported by reactivity studies that show enhanced TCE degradation in the presence of an FeS_m shell.^{4,6} Moreover, it is argued that the FeS_m shell facilitates TCE sorption 360 and reduction due to its enhanced hydrophobic and electron conductive properties.^{6,24,30,35} Our data 361 362 support these assumptions. We reveal that the particle surface is often dominated by (001) FeS_m plane features, which are considered to be the most hydrophobic and conductive in comparison to other 363 FeS_m planes.^{18,19,36–38} The reason for such conductivity stems from the similarity in Fe-Fe interatomic 364 distance between FeS_m and Fe⁰ (body centered cubic),^{18,39,40} which is also evident in our d-PDF data 365 (Figure 1c). Moreover, our re-spiking experiments clearly showed that it is the Fe⁰ core that gets 366 367 oxidized, while the shell structure seems to remain intact, with no other FeS phases detected. This suggests that the core-shell architecture is robust and that in the presence of continued exposure to 368 369 target contaminants, electron efficiency is achieved.²⁸

370

371 4. Environmental Implications

372 Our data clearly showed that the longevity of S-nZVI is heavily dependent on the architecture and 373 homogeneity of the FeS_m shell structure. Overall, prolonged and sustained S-nZVI reactivity is enabled 374 by the persistent FeS_m shell providing hydrophobic and electron conductive sites for TCE reduction 375 (cathodic reaction), while exhibiting a number of defect sites that facilitate the continuous but 376 controlled Fe⁰ core oxidation (anodic reaction). The spatial separation of anodic and cathodic sites in 377 both reactivity scenarios (i.e., after aging with and without TCE) is argued to be key to maintain S-nZVI 378 reactivity as it allows for corrosion products (i.e. GR_{CO3}, WR) to form external to S-nZVI surfaces, 379 thereby limiting surface passivation. A point to consider, however, while a perfectly homogeneous FeS_m shell with minimal defects would seem to enable high S-nZVI longevity in groundwater settings 380 381 (i.e., limited corrosion by water), it may also decrease the sufficient "accessible" anodic sites (i.e., Fe⁰ 382 oxidation sites), which ultimately increase the risk of surface passivation. Furthermore, while TCE can be quickly reduced at FeS_m sites, other chlorinated ethenes such as cis-DCE, which often co-exist with 383 TCE in contaminant plumes, require Fe⁰ sites for reduction.⁸ Thus, a balance between FeS_m shell 384 features and target contaminant should also be assessed to realize an optimal in-situ remediation. 385

The results shown here are a product of idealized and simplified scenarios. Therefore, other factors should also be considered such as specific groundwater chemistries (i.e., ion effects, pH conditions) and presence of microbiomes that participate in sulfur and iron cycling;^{41,42} all of which may impact the stability of FeS_m or influence the corrosion rate of Fe⁰ in S-nZVI. Additionally, consideration should also be given to understand the controls of S-nZVI nanostructure during synthesis to further tailor its application to specific groundwater contaminants and in various types of subsurface environments.

392 Acknowledgements

The authors thanks Olaf Borkiewicz and Kevin A. Beyer for support with X-ray total scattering measurements at APS beamline 11 ID-B, Argonne, USA. We also thank Richard Wirth for the assistance in TEM experimental set-up. This research was funded by Metal-Aid Innovative Training Network (ITN),

396	supported by a grant from the European Commission's Marie Skłowdowska Curie Actions program		
397	under project number 675219. LGB and HMF also acknowledge financial support by the Helmholtz		
398	Recruiting Initiative (Award No. I-044-16-01). Part of the data was acquired at Advanced Photon		
399	Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office		
400	of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Support for travel		
401	to the synchrotron facility came from the Danish Council for Independent Research (via DANSCATT).		
402			
403	References		
404	1	E. C. Butler and K. F. Hayes, <i>Environ. Sci. Technol.</i> , 2001, 35 , 3884–3891.	
405	2	D. Fan, R. P. Anitori, B. M. Tebo, P. G. Tratnyek, J. S. L. Pacheco, R. K. Kukkadapu, M. H.	
406		Engelhard, M. E. Bowden, L. Kovarik and B. W. Arey, Environ. Sci. Technol., 2013, 47, 5302–	
407		5310.	
408	3	E. J. Kim, J. H. Kim, A. M. Azad and Y. S. Chang, ACS Appl. Mater. Interfaces, 2011, 3 , 1457–	
409		1462.	
410	4	S. R. C. Rajajayavel and S. Ghoshal, Water Res., 2015, 78 , 144–153.	
411	5	J. Xu, Y. Wang, C. Weng, W. Bai, Y. Jiao, R. Kaegi and G. V Lowry, Environ. Sci. Technol., 2019,	
412		53 , 5936–5945.	
413	6	D. Fan, G. O'Brien Johnson, P. G. Tratnyek and R. L. Johnson, <i>Environ. Sci. Technol.</i> , 2016, 50 ,	
414		9558–9565.	
415	7	D. Fan, Y. Lan, P. G. Tratnyek, R. L. Johnson, J. Filip, D. M. O'Carroll, A. Nunez Garcia and A.	
416		Agrawal, Environ. Sci. Technol., 2017, 51 , 13070–13085.	
417	8	M. Mangayayam, K. Dideriksen, M. Ceccato and D. J. Tobler, Environ. Sci. Technol., 2019, 53,	
418		4389–4396.	

- 419 9 A. Liu, J. Liu, J. Han and W. X. Zhang, J. Hazard. Mater., 2017, **322**, 129–135.
- 420 10 E. J. Smith, W. Davison and J. Hamilton-Taylor, *Water Res.*, 2002, **36**, 1286–1296.
- 11 D. J. Tobler, J. D. Rodriguez-Blanco, K. Dideriksen, N. Bovet, K. K. Sand and S. L. S. Stipp, *Adv.*
- 422 Funct. Mater., 2015, **25**, 3081–3090.
- 423 12 R. W. Wyckoff, *Crystal Structures Vol 1*, Interscience Publishers, New York, 1948.
- 424 13 D. Csákberényi-malasics, J. D. Rodriguez-blanco, V. Kovács, A. Re, L. G. Benning and M. Pósfai,
 425 *Chem. Geol.*, 2012, **294–295**, 249–258.
- 426 14 M. Wolthers, S. Van der Gaast and D. Rickard, *Am. Mineral.*, 2003, **88**, 2007–2015.
- 427 15 W. Li, R. Harrington, Y. Tang, J. D. Kubicki, M. Aryanpour, R. J. Reeder, J. B. Parise and B. L.
- 428 Phillips, Environ. Sci. Technol., 2011, **45**, 9687–9692.
- 429 16 R. Harrington, D. B. Hausner, N. Bhandari, D. R. Strongin, K. W. Chapman, P. J. Chupas, D. S.
- 430 Middlemiss, C. P. Grey and J. B. Parise, *Inorg. Chem.*, 2010, **49**, 325–330.
- 431 17 D. J. Vaughan and M. S. Ridout, J. Inorg. Nucl. Chem., 1971, **33**, 741–746.
- 432 18 D. Rickard and G. W. Luther, *Chem. Rev.*, 2007, **107**, 514–562.
- 433 19 A. Devey, R. Grau-Crespo and N. De Leeuw, *J. Phys. Chem. B*, 2008, **112**, 10960–10967.
- 434 20 S. A. T. Redfern and D. J. Vaughan, 1972, **59**, 677–683.
- 435 21 F. M. Michel, S. M. Antao, P. J. Chupas, P. L. Lee and J. B. Parise, 2005, 6246–6255.
- 436 22 A. Matamoros-Veloza, O. Cespedes, B. R. G. Johnson, T. M. Stawski, U. Terranova, N. H. de
 437 Leeuw and L. G. Benning, *Nat. Commun.*, 2018, 9, 1–7.
- 438 23 A. Matamoros-Veloza, T. M. Stawski and L. G. Benning, *Cryst. Growth Des.*, 2018, **18**, 6757–
 439 6764.
- 440 24 S. Song, Y. Su, A. S. Adeleye, Y. Zhang and X. Zhou, Appl. Catal. B Environ., 2017, 201, 211-

220.

- 442 25 S. Boursiquot, M. Mullet, M. Abdelmoula, J.-M. Génin and J.-J. Ehrhardt, *Phys. Chem. Miner.*,
 443 2001, **28**, 600–611.
- 444 26 J. B. Harrison and V. E. Berkheiser, *Clays Clay Miner.*, 1982, **30**, 97–102.
- 445 27 *Hyperfine Interact.*, 1994, **90**, 395–400.
- 446 28 F. He, Z. Li, S. Shi, W. Xu, H. Sheng, Y. Gu, Y. Jiang and B. Xi, *Environ. Sci. Technol.*, 2018, 52,
 447 8627–8637.
- 448 29 L. G. Benning, R. T. Wilkin and H. L. Barnes, *Chem. Geol.*, 1999, **167**, 25–51.
- 449 30 D. Li, Z. Mao, Y. Zhong, W. Huang, Y. Wu and P. Peng, *Water Res.*, 2016, **103**, 1–9.
- 450 31 H. Dong, C. Zhang, J. Deng, Z. Jiang, L. Zhang, Y. Cheng, K. Hou, L. Tang and G. Zeng, *Water*451 *Res.*, 2018, **135**, 1–10.
- 452 32 F. A. Weber, A. Voegelin, R. Kaegi and R. Kretzschmar, *Nat. Geosci.*, 2009, **2**, 267–271.
- 453 33 A. Cabot, V. F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M. A. Marcus, S. M. Hughes and A. P.
- 454 Alivisatos, J. Am. Chem. Soc., 2007, **129**, 10358–10360.
- 455 34 J. Oudar, *Catal. Rev. Sci. Eng.*, 1980, **22**, 171–195.
- 456 35 Y. Han and W. Yan, *Environ. Sci. Technol.*, 2016, **50**, 12992–13001.
- 457 36 N. Y. Dzade, A. Roldan and N. H. De Leeuw, J. Phys. Chem. C, 2016, **120**, 21441–21450.
- 458 37 N. Y. Dzade, A. Roldan and N. H. De Leeuw, *J. Chem. Phys.*, , DOI:10.1063/1.4822040.
- 459 38 N. Y. Dzade, A. Roldan and N. H. De Leeuw, *J. Chem. Phys.*, , DOI:10.1063/1.4929470.
- 460 39 M. Wolthers, L. Charlet, P. van Der Linde, D. Rickard and C. van Der Weijden, *Geochim*.
- 461 *Cosmochim. Acta*, 2005, **69**, 3469–3481.

- 462 40 W. M. Skinner, H. W. Nesbitt and A. R. Pratt, *Geochim. Cosmochim. Acta*, 2004, **68**, 2259–
 463 2263.
- 464 41 T. M. Flynn, E. J. O. Loughlin, B. Mishra, T. J. Dichristina and K. M. Kemner, Science (80-.).,
- 465 2014, **344**, 1039–1043.
- 466 42 K. P. Nevin and D. R. Lovley, *Environ. Sci. Technol.*, 2000, **34**, 2472–2478.