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ABSTRACT Accurate segmentation of pediatric echocardiography images is essential for a wide range
of diagnostic and pre-interventional planning, but remains challenging (e.g., low signal to noise ratio and
internal variability in heart appearance). To address these problems, in this paper, we propose a novel Cardiac
Attention-guided Dual-path Network (i.e., AIDAN). AIDAN comprises a convolutional block attention
module (CBAM) attached to a spatial (i.e., SPA) and context paths (i.e., CPA), which can guide the network
and learn themost discriminative features. The spatial path captures low-level spatial features, and the context
path is designed to exploit high-level context. Finally, features learned from the two paths are fused efficiently
using a specially designed feature fusion module (FFM), and these are used to predict the final segmentation
map. We experiment on a self-collected dataset of 127 pediatric echocardiography cases which are videos
containing at least a complete cardiac cycle, and obtain a Dice coefficient of 0.951 and 0.914, in the left
ventricle and atrium segments, respectively. AIDAN outperforms other state-of-the-art methods and has
great potential for pediatric echocardiography images analysis.

INDEX TERMS Convolutional block attention module, dual-path network, feature fusion module, pediatric
echocardiography segmentation.

I. INTRODUCTION
Congenital heart disease (CHD) is a type of birth defect with
abnormal heart and vessels structures, related to environmen-
tal and genetic factors of the fetus or the pregnant women[1].
There are 1.5∼2 million children born with CHD according
to the World Health Organization [2]. Krasuski [1] reported
that the incidence of CHD in America is nearly 1%, and
that in China is 1.42% [3]. Echocardiography is the primary
examination method for CHD diagnosis. It is non-invasive,
low-cost and suitable for real-time imaging. Accurate seg-
mentation of cardiac anatomy in echocardiography images is
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an essential step for a wide range of analysis and diagnosis,
such as measuring the ejection fraction [4, 5]. However, this
task highly relies on manual segmentation, which brings a
heavy burden to sonographers.

In early clinical work, cardiac segmentation was achieved
by manual delineation of anatomical boundaries of the heart,
which is time-consuming, subjective and error prone. Many
researchers attempted to address this challenge in various
imaging modalities [6]–[12]. These researchers are mainly
focused on magnetic resonance imaging in adults with less
attention given to pediatric cardiac ultrasound analysis [13].
Both adult and pediatric cardiac segmentation share sim-
ilar challenges in poor image quality of ultrasound, but
pediatric heart is more variable and complex in terms of
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FIGURE 1. Examples of echocardiography images for 4CH (the first row)
and 2CH (the last row) view.

morphology and appearance than adult heart. Thus, pediatric
cardiac segmentation is particularly challenging. Though
some automatic or semi-automatic methods were proposed
to solve adult cardiac segmentation [9], [14], [15] and pedi-
atric cardiac segmentation [16]–[18], there are still remain-
ing challenges. Fig. 1 shows the typical 4 chamber (4CH)
(first row) and 2 chamber (2CH) (second row) view echocar-
diography images with segmentation masks. Accurate pixel-
wise segmentation of left ventricle (LV) and left atrium (LA)
in echocardiography images suffer from these challenges:
1) low signal to noise ratio, varying amounts of speckle
noise, and presence of shadowing in the ultrasound images;
2) the influence of different scan styles, image protocols, and
different devices, e.g., the first two columns and the last two
columns come from different devices; 3) intra-variability of
children heart appearances.

To address the above challenges, deep learning has been
widely applied due to its impressive performance across
many tasks [19]–[27]. Deep learning methods also gained
popularity across medical image analysis [9], [28]–[34].
Owing to great success of convolutional neural networks
(CNNs), many researchers adopted them in medical image
analysis [11], [19], [29]–[32], [34]–[37]. However, some
of these CNNs [6], [10], [16], [32] do not consider low-
level and high-level features simultaneously. Some also
rely on complex extra post-processing procedures [21], [24]
(e.g., conditional random field [38], [39], CRF). Hence,
these methods could not be trained in an end-to-end fashion.
Besides, even though U-Net based methods [10], [12], [40]
consider fusing both low-level spatial and high-level semantic
context features, but are in an inefficient way. To overcome
these limitations, BiSeNet is proposed. BiSeNet uses a spatial
path and a context path to capture low-level and high-level
features, respectively, and then fuses the learned features for
better predictions [41]. To further refine BiSeNet, a convolu-
tional block attention module (CBAM), is proposed in [42]
for efficient feature weighting, and guide the network in
learning the most discriminative features.

Inspired by previous works, a novel end-to-end framework
coined AIDAN is proposed in this paper and applied
to pediatric echocardiography segmentation. AIDAN can
extract both low-level and high-level features by a dual-
path network. It also can automatically extract the most

discriminative features, and then fuse them effectively, which
finally accurately segments both LV and LA effectively. This
new end-to-end neural network for pediatric echocardiogra-
phy segmentation makes these contributions:

1) A spatial path and a context path are used for captur-
ing the low-level spatial features and the high-level context
features, respectively;

2) The attention model, CBAM, which focuses on both
‘‘what’’ and ‘‘where’’ to look, is adopted in both the spatial
path (i.e., SPA) and the context path (i.e., CPA) to guide the
network to extract the most discriminative features;

3) A feature fusion module (FFM) is used to fuse features
learned from the spatial path and context path at different
scales efficiently.

The remainder of this paper is organized as follows.
Section II introduces the related work. The proposed method
is described in Section III. The experiments and compari-
son results are illustrated in Section IV. Our discussions are
given in Section V. Finally, our conclusions are presented in
Section VI.

II. RELATED WORKS
A. SEGMENTATION METHODS WITHOUT ATTENTION
MECHANISMS
Fully convolutional neural network (FCN) [24] and U-Net
[40] are the first two neural networks attempting semantic
segmentation in a fully convolutional manner in computer
vision and biomedical image analysis, respectively. Both
FCN and U-Net use encoder-decoder architectures, where the
encoder is designed for feature extraction, and the decoder
is responsible for up sampling to reconstruct a semantic
segmentation mask with the same size of input images.
Bai et al. [8] proposed to use FCN for cardiac magnetic res-
onance (MR) image analysis. The main difference between
FCN and U-Net lies in that U-Net concatenates the features
from the encoder to the decoder at the same layer to account
for spatial information while FCN does not. The major draw-
back of FCN lies in losing spatial information. DeepLab
improves on FCN by using dilated convolutions [21].
PSPNet further improves FCN by using pyramid pooling to
learn multi-scale features [26]. In biomedical image analysis,
incorporating medical or anatomical priors to neural net-
works has shown to improve CNNperformance. For example,
Veni et al. [10] proposed to segment 4CH from echocardio-
graphy images with U-Nets [40] combined with anatomical
shape priors. Duan et al. [43] also considered anatomical
shape constraints. They proposed to feed 2.5D representation
of input cardiac MR cine into a FCN and refine the seg-
mentation with explicitly enforcing a shape constraint [43].
Oktay et al. proposed another anatomically constrained
FCN [7], which incorporates the anatomical priors for
learning, that is, learning a latent representation through
TL-Network [44]. Though incorporating anatomical priors
into FCN improves the interpretability, it requires expert
knowledge and annotated data that might not always be avail-
able at scale. Zheng et al. [6] proposed to segment cardiacMR
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FIGURE 2. Overview of the proposed AIDAN. It consists of a spatial path, a context path and an FFM. The spatial path captures low-level spatial features,
while the con-text path captures high-level context features. A CBAM module is attached to the spatial path and the context path.

cines using U-Net with spatial propagation. Given that the
correlation between slices is low except for adjacent slices,
instead of feeding entire MR volume to the network, they
argue that feeding the current slice and its previous segmen-
tation prediction to a 2D U-Net can explicitly maintain the
3D consistency. Therefore, this method captures 3D spatial
context features using a 2D U-Net, which is computational
efficient. OmegaNet is also proposed to segment cardiac
MR cines by Vigneault et al. [12]. OmegaNet first learns to
predict an initial segmentation result using an hourglass net-
work [12], and then the parameters needed for transforming
the input image to a canonical orientation are predicted using
these learned features. The final segmentation is learned from
the transformed image using stacked hourglass networks [45].
Though OmegaNet provides greater flexibility by exploiting
intermediate segmentations, it requires additional annotations
(e.g. parameters for the affine transformation from the input
image to a canonical orientation).

B. SEGMENTATION METHODS WITH
ATTENTION MECHANISMS
Attention mechanisms have been widely used in
segmentation tasks [23], [25], [27], [42]. The attention mech-
anism is realized in a channel-wise and spatial-wise fashion.
The squeeze and excitation block adaptively recalibrates
channel-wise feature responses by explicitly modelling inter-
dependencies between channels, and comprises a channel
attention mechanism [27]. Meanwhile, non-local blocks pro-
posed in [25] computes the response at a position as a
weighted sum of the features at all positions, and intro-
duces spatial attention. Later on, based on non-local block,
Fu et al. [23] proposed to append two types of attention
modules (e.g., position attention module and channel atten-
tion module) on top of traditional dilated FCN to improve
the performance. BiSeNet proposed an attention refinement

module, which is similar to an squeeze and excitation block,
but employs global average pooling to capture global con-
text [46]. Our previous work [47] has successfully applied
BiSeNet for pediatric echocardiography image segmentation.
Instead of using additional layers, Zhang et al. [28] proposed
to modify the original residual block [20] by using feature
maps learned in a high layer as attention map for a low layer.

In this paper, we propose a novel dual-path convolu-
tional neural network, AIDAN. AIDAN takes advantage of
BiSeNet’s dual-path design to capture both low-level spa-
tial and high-level context features. AIDAN further extends
BiSeNet by incorporating CBAM to guide the network to
learn the most discriminative features.

III. METHOD
As shown in Fig. 2, the proposed AIDAN consists of a spatial
path, a context path, and an FFM. Besides, a CBAM is added
to the spatial path and the context path for better feature
extraction, denoted as SPA and CPA in Fig. 2, respectively.
The loss function used in the proposed model is also intro-
duced in the following subsection III-E. The network details
are presented in the following sections.

A. SPATIAL PATH
Rich spatial information and large receptive fields are consid-
ered crucial in segmentation. Dilated convolutions are usually
used [21], [26] to preserve rich spatial information in seman-
tic segmentation. Some approaches try to capture sufficient
receptive fields with pyramid pooling, atrous spatial pyramid
pooling or ‘‘large kernel’’ [26], [48]. These methods show
that the spatial information and the receptive field are both
crucial to semantic segmentation. Based on this observation,
the spatial path preserves the spatial size of the input image
while encoding rich spatial information [46]. It consists of
only three blocks, each block includes a 3× 3 convolutional
layer with stride = 2 followed by batch normalization and
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FIGURE 3. Overview of CBAM. (a). This sub-module utilizes the
inter-spatial relationship of features and focuses on ‘‘where’’ an
informative part is. (b). This sub-module utilizes the inter-channel
relationship of features and focuses on ‘‘what’’ is meaningful.

ReLU activated layer. Therefore, the outputs feature maps of
this path are of 1/8 size of the original input image and it
encodes rich low-level spatial information at a low cost of
computation.

B. CONTEXT PATH
While the spatial path encodes rich spatial information,
the context path captures a sufficient receptive field and high-
level semantic context features. To enlarge the receptive field,
previous approaches take advantage of the pyramid pooling
module, atrous spatial pyramid pooling or large convolutional
kernel. However, the methods mentioned above all suffer
from heavy computation demanding andmemory consuming.
The context path is used in this method to get a large receptive
field with efficient computation [46]. The residual network
ResNet50 [20] is utilized as our backbone network. To further
refine the features learned from the residual context path, a
channel attention module (denoted as CA in Fig. 2) is used to
refine features learned at the last two down sampling stages.
CA is a submodule of CBAM.

C. CONVOLUTIONAL BLOCK ATTENTION MODULE
The CBAM consists of a spatial attention sub-module and
a channel attention sub-module. The spatial attention sub-
module utilizes the inter-spatial relationship of features.
As shown in Fig. 3a, given an input intermediate feature
map Fs, we firstly aggregate the spatial information by max
pooling and average pooling along the channel axis. We con-
catenate them to generate an efficient feature descriptor. Then
a convolutional layer is applied to the concatenated feature
descriptor to compute a 2D spatial attention mapMs. Finally,
the refined feature F′s is produced by multiplying the input
feature Fs with the spatial attention mapMs. Thus, the spatial
attention sub-module exploits the inter-spatial relationship
and focuses on ‘‘where’’ an informative part is.

As illustrated in Fig. 3b, the channel attention sub-module
is designed for utilizing the inter-channel relationship of fea-
tures. As each channel of a feature map is a feature detec-
tor, given an input image or feature map, channel attention
focuses on ‘‘what’’ is meaningful. First, average pooling and
max pooling are applied to the input feature Fc to generate

FIGURE 4. Feature fusion module, features learned from the spatial path
FSPA and features learned from the context path FCPA are first
concatenated, and then balanced scales after batch normalization are
used to produce F, and a weight vector v is computed to reweigh the
feature, finally the refined feature F′ = F ∗ v+ F.

two spatial context descriptors. Then both descriptors are
fed into a shared multi-layer perceptron (MLP) with only
one hidden layer. To reduce parameter overhead, the hidden
layer unit is set to C/r , where C is the number of input
feature maps, r is the reduction ratio. After the shared MLP
is applied to the two feature descriptors, their output feature
vectors are merged by element-wise summation, followed by
a softmax layer to produce a weighted vectorMc. Finally, the
input feature Fc is multiplied with the weighed vector Mc to
produce the refined feature F′c.

These two sub-modules in CBAM can be arranged
in spatial-first, channel-first or in parallel. The influence
of different CBAM module arrangements is illustrated in
Section IV-C. Figure 3 shows a CBAM module added to
the spatial path (SPA), and another added to the context
path (CPA). Therefore, SPA is used for refining the features
learned from the spatial path, and CPA is used for refining the
features learned from the context path.

D. FEATURE FUSION MODULE
Obviously, the features learned from the spatial path and the
context path are different in the level of feature representa-
tion. Therefore, simply summing up or concatenating these
features is not a good fusion choice. Therefore, a feature
fusion module proposed in [46] is explored in our network
before the final prediction fusing features learned from the
spatial and context paths. Specifically, as shown in Fig. 4,
the features learned from the spatial path (FSPA) and the
context path (FCPA) are first concatenated, then the batch
normalization (BN) is utilized to balance the scales of the
features to produce F. The learned feature F is then pooled to
a feature vector and a weight vector v is computed. Finally,
the final refined feature F′ is computed by F′= F ∗ v+ F.

E. LOSS FUNCTION
In this paper, the standard cross entropy loss is used
for training the proposed network. Similar to the original
BiSeNet [41], we also utilize the auxiliary loss function
to supervise the training of the context path. Specifically,
besides the principal loss function to supervise the output of
the whole network, two specific auxiliary loss functions are
also added to supervise the output of the context path at the
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TABLE 1. 4CH view segmentation performance of AIDAN with different modules.

last two down sample stages. To summarize, the joint loss is:

L (X;W) = Lp (X;W)+α1L1(X1;W)+α2L2(X2;W) (1)

where Lp is the principal loss, X is the final prediction of the
whole network,W is the learnable parameters of the network,
L1 and L2 are the auxiliary loss for the last two down sample
stage of the context path, respectively. X1 and X2 are the
output features from the last two down sample stage of the
context path, respectively. The weight of the principal loss
and auxiliary loss is balanced by α1 and α2. In this paper,
α1 = α2 = 1 is set. The joint loss helps optimize the model
more comfortable and easier.

IV. EXPERIMENTS AND RESULTS
A. DATASET
To verify the effectiveness of the proposed method, a dataset
collected from Shenzhen Children Hospital is used for exper-
imenting. All echocardiography images are collected from
GE Vivid E8 and E9 (GE Healthcare, Horten, Norway) ultra-
sound machine. Our dataset consists of 127 video sequence
of 4CH view. The age of the pediatric patient ranges from
0 to 10 years, the video frame rate is at least 24 fps, and
each video sequence contains at least one complete cardiac
cycle. We select 100 4CH videos randomly for training,
and the remaining 27 videos are used for testing. To further
verify the generalization of the proposed method, 12 2CH
video sequences are used for testing only. Videos are further
converted to images frame by frame. All images are manually
segmented by two independent sonographers and additionally
confirmed by a third experienced sonographer. Owing to poor
images, a few frames might not be annotated, and these are
removed from the dataset. Ultimately, we have 3654 4CH
images for training, 831 4CH images and 503 2CH images
for testing. In this paper, accuracy, precision (a.k.a. positive
predictive value (PPV), recall (a.k.a. true positive rate (TPR),
and sensitivity), specificity (a.k.a. true negative rate (TNR)),
and Dice coefficient are used for estimating the segmentation
performance.

B. IMPLEMENTATION PROTOCOL AND DATA
AUGMENTATION
Our experiments are conducted on a computer workstation
with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 4 GPU

NVIDIA Titan Xp, and 64G of RAM, using PyTorch [49]
and Horovo [50] for distributed training. During the train-
ing phase, the network parameters are updated using Adam
optimizer. A poly learning rate strategy [21] is applied when
training the network: η = η0

(
1− n

N

)β , where η0 = 0.0001 is
the initial learning rate, n is the current epoch number,N is the
total epochs, and β = 0.9. The pre-trained ResNet50 network
from PyTorch is the backbone network of the context path to
save time for training the network. All other components in
the network are randomly initialized with PyTorch’s default
configuration.

All images are properly center cropped and resized to
512 × 512 to remove meaningless background or subject
information. All images are normalized before fed to the
neural networks. To avoid overfitting, common data augmen-
tation methods, including random rotation [−25, 25] degree,
random flip, random crop, speckle noise, and salt & pepper
noise of probability 0.01 are used during the training phase.

C. RESULTS AND ANALYSIS
We evaluate the performance of the proposed method through
these three experiments: 1) Performance of the proposed
method with different modules (FFM, CA, SPA, and CPA),
2) Performance of the proposed method with different
CBAM module arrangements (spatial-first, channel-first or
in parallel), 3) Performance comparison with state-of-the-art
methods.

1) IMPACT OF DIFFERENT MODULES
To understand the influence of each module in our net-
work and their contributions to the overall performance,
we use AIDAN with no modules as the baseline: that
is, a naive dual-path segmentation network with differ-
ent network depths. Results are shown in the first row in
Tables 1 and 2. Table 1 shows that for 4CH segmentation,
FFM, CA, SPA, and CPA modules all improve the perfor-
mance by 0.010, 0.014, 0.009, and 0.004 points in terms
of Dice coefficient in LV segmentation, respectively. As for
LA, it shows no improvement by adding CA, but FFM,
SPA and CPA improve the performance by 0.004, 0.014 and
0.001 points in terms of Dice coefficient, respectively.

To explore the network generalization properties,
we evaluate the optimized AIDAN with different modules
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TABLE 2. 2CH view segmentation performance of AIDAN with different modules.

TABLE 3. 4CH view segmentation performance of AIDAN with different CBAM module arrangement.

FIGURE 5. Segmentation results on AIDAN with different CBAM module arrangements, manual segmentation contours in red, and prediction results are
in green. The first three columns are 4CH view images, while the last three columns are 2CH view images.

switched in/out. As shown in Table 2, AIDAN with all
modules on in their best configuration performs the best in LV
segmentation (best Dice coefficient), while AIDAN without
CPA performs the best in LA segmentation. Given we only
use 4CH images for training, and 2CH images for testing, our
segmentation performance is promising.

2) IMPACT OF DIFFERENT CBAM MODULE ARRANGEMENTS
To show the influence of different CBAM module
arrangements, we experiment spatial-first, channel-first,
or both submodules in parallel. Table 3 shows that the
parallel arrangement performs best for LV segmentation
(Dice coefficient), while the spatial-first arrangement per-
forms the best in LA segmentation. Sample segmentation
results are shown in Fig. 5.

As for experiments on 2CH view images, the channel-first
arrangement performs the best in the LV segmentation in
terms of Dice coefficient, while the spatial-first arrangement
performs the best in the LA segmentation.

As illustrated in Section III-C, context attention
sub-module in CBAM focuses on ‘‘what’’ to look, while
spatial attention sub-module focuses on ‘‘where’’. Therefore,
we could conclude that, in LV segmentation, focusing on
‘‘where’’ is more important than focusing on ‘‘what’’, while
focusing on ‘‘what’’ and ‘‘where’’ are almost equally impor-
tant in LA segmentation. To get very good performance in
both LV and LA segmentation, we recommend using the
spatial-first arrangement in CBAM.

As shown in Table 4, the spatial-first arrangement performs
the best in LA segmentation. Given that morphological vari-
ability in LA is richer and more complex, LA segmentation
is more challenging than LV segmentation. The spatial-first
arrangement shows great generalization ability from 4CH
view images to 2CH images, this is another reason we recom-
mend to use the spatial-first arrangement of CBAM module.

3) COMPARISON WITH THE STATE-OF-THE-ART METHODS
We benchmark our approach against several state-of-the-art
methods, FCN [24], U-Net [40], DeepLab [21], PSPNet [26]
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TABLE 4. 2CH View segmentation performance of AIDAN with different CBAM module arrangement.

TABLE 5. 4CH view segmentation performance comparison with state-of-the-art methods.

TABLE 6. 2CH view segmentation performance comparison with state-of-the-art methods.

and BiSeNet [46]. All these networks use ResNet-50 [20] so
comparison can be done fairly and without bias. As shown
in Table 5, AIDAN with channel-first arrangement, CBAM
outperforms state-of-the-art methods in Dice coefficient in
LV segmentation. AIDAN with parallel CBAM module
arrangement performs the best among all the methods in Dice
coefficient in LA segmentation.

The performance for all methods on 2CH view images are
summarized in Table 6. We observe AIDANwith spatial-first
arrangement in CBAM outperforms state-of-the-art methods
in LV segmentation in Dice coefficient, and AIDAN with
parallel arrangement performs the best Dice coefficient in LA
segmentation.

Fig. 6a and Fig. 6b illustrate segmentation results averag-
ing the Dice coefficient across all 27 subjects from test set.
AIDAN outperforms state-of-the-art methods in both LV and
LA segmentation on 4CH view images. Fig. 6c and Fig. 6d
further illustrate AIDAN also performs comparably to state-
of-the-art methods in LV and LA segmentation on unseen
2CH view images. This also highlights to the generalization
ability of AIDAN. Sample segmentation results of 4CH and
2CH view images are shown in Fig. 7 and Fig. 8, respectively.

The reason for the promising segmentation performance of
AIDAN is four-fold: 1) The spatial path captures low-level
spatial features; 2) The context paths captures high-level
semantic context features; 3) features learned from the dual
paths are further refined by CBAM module to capture the
most discriminative features; 4) The FFM fuses the features
learned from the dual paths effectively.

V. DISCUSSION
To improve the segmentation of echocardiography image,
an end-to-end AIDAN, is proposed in this paper. AIDAN
effectively extracts features from both low-level and
high-level paths. To demonstrate the effectiveness of the
proposed AIDAN for LV and LA segmentation, we extract
the feature maps and visualize them in Figs. 9 and 10.
Specifically, we visualize the feature maps of CBAM mod-
ule attached to both the spatial path and the context path.
Our method can restore the original input image effectively.
We analyze the effectiveness of our method in these aspects.

First, AIDAN is based on BiSeNet, which can capture
low-level spatial features and high-level semantic features
from the spatial path and the context path, respectively.
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FIGURE 6. Dice value of all subjects on 4CH view and 2CH view of different methods, note that AIDAN with parallel arrangement of CBAM.
(a) Dice value of 27 subjects on 4CH view of LV, (b) Dice value of 27 subjects on 4CH view of LA, (c) Dice value of 12 subjects on 2CH view of LV,
(d) Dice value of 12 subjects on 2CH view of LA.

FIGURE 7. Segmentation result of 4CH view images on different networks, manual segmentation contours in red, prediction in green.

FIGURE 8. Segmentation result of 2CH view images on different networks, manual segmentation contours in red, prediction in green.

Second, instead of using skip connection to concatenate the
feature learned at the encoding phase to the decoding phase,
we use an CBAM attention module to refine the feature
learned at the encoding phase. It can be regarded as an

incomplete U-Net component. Finally, the features learned
from the spatial path and the context path are fused using
an FFM. Hence, the proposed AIDAN shows superiority over
other related state-of-the-art methods.
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FIGURE 9. Visualization of CBAM block with 4CH view image. (a) input image, (b) feature maps obtained by CBAM (SPA) attached to the spatial path,
(c) feature maps obtained by CBAM (CPA) attached to the context path.

FIGURE 10. Visualization of CBAM block with 2CH view image. (a) input image, (b) feature maps obtained by CBAM (SPA) attached to the spatial path,
(c) feature maps obtained by CBAM (CPA) attached to the context path.

FIGURE 11. Images that do not perform well using the proposed method.
The images at the first row are 4CH view, and those at the last row are
2CH view.

Although promising segmentation performance is achieved
by the proposed AIDAN method, there are still limitations.
The main limitation of our approach is that the relationship
between adjacent echocardiography image frame in a cardiac
cycle is not captured. Also, the training dataset is insufficient
for semantic segmentation in the medical image analysis.
Although data augmentation technology is adopted, we still

cannot fully use deep neural networks for feature learning.
Thus, we cannot build the network with deep architecture.
Also, our method fails to segment some 4CH and 2CH view
echocardiography images with low contrast and signal loss in
Fig.11.

Of our research, we would like to use ConvLSTM [51]
to learn the relationship between a cardiac cycle. Also,
we would like to try different methods to combine multi-
scale feature (e.g., U-Net++ [52] and CU-Net [53]), which
seem a good choice. Also, we would like to try other
backbone networks (e.g., DenseNet [22], FishNet [54]) for
better feature extraction.

VI. CONCLUSION
In this paper, we present a novel end-to-end AIDAN
with dual-path for pediatric echocardiography segmentation.
Specifically, AIDAN contains two paths: the spatial path
and the context path. The spatial path preserves low-level
spatial information from pediatric echocardiography. The
context path utilizes a backbone deep network and global
average pooling to obtain a sizeable receptive field and
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to capture high-level context semantic features efficiently.
CBAM is used to guide the whole network to learn the most
discriminative features. With the fusion of both low-level
spatial details and high-level context semantic features, the
proposed method outperforms related state-of-the-art seg-
mentation methods in terms of Dice coefficient in pediatric
echocardiography data.
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