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DNLS equation for large-amplitude solitons
propagating in an arbitrary direction in a

high-β Hall plasma
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Abstract. The one-dimensional oblique propagation of magnetohydrodynamic
waves with arbitrary amplitudes in a Hall plasma with isotropic pressure is studied
under assumption that the plasma β is large. It is shown that the wave evolution
is described by the derivative nonlinear Schrödinger equation (DNLS).

1. Introduction

It has been known for almost three decades that the evolution of small-amplitude
nonlinear Alfvén waves propagating quasiparallel with respect to the background
magnetic field is governed by the derivative nonlinear Schrödinger equation (DNLS).
This equation was first derived by Rogister (1971) starting with a Vlasov kinetic de-
scription for the particle species. Later it was derived by Mjølhus (1976) and Mio et
al. (1976) on the basis of Hall magnetohydrodynamics (MHD) for cold plasmas, and
by Spangler and Sheerin (1982) and Sakai and Sonnerup (1983) from warm-fluid
models. An excellent review of theory of quasiparallel small-amplitude nonlinear
MHD waves based on the use of the DNLS equation and its generalizations has
been given by Mjølhus and Hada (1997). Application of this theory to observation
of nonlinear MHD waves at the Earth’s bow shock has been discussed by Spangler
(1997).

This study was motivated by a recent result by Baumgärtel (1999). He numeri-
cally solved the non-stationary system of Hall MHD equations using a dark DNLS
soliton as an initial condition. In this numerical study, the propagation angle was
80◦ and the plasma β was 5. The numerical solution has shown that the soliton
practically does not evolve with time. This implies that the dark DNLS solitons
propagating at large angles with respect to the background magnetic field are sta-
tionary (or, at least, quasistationary) solutions to the system of Hall MHD equa-
tions. This result supports the suggestion by Kennel et al. (1988) that the DNLS
equation might decribe nonlinear wave propagation in an arbitrary direction with
respect to the background magnetic field in high-β plasmas.
The aim of this paper is to show that the numerical result obtained by Baumgärtel

(1999) is not a coincidence, and that the suggestion by Kennel et al. (1988) is
perfectly correct. The paper is organized as follows. In the next section, we present
the governing equations and discuss main assumptions. In Sec. 3, we derive the
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DNLS equation for large-amplitude waves propagate in an arbitrary direction in a
high-β plasma. We discuss our results in Sec. 4.

2. Governing equations

The starting point of our analysis is the system of Hall MHD equations describing
adiabatic motions of infinitely conducting plasmas with isotropic pressure. This
system can be written in the form

∂ρ

∂t
+∇ · (ρv) = 0, (2.1a)

ρ

(

∂v

∂t
+ (v ·∇)v

)

= −∇p +
1

µ
(∇× B)× B, (2.1b)

∂B

∂t
=∇× (v× B) + l

(

ρ0
µ

)1/2

∇×
1

ρ
(B×∇× B), (2.1c)

p

ργ
= const. (2.1d)

Here p is the pressure, ρ the density, v the velocity, B the magnetic field, γ the adia-
batic exponent, and µ the magnetic permeability of empty space, and the subscript
‘0’ indicates an unperturbed quantity. The ion inertia length l is given by

l =

(

m2
i

µe2ρ0

)1/2

, (2.2)

where mi is the ion mass and e the elemental electric charge.
In what follows, we consider one-dimensional perturbations that only depend on

the x coordinate in the Cartesian coordinates (x, y, z). Let us introduce the square
of the sound speed, the square of the Alfvén speed in the x direction, and the plasma
β as

c2S =
γp0
ρ0

, V 2 =
B2

x

µρ0
, β =

c2S
V 2

, (2.3)

where Bx = const is the x components of the magnetic field. We assume that β � 1
and use ǫ = β−1 as a small parameter. In accordance with this, we introduce the
scaled sound speed, c̃S = ǫcS , and the scaled equilibrium pressure p̃0 = ǫp0.

3. Derivation of DNLS equation

To derive the DNLS equation, we use the reductive perturbation method (e.g.
Taniuti and Wei 1968; Kakutani et al. 1968; Engelbreht et al. 1988). We intro-
duce the new variables ξ = ǫ(x − V t) and τ = ǫ2t. In these variables, (2.1) are
rewritten as

ǫ
∂ρ

∂τ
− V

∂ρ

∂ξ
+

∂(ρu)

∂ξ
= 0, (3.1a)

ρ

(

ǫ
∂u

∂τ
− V

∂u

∂ξ
+ u

∂u

∂ξ

)

= −
∂

∂ξ

(

p +
|B⊥|

2

2µ

)

, (3.1b)

ρ

(

ǫ
∂v⊥
∂τ

− V
∂v⊥
∂ξ

+ u
∂v⊥
∂ξ

)

=
Bx

µ

∂B⊥

∂ξ
, (3.1c)
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ǫ
∂B⊥

∂τ
− V

∂B⊥

∂ξ
= Bx

∂v⊥
∂ξ

−
∂(uB⊥)

∂ξ
+ ǫχV l ê×

∂

∂ξ

(

ρ0
ρ

∂B⊥

∂ξ

)

, (3.1d)

p

ργ
= const, (3.1e)

where χ = sign(Bx), ê is the unit vector in the x direction, u is the x compo-
nent of the velocity, and v⊥ and B⊥ are the components of the velocity and the
magnetic field perpendicular to the x direction. In what follows, we only consider
perturbations vanishing at infinity and assume that ρ → ρ0, p → p0, u → 0,
v⊥ → 0, and B⊥ → B⊥0 as |ξ| → ∞. We can consider the magnetic field at
infinity, B0 = Bxêx + B⊥0, as the equilibrium magnetic field, so that perturba-
tions propagate at an angle θ = arctan(|B⊥0|/|Bx|) with respect to the equilibrium
magnetic field.

Now we look for the solution to (3.1) in the form of expansions in power series
with respect to ǫ. We write these expansions in the form

p = ǫ−1p̃0 + p1 + ǫp2 + . . . (3.2)

for the pressure, and in the form

f = f1 + ǫf2 + . . . (3.3)

for all other variables. In the first-order approximation, we collect terms of the
order of unity in (3.1) to obtain the system of equations

V
∂ρ1
∂ξ

−
∂(ρ1u1)

∂ξ
= 0, (3.4a)

ρ1

(

V
∂u1
∂ξ

− u1
∂u1
∂ξ

)

=
∂

∂ξ

(

p1 +
|B⊥1|

2

2µ

)

, (3.4b)

ρ1

(

V
∂v⊥1
∂ξ

− u1
∂v⊥1
∂ξ

)

= −
Bx

µ

∂B⊥1

∂ξ
, (3.4c)

V
∂B⊥1

∂ξ
= −Bx

∂v⊥1
∂ξ

+
∂(u1B⊥1)

∂ξ
, (3.4d)

p0
ργ1
=

p0
ργ0

. (3.4e)

In deriving (3.4e), we have used the boundary conditions at infinity.

It follows from (3.4e) that ρ1 = ρ0. Then, using the boundary conditions at
infinity, we immediately find from (3.4) that

u1 = 0, (3.5a)

v⊥1 = −
V

Bx
(B⊥1 − B⊥0), (3.5b)

p1 = −
1

2µ
(|B⊥1|

2 − |B⊥0|
2). (3.5c)

We see that only the perturbations of v⊥, B⊥ and p are of the order of unity, while
the perturbations of ρ and u are of the order of ǫ.
In the second-order approximation, we collect terms of the order of ǫ in (3.1). As
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a result, we obtain the system of equations

V
∂ρ2
∂ξ

− ρ0
∂u2
∂ξ

= 0, (3.6a)

ρ0V
∂u2
∂ξ

=
∂

∂ξ

(

p2 +
B⊥1 · B⊥2

µ

)

, (3.6b)

ρ0

(

∂v⊥1
∂τ

− V
∂v⊥2
∂ξ

)

=
Bx

µ

∂B⊥2

∂ξ
, (3.6c)

∂B⊥1

∂τ
− V

∂B⊥2

∂ξ
=

∂

∂ξ
(Bxv⊥2 − u2B⊥1) + χV l ê×

∂2B⊥1

∂ξ2
, (3.6d)

p1 = c̃2Sρ2. (3.6e)

In deriving (3.6c) we have used (3.6a). Using (3.5c), (3.6a), and (3.6e), we obtain

u2 = −
V

2µρ0c̃2S
(|B⊥1|

2 − |B⊥0|
2). (3.7)

With the aid of this result and (3.5b), we rewrite (3.6c, d) as

V
∂B⊥2

∂ξ
+Bx

∂v⊥2
∂ξ

= −
∂B⊥1

∂τ
, (3.8a)

V
∂B⊥2

∂ξ
+Bx

∂v⊥2
∂ξ

=
∂B⊥1

∂τ
+ χV l ê×

∂2B⊥1

∂ξ2

−
V

2µρ0c̃2S

∂

∂ξ
[B⊥1(|B⊥1|

2 − |B⊥0|
2)]. (3.8b)

The compatibility condition for this system of two equations for B⊥2 and v⊥2 is
that their right-hand sides have to be equal. As a result, we obtain

∂B⊥1

∂τ
−

V

4µρ0c̃2S

∂

∂ξ
[B⊥1(|B⊥1|

2 − |B⊥0|
2)] + 1

2
χV l ê×

∂2B⊥1

∂ξ2
= 0. (3.9)

Returning to the original independent variables and introducing b = By1+ iBz1, we
eventually arrive at the DNLS equation

∂b

∂t
+ V

∂b

∂x
−

V

4βB2
x

∂

∂x
[b(|b|2 − |b0|

2)] +
i

2
χV l

∂2b

∂x2
= 0, (3.10)

where b0 = lim|x|→∞ b. Hence we have shown that, in high-β Hall plasmas, the
DNLS equation does describe oblique propagation of MHD waves with arbitrary
amplitudes.

4. Discussion

The results of the previous section clearly show that, in contrast to plasmas with low
and moderate β, in high-β plasmas, the DNLS equation describes nonlinear waves
with arbitrary amplitude of the magnetic field perturbation and propagating in an
arbitrary direction.
However, one has to be very cautious when applying this result to real problems

in plasma physics (e.g. to problems related to space plasmas). The point of concern
is that the system of Hall MHD equations is often used for the description of
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motions of collisionless plasmas. This is only justified when the plasma β is small. In
plasmas with moderate and large β, kinetic effects become important (e.g. Mjølhus
and Willer 1986, 1988; Mjølhus 1988; Mjølhus and Hada 1997). Hence, both the
system of Hall MHD equations and the DNLS equation (3.10) can be used for the
description of high-β plasmas only if these plasmas are collisional.
A plasma can be considered as collisional if the characteristic spatial scale, which

is βl, is much larger than the mean free path of the charged particles. This condition
can be easily reduced to Ωiτ � β, where Ωi = eB0/mi is the ion gyrofrequency and
τ if the mean collision time. In order that we can neglect the plasma resistivity and
consider it as infinitely conducting, the condition Ωeτ � 1 must be satisfied, where
Ωe = eB0/me is the electron gyrofrequency, and me is the electron mass.
An example of a plasma where both inequalities are satisfied is the solar photo-

spheric plasma. In this plasma, we can use the approximation τ ≈ τei, where τei
is the electron–ion collision time (Priest 1982). If we take B0 ≈ 0.1T (= 1000G),
then Ωeτei varies from 2 in the lower part of the photosphere to 2 × 103 in the
upper part of the photosphere (Ruderman et al. 1997). Hence, we can neglect the
resistive term in Ohm’s equation in comparison with the Hall term in the middle
and upper part of the photosphere. Since Ωi ≈ 0.5 × 10−3Ωe, Ωiτei 6 1 � β in
the solar photosphere. Therefore, (3.10) can be used for the description of nonlinear
MHD waves (e.g. solitons) in the middle and upper part of the solar photosphere.
The characteristic length of these solitons is βl ≈ 0.01β cm.
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