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The Safety Critical Systems Club (SCSC) is the professional network for sharing knowledge about
safety-critical systems. It brings together: engineers and specialists from a range of disciplines working
on safety-critical systems in a wide variety of industries; academics researching the arena of safety-critical
systems; providers of the tools and services that are needed to develop the systems; and the regulators
who oversee safety. Through publications, seminars, workshops, tutorials, a web site and, most importantly,
at the annual Safety-critical Systems Symposium (SSS), it provides opportunities for these people to
network and bene�t from each other’s experience in working hard at the accidents that don’t happen.
It focuses on current and emerging practices in safety engineering, software engineering and product and
process safety standards.

This document was written by the Safety of Autonomous Systems Working Group (SASWG), which is
convened under the auspices of the SCSC. The goal of the SASWG is to produce clear guidance on
how autonomous systems and autonomy technologies should be managed in a safety related context,
throughout the lifecycle, in a way that is tightly focused on challenges unique to autonomy. The document
was formally released at SSS’19, 5-7 February 2019.

Comments on this document are actively encouraged. These can be emailed to:

saswg-comments@scsc.uk

While the authors and the publishers have used reasonable endeavours to ensure that the information and
guidance given in this work is correct, all parties must rely on their own skill and judgement when making
use of this work and obtain professional or specialist advice before taking, or refraining from, any action
on the basis of the content of this work. Neither the authors nor the publishers make any representations
or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or
availability with respect to such information and guidance for any purpose, and they will not be liable for
any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or
damage whatsoever (including as a result of negligence) arising out of, or in connection with, the use of this
work. The views and opinions expressed in this publication are those of the authors and do not necessarily
re�ect those of their employers, the SCSC or other organisations.
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1 Introduction

1.1 Document Scope and Purpose

This document represents a �rst step towards establishing and documenting Recognised Good Practice
(RGP) for the safety assurance of Autonomous Systems (AS). It has been authored by the Safety of
Autonomous Systems Working Group (SASWG), which is convened under the auspices of the Safety Critical
Systems Club (SCSC). Consistent with the SASWG’s aims1, the document focuses on novel challenges
associated with autonomy technologies.

The SASWG has adopted a structure that uses frameworks at three distinct levels: system; computation;
and architecture:

• The system-level framework addresses what the �nal autonomous entity should do; what effects it
should have on its environment. This is the highest level considered; it presents a black-box view.

• The computation-level framework addresses how this is implemented using software and hardware
components. This is the lowest level considered; it presents a white-box view.

• The architecture-level framework addresses how computational (and other) components are
composed into a system that meets the requirements identi�ed at the system-level. Some
approaches to achieving safety will only be intelligible at this level; the inclusion of a monitor function
is one such example. It could be described as a grey-box view.

Table 1 includes two examples that illustrate the distinction between system, architecture and computation
within the context of this document.

Table 1: Example Systems, Architecture Components and Computations

Item Illustration One Illustration Two

System Autonomous Car Medical Diagnosis System

Example Architecture

Components

Mapping Data, Sensors, Engine,

Brakes

Scanner, Patient Records,

Communication Networks

Example Computation Route Planning
Image Classi�cation (Benign /

Malignant)

By design, the chosen frameworks do not include consideration of staff competencies; likewise, issues
that are most appropriately addressed at an organisational, or enterprise, level are also excluded. This
approach has been adopted in order to focus the SASWG’s efforts on topics that are directly related to AS.
Consequently, documents produced by the SASWG are intended to be used alongside, or as a supplement
to, an existing Safety Management System (SMS).

This document focuses on AS that use Arti�cial Intelligence (AI) developed using Machine Learning (ML).
Although it is possible to envisage AS that do not use these technologies, AI and ML are considered to
represent the greatest assurance challenges. As such, systems that use AI and ML have been the focus of
the SASWG’s efforts.

1 Available from: https://scsc.uk/ga.
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The current document represents the �rst release of objectives by the SASWG. It provides a small set of
objectives, focused on the computation-level, that would be expected to be met in any compelling safety
argument for AS. Whilst these objectives are considered useful, it should be noted that they have been
developed from a theoretical basis and have not been subjected to practical use.

The computation-level was chosen as the focus for this version for two reasons. Firstly, because the
SASWG wanted to gain feedback from the wider community on a single framework before developing all
three planned frameworks. Secondly, the computation-level is believed to be the easiest to engage with;
consequently, its use supports commenting on both the overall framework approach and the individual
objectives within that speci�c framework.

Future versions will contain additional objectives that address issues at the architecture-level and
system-level. Consequently, the objectives listed in this document are judged to be necessary to support
a safety argument for AS but, by themselves, they are not su�cient. More speci�cally, whilst the guidance
contained in this document is intended to be bene�cial to those working with AS, including designers,
manufacturers, operators and regulators, additional considerations will be required to provide a compelling
safety argument.

The document has been released in its current form, as a “draft for discussion” to gain feedback from
the wider community on both the speci�c computation-level objectives that have been developed and the
approach that is currently being adopted by the SASWG. Feedback can be provided by emailing the address
noted on the inner front cover.

1.3 Terminology

The SASWG has deliberately avoided de�ning the term autonomous, preferring to work from examples and
assuming that, generally speaking, it is easy to identify whether a speci�c system is autonomous, even
though a general de�nition is di�cult to achieve. The desire to avoid protracted and largely uninformative
debates about de�nitions extends across much of the SASWG’s work. Nevertheless, it is helpful to provide
outline descriptions for some terms used in this document. Speci�cally:

• A system is, typically speaking, an individual vehicle rather than, for example, a swarm of cooperating
vehicles or the control logic for vehicle navigation. The same general level applies to autonomous
systems that are not vehicle-based: for example, a system to support medical diagnosis may include
patient records, a scanner and communication networks, as well as an autonomous decision-making
algorithm. A key concept is that the system can, and would generally be expected to, include elements
that are developed using traditional approaches, rather than, for example, ML. Many real-world
situations are likely to include “systems of systems”.

• An algorithm implements, possibly indirectly, aspects of a system’s behaviour. Generally speaking, an
algorithm would be a single implementation developed using an ML technique, for example, a Neural
Network (NN), a Support Vector Machine (SVM) or a random forest. A system may include multiple
algorithms.

• A computation is the physical embodiment of an algorithm. In some contexts, the words are largely
interchangeable. A key distinction is that computation includes considerations related to supporting
software and to computational hardware; neither of these is included within algorithm.
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• A system, or algorithm, is in operational use when it is being used for its intended purpose; that is,
when its outputs have real-world consequences. Note that it is possible for learning to continue
whilst a system, or algorithm, is in operational use.

• A data set is used to train, test and verify an algorithm using ML techniques. The part of the data set
used to develop the algorithm is referred to as training data; the part used for testing is test data. Both
training data and test data tend to be used by the development team. A separate data set, termed
veri�cation data may be used for assurance, independent of that team. Note that these de�nitions
apply when the data is used as part of a pre-deployment training and development phase, as well as
when there is continual learning.

• The data set is made up of a number of samples (e.g., images from a camera). Each sample comprises
a number of features (e.g., the colour of a given pixel in that scene). The collection of features de�nes
the input domain. During operational use the algorithm is provided with inputs.

• Providing the algorithm with an input (or, during development, a sample) results in an output. This
description includes cases where an algorithm uses multiple samples (e.g., streaming data) and cases
where the output is multi-dimensional (e.g., a vector of class-membership probabilities).

1.4 Document Structure

The remainder of this document is structured as follows:

• Section 2 describes the computation-level framework that has been adopted by the SASWG.

• Section 3 discusses computation-level objectives.

• Section 4, Section 5, Section 6 and Section 7 are included as place holders. The �rst two of these
relate to the architecture-level framework and objectives, respectively. The latter two relate to similar
items for the system-level. These sections will be populated in a future version of this document.

• Section 8 contains a summary list of objectives.

• Appendix A provides justi�cation for the computation-level framework.

• Appendix B provides additional justi�cation (beyond that which is included in Section 3) for the
computation-level objectives.

• Appendix C contains a list of known issues, which will be resolved in future versions.

• Appendix D contains a list of abbreviations.

• Appendix E contains a list of references.

• Appendix F contains a list of contributors.

SC
SC
-1
53
(J
an
20
19
)

3



1 INTRODUCTION

Th
is
p
age
is
in
ten
tion
ally
b
lan
k

4

SCSC-153 (Jan 2019)



2 Computational-Level Framework: Description

This section describes the framework adopted by the SASWG for computation-level considerations. It is a
slightly extended version of the one presented by Faria in [16]. The justi�cation for adopting this framework
is provided in Appendix A.

The framework consists of six projections, each of which views the computation’s properties along a
different axis. The projections are not intended to be independent: they are different ways of viewing
the same thing. To facilitate discussion, the projections have been arranged in an approximate hierarchical
order, working from more abstract to more concrete considerations, speci�cally: adaptation; experience;
task; algorithm; software; hardware. Each of these projections is considered, in turn, in the following
sub-sections. The section concludes with a brief tabular summary of the entire framework.

2.1 Projections

2.1.1 Adaptation

This projection focuses on management and control of changes to the algorithm after its initial operational
use. Speci�cally, it focuses on updates that would not be produced by following the full engineering process
associated with development of an algorithm using ML techniques.

It includes, for example, considerations related to on-line learning and provision of nightly updates. In
cases where multiple algorithms are deployed operationally (e.g., across a �eet of vehicles, or in multiple
data centres), it also includes adaptation at the “population” level (e.g., whether all vehicles, or data centres,
are simultaneously updated to the same version of the algorithm, or whether some diversity is deliberately
maintained).

2.1.2 Experience

This projection focuses on the data set used to train and develop the algorithm. When relevant, this also
includes training that continues during operational use, based on the data set provided by the system’s
experiences.

It includes consideration of how the data was generated, or collected, as well as the use of pre-existing data
sets and the nature of any preprocessing activities (e.g., to synthesise missing values). It also encompasses
whether the training data is suitably representative of data that is observed (or expected to be observed)
during operational use; this includes consideration of the environment(s) associated with the training data.
The type of con�guration management applied to the data is also relevant within this projection.

2.1.3 Task

This projection focuses on the performance of the computation. As such, it is mainly concerned with
requirements, that is, what the system requires from the algorithm.

It includes the metrics that are used to measure performance, as well as the performance threshold
required to allow the algorithm to be used safely within a system (which may depend on the intended
operating environment). Items like accuracy, precision and recall are relevant here although, by themselves,
they may not be su�cient. There may, for example, be a need to provide con�dence in an algorithm’sSC
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output. Additionally, there may be a need to demonstrate some non-functional characteristics (e.g., an
output will always be provided within a given time).

2.1.4 Algorithm

This projection focuses on the choice of algorithm, for example, whether an NN, a SVM, a random forest,
or some other approach is used. As such, it is mainly concerned with providing justi�cation for decisions
relating to the chosen implementation.

It includes the choice of any hyper-parameters associated with the algorithm: for example, the structure
of, and activation function used within, a NN, or the number of trees in a random forest. It also includes
decisions related to the training process: for example, the number of training epochs that are used, or the
stopping condition that is implemented.

2.1.5 Software

This projection focuses on the software instantiation of the algorithm; that is, the translation of
mathematics or pseudo-code into a form that can be directly executed on computational hardware. More
speci�cally, this projection is concerned with whether the implementation is a valid representation of the
algorithm.

The projection includes the choice of programming language. It also includes the choice of software
libraries used to support the development and operational implementation of an algorithm. Tools used
to support software development and veri�cation are also captured in this projection.

The choice of, for example, programming language and supporting tools may be different during training
than in operational use. Hence, it is convenient to consider this projection twice: once from a training and
development perspective and once from the perspective of operational use of the algorithm.

Many of the considerations relevant for this projection are adequately addressed by existing software safety
standards.

2.1.6 Hardware

This projection focuses on computational hardware. It includes consideration of the type of hardware,
for example: Central Processing Unit (CPU); Graphical Processing Unit (GPU); Tensor Processing Unit (TPU);
Field Programmable Gate Array (FPGA). It also includes whether this hardware is dedicated to one algorithm
or whether it is used to support multiple algorithms (or multiple system features, including non-AI ones).

As with the previous projection, it is convenient to consider the hardware projection from both
development and operational use perspectives.

Like the previous projection, many of the considerations relevant for this projection are adequately
addressed by existing (computational) hardware safety standards.
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Table 2 provides a brief summary of the six projections in the computation-level framework that has been
adopted by the SASWG.

Table 2: Summary of Projections Within the Computation-Level

Framework

Projection Outline

Adaptation
Focused on how updates to the algorithm are

implemented

Experience
Focused on the data that is available to train (or develop)

the algorithm

Task
Focused on the performance of the implemented

algorithm; emphasizes requirements

Algorithm
Focused on the type of algorithm that is used;

emphasizes implementation

Software
Focused on the software used to develop the algorithm

and, separately, support its operational use

Hardware
Focused on the computational hardware that is used,

both for development and for operational use
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3 Computational-Level Framework: Objectives

This section lists the objectives associated with each projection of the computation-level framework.
Consistent with the SASWG’s aims, these objectives focus on autonomy-related challenges; they are not
intended to cover all aspects of system development and use.

Each objective is accompanied by a discussion, which illustrates how the objective contributes to the safe
use of a computation within an AS. This is followed by examples of approaches that could be taken to
satisfy, or partially satisfy, the objective. Note that these examples are not intended to be prescriptive;
there may be other ways of satisfying an objective. Likewise, the examples do not necessarily represent a
preferred way of satisfying an objective. They are included solely to demonstrate the feasibility of satisfying
at least part of the objective.

Currently, this document makes no distinction between different types of computation. Likewise, no
distinction is made between computations of different levels of safety criticality; that is, there is no
equivalent of Safety Integrity Levels (SILs) or Development Assurance Levels (DALs). These types of
distinction may be included in future versions of this document. Currently, users of this document may
provide evidence-based, structured arguments to justify why a particular objective need not be considered
for their particular computation. Similarly, users may also argue why a particular objective needs only to
be covered at a super�cial level.

3.1 Adaptation

In some cases, an instance of a computation (i.e., the software and hardware that embody an algorithm)
may be left unaltered after it is deployed into operational use. Alternatively, all subsequent releases may
progress through a full engineering development process. If either of these approaches is adopted then
the adaptation projection is not relevant to that computation.

However, it is expected that most computations developed using ML techniques will be adapted in some
way following their initial operational use. This could be achieved using a variety of mechanisms, including:
online learning (where the algorithm continues learning and, consequently, adapts during operational use);
and nightly over-the-air updates (which are released after a reduced amount of regression testing, rather
than following the full engineering process).

There are three objectives associated with this projection.

COM1-1: Inappropriate or unauthorised adaptations should not occur.

Discussion: Fundamentally, an adaptation changes some aspect of the algorithm’s behaviour. This means
adaptations have the potential to undermine an assurance case and will need to be managed carefully.

For the purposes of this objective, an inappropriate adaptation would be one that did not achieve the
intended aims. As such, the notion of what is inappropriate is, inevitably, context speci�c. Potential
examples include an adaptation that: unintentionally reduces the algorithm’s performance in common
situations; unintentionally reduces the algorithm’s performance in rare situations; alters the algorithm’s
non-functional behaviour in a way that detrimentally affects interfacing items. An adaptation that was
incorrect, perhaps because it did not correspond to the expected information format, would also be
considered to be inappropriate.
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Conversely, an unauthorised adaptation would be one that was made without appropriate authorisation.
This could, for example, occur if a malicious third party, or a rogue employee, implemented an adaptation
that was intended to cause harm. Alternatively, an adaptation that was released by the algorithm
developers but which had not completed the necessary pre-release processes would also be considered
unauthorised.

Examples: Since it uses a very distinct approach it is simplest to consider online learning as a special
case. This is most commonly achieved via Reinforcement Learning (RL). There are a variety of approaches
to ensuring adaptations via RL are appropriate, including: constraining the optimisation criterion; adopting
a risk-sensitive optimisation criterion; having the algorithm ask for help; and using risk-directed exploration
[18]. Alternatively, or additionally, it may be possible to provide a set of abstract policies that formally
constrain the exploration of an RL agent [32] or including a representation of fear within the learning
mechanism [31].

The nature of online learning is that it happens continuously, as a natural part of the algorithm’s use. Hence,
the mechanism by which adaptations are achieved forms part of the full engineering cycle associated with
initial release to operational use. Consequently, the notion of an unauthorised adaptation does not apply
in this case.

For algorithms whose behaviour is not altered by their use, an adaptation involves a deliberate act, typically
loading new parameters (or hyper-parameters). For example, in the case of an NN, an adaptation may
involve loading new network weights and biases. Considerations associated with Parameter Data Items
(PDIs) are important, for example, the data being managed as a distinct entity and its effect on algorithm
behaviour being understood [41].

Some form of testing would be expected to be conducted before an adaptation was performed. This
should be su�cient to prevent cases where the adaptation unintentionally reduces the algorithm’s
performance in common situations. One way of achieving this would be to de�ne a collection of situations,
along with a minimum level of performance in each. Adaptations would only be considered appropriate if at
least the minimum level of performance (including safety and security) was achieved in each situation. This
collection of situations can be viewed as being analogous to a minimal set of regression tests for traditional
software. It can also be viewed as analogous to the criteria used to validate �ight simulation training devices
[15]. Note, however, that aviation is a well-understood domain. Determining an appropriate collection of
situations is likely to be more di�cult in many other domains. Also note that the collection may need to
change, either in response to changes in the algorithm, or changes in the external environment in which
the system is used.

Protecting against the case where the adaptation unintentionally reduces the algorithm’s performance in
rare situations is more di�cult. In many cases a balance has to be found between enacting an adaptation
that will demonstrably bene�t algorithm performance in common situations against the possibility that
the same adaptation could reduce performance (in a way that affects safety) in rare situations. An
evidence-based, structured argument is likely to be required to demonstrate that an appropriate balance
has been achieved. Although they are out of scope for the current document, it is noted that features of
the system architecture (e.g., run-time monitors) could protect against egregious safety failures; if present,
these could simplify the “balance” argument.

There are several aspects to understanding how an adaptation may affect interfacing items. Broadly
speaking, three categories of interfacing item can be considered: items within the same system as the
algorithm; items within other systems; and interactions with humans.

Although it is out of scope of the current document, system-level testing ought to ensure the adaptation
10 SC
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does not adversely affect interfacing items within the system. Likewise, system-level testing also ought to
cover (planned) interactions with other systems.

Interactions with humans are more subtle, especially if the human requires training or certi�cation in order
to use the algorithm. In this case, the impact of the adaptation on user training or certi�cation needs to be
considered. These considerations need to take account of not just the latest adaptation, but the cumulative
effect of all adaptations that have occurred since the last training or certi�cation.

Preventing unauthorised adaptations is, essentially, a cyber security challenge. Guidance on this topic
is available from a number of sources, including cyber security principles for connected and automated
vehicles [27] (which can be generalised to cover a wide range of autonomous systems) and the National
Cyber Security Centre (NCSC)2.

COM1-2: Algorithm behaviour should be appropriate before, during and after an

adaptation.

Discussion: This objective recognises a number of things, speci�cally: adaptations should be performed
against a known baseline; an algorithm may be in use when an adaptation request (or command) is
received; an adaptation cannot be applied instantaneously; and the process of applying the adaptation
may fail.

Any of these factors could undermine an assurance argument. Some, like the �nite amount of time taken
to apply an adaptation, may only undermine an assurance argument for a relatively small amount of time;
others, like the consequences of a failed adaptation, may be persistent.

This objective also recognises that many different types of algorithm behaviour may be appropriate. This is
a consequence of requirements being implicitly expressed via the training data, rather than being formally
decomposed (in a traceable manner) as is the case for traditional safety-related software.

Examples: If all objectives associated with this framework have been satis�ed then the algorithm
behaviour ought to be appropriate before an adaptation is applied. Hence, that part of the objective is
not discussed in detail.

In some cases it may be possible to instantiate two (or more) copies of an algorithm. Such an arrangement
would allow one instantiation to adapt whilst the other continues to respond to operational inputs; it
would also have the additional bene�t of increasing reliability in the context of hardware failures. If
two copies are available then the system can determine a suitable time to switch from one (i.e., the
pre-adaptation algorithm) to the other (i.e., the post-adaptation model). This switch can be implemented in
software, meaning it can be completed without a noticeable impact on the algorithm’s ability to respond to
operational inputs. More speci�cally, this arrangement provides a means of demonstrating that algorithm
behaviour remains appropriate during an adaptation.

If two (or more) copies are not available then the algorithm is likely to have to stop processing operational
inputs before allowing the adaptation to occur. This will require communication between the algorithm
and the system to ensure the gap in processing can be accommodated safely. For example, in the case of
an autonomous car, an adaptation could be postponed until the car is stationary, the parking brake is on,
the engine is turned off and there are no people in the vehicle. An alternative may be to designate safe
regions (e.g., the owner’s garage, the dealer’s service area) and only allow adaptations to occur when the
vehicle is in one of these regions. Whatever approach is used, care needs to be taken to protect against the

2 https://www.ncsc.gov.uk/.SC
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possibility of vehicles or, more generally, systems not being in a situation where an adaptation is allowed
for a prolonged period of time. Additionally, care needs to be taken to prevent removal of the system from
the safe region until the adaptation is complete (and con�rmed successful).

Some aspects of ensuring that behaviour is appropriate after an adaptation are covered by the appropriate
part of Objective COM1-1. The current objective is concerned with cases where the adaptation process
did not complete successfully. Failed adaptations should be detectable using standard approaches to
data integrity and post-adaptation Built-In Test (BIT). In many cases, the most suitable way of handling
a failed adaptation is to revert to the previous “last known good” con�guration. This requires storing
the pre-adaptation algorithm parameters in some way (which happens naturally if there are multiple
instantiations of the algorithm).

In some cases (e.g., when the adaptation addresses a serious �aw in the algorithm) reversion to the
previous con�guration may not be possible, regardless of whether this is readily available. It follows that
every system ought to be capable of being put in a safe state that can be maintained for a considerable
period.

COM1-3: There should be an appropriate level of commonality across multiple

instantiations of an algorithm.

Discussion: Typically, multiple instantiations of an algorithm would be expected to be in operational use
at the same time. This would be the case if, for example, an autonomous vehicle manufacturer had sold
multiple vehicles, because each vehicle would contain an instantiation of the algorithm. Indeed, cases
where an algorithm is unique, in the sense of there only being one operational instantiation at any given
time, might be quite rare.

If multiple instantiations are in operational use then each instantiation would be expected to comply with
all objectives. Nevertheless, having multiple instantiations provides an opportunity to enhance �eet-wide
safety. Consider, for example, a large multi-national organisation responsible for running many data
centres. Every data centre would not be expected to be run at precisely the same software patch level. In
this context, diversity in patch levels offers protection against an unknown common mode failure affecting
all data centres. In addition, it allows for changes to be tested in a small number of data centres before
they are gradually rolled out.

Conceptually, diversity offers the same bene�t for algorithms used in autonomous systems. However, in
this case, a balance needs to be found between the known risks associated with an older implementation
of the algorithm and the potentially unknown risks associated with a newly-produced implementation. An
incorrect balance would adversely affect the algorithm’s assurance argument.

It should also be noted that �eet-level diversity will naturally arise if the algorithm exhibits online learning.
In this case, appropriate measures need to be in place to monitor and control this diversity. Otherwise, two
apparently identical autonomous systems may exhibit very different behaviours; this could confuse users
(and interacting systems) with potentially unsafe results.

Examples: The �rst step in managing diversity across algorithm instantiations within a �eet is to gain
information on the individual algorithms [2]. This could involve reporting from every autonomous system,
or from a suitably-sampled subset of them. With this information, the algorithm developer is able to
replicate the algorithm’s behaviour in a synthetic environment (that has been demonstrated to be suitably
representative).
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This allows the developer to measure the performance of the algorithm in a number of standard scenarios
(or situations). The choice of scenarios would be expected to be described and justi�ed as part of the
algorithm’s assurance argument. Care needs to be taken to ensure that the selection of scenarios is
suitable for the intended use. However, experience from other areas suggests this may be possible: for
example, a standard set of situations is used when testing an aircraft �ight simulator [15]. The notion of
situation coverage could also inform this decision [1].

Using standard scenarios provides a practical measure of the impact of diversity across the various
algorithm instantiations. This may be supplemented by a theoretical measure of diversity, which could
be calculated by sampling inputs from across the algorithm’s input domain and comparing the results
provided by different instantiations.

3.2 Experience

The experience projection is focused on the training data that is used to develop the algorithm. This data
is crucially important because it encodes the requirements that the algorithm has to satisfy. Unfortunately,
this encoding is implicit, in the form of the desired input-output relationship, so it cannot be directly
examined. Hence, assurance that the algorithm’s behaviour will be appropriate has to include aspects
relating to the data.

There are four objectives associated with this projection.

COM2-1: The data should be acquired and controlled appropriately.

Discussion: Data is obviously a very important part of an ML approach. Consequently, any assurance
argument that addresses the ML-produced algorithm also has to address the data used to support its
development. More particularly, if the source of the training, test and veri�cation data cannot be adequately
de�ned, or if this source is not appropriate for the intended use, then it will be di�cult to produce a
compelling assurance argument.

Examples: The �rst part of this objective relates to the way the data is acquired. For example, this could
involve observing an natural process over which little control can be applied, or it could involve controlled
trials; alternatively, it could involve the use of a synthetic environment fromwhich training data is generated.

Ideally, the data would be acquired in a controlled manner using a documented process, which takes
account of the prevailing environmental features (e.g., weather, system architecture) during collection.
Changes to the acquisition method would be formally managed. Also, any software used to support data
acquisition would be shown to be correct. In some ways, these considerations mirror those related to the
use of Product Service History (PSH) in the aviation domain [8].

If a complete data set is acquired from an external party then care should be taken to ensure that it has
not been subject to “Data Poisoning”; for example, the addition of a small number of maliciously crafted
samples can create a backdoor [9]. The same techniques used to con�rm the authenticity of information
downloaded from the Internet (e.g., checksums) may be helpful here. When using data from an external
party, care also needs to be taken to ensure it is not accidentally �awed, for example, because of translation
issues (e.g, through different use of common terms like “speed”).

Regardless of how the data is acquired there is also a need to analyse and quantify uncertainty. This
may arise, for example, from sensor noise when measuring samples. Another potential source is labellingSC
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uncertainty: for example, should a person walking next to a bicycle be classi�ed as a pedestrian or a cyclist?
This can be an issue if labelling is conducted by a team of humans [12].

The second part of this objective relates to control of the data. More speci�cally, the data would be
expected to be subject to some form of con�guration management process, which protects it from
accidental or unauthorised changes. Standard con�guration management tools are likely to be suitable
for this purpose, although the large-scale, often static, nature of training data may mean they are not
optimal.

Note that algorithms featuring online learning will continue to receive training data during operational use.
This indicates there may be a need to include safeguards so that only suitable data is used for learning
purposes. These could, for example, check that inputs are su�ciently similar to those that have been seen
before, either because they were included in the original, pre-deployment training data or because they
have previously been observed in operational use; these two conditions allow gradual expansion of the
range of suitable data as the algorithm learns. The notion of “su�cient similarity” bears some relation to
the concept of distribution shift3 [35], but here it involves comparing a single sample with a distribution,
rather than the more typical case of comparing two distributions.

COM2-2: Pre-processing methods should not introduce errors.

Discussion: Just because data has been collected in a controlled manner (as indicated by the preceding
objective), it does not necessarily follow that the data is suitable for training an algorithm. In many ML
applications, there is a step between acquiring data and having data in a form suitable for algorithm
development. This step generally involves pre-processing the data. It could include, for example, detecting
missing data items and replacing them with suitable surrogate values; it could also include normalising
features. Since pre-processing directly affects the data used to develop the algorithm, any errors in
pre-processing could undermine a computation-level assurance argument.

Pre-processing is likely to occur during operational use as well. For example, raw sensor readings are likely
to be processed in some way before being provided as inputs to an algorithm. Although it is important,
this type of pre-processing is considered to be a system-level issue, rather than a computation-level issue.
Consequently, it is out of scope for the current discussion.

Examples: Typically, pre-processing would be expected to be achieved using traditional types of software.
This means that the approaches used to provide assurance for traditional software are also applicable
here. In addition, pre-processing software bears some similarities to tools used to support traditional
software development. One way of achieving con�dence that those tools do not introduce errors is the
notion of Tool Quali�cation. Hence, concepts like Tool Quali�cation Levels (TQLs) [42] are also relevant. In
that speci�c context, pre-processing software can be considered as a tool that can introduce errors into
the operational software (rather than a tool that can only fail to detect an error).

COM2-3: The data should capture the required algorithm behaviour.

Discussion: Even if the data is suitable for training an algorithm, it does not necessarily follow that it is
suitable for training a speci�c algorithm. Fundamentally, training data encodes the requirements that the
algorithm’s behaviour is intended to satisfy, so a data set suitable for training an algorithm to recognise
road signs will not be suitable for training an algorithm to recognise human emotions. Unfortunately, the

3 Distribution shift is also considered in Objective COM2-414 SC
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data does not encode the requirements in an explicit manner. Consequently, these requirements cannot
be directly reviewed by stakeholders or algorithm developers. This means an argument needs to be made
as to why a particular set of data is appropriate for a speci�c algorithmic behaviour.

Examples: Exploratory data analysis [50] would be a sensible �rst step in understanding the properties of
a data set and, consequently, its applicability to a particular algorithm. This could include plotting marginal
distributions of each feature and calculating two-way correlation coe�cients. It can also be helpful to
identify typical and outlier samples (possibly on a class-by-class basis, for classi�cation problems) [3]. The
concept of outlier samples can also be extended to include rare situations, the presence (or absence) of
which is likely to be informative. The insights gained from this work can inform discussions involving domain
experts and ML specialists, as well as supporting an assurance argument.

In essence, part of this objective is about understanding the relationship between the training data and the
algorithm’s application domain. In some cases, this relationship can be quite subtle. Consider, for example,
an algorithm intended to recognise British tra�c signs. Despite the restriction of the algorithm’s domain to
British tra�c signs it may be appropriate to train it on British, Continental European, and worldwide, tra�c
signs. Along with apparent economic bene�ts (e.g., if the same algorithm could subsequently be employed
in different markets), this approach could increase algorithm robustness.

A related, but more extreme, version of this general approach is transfer learning, where a pre-trained
network is specialised, or �ne-tuned, for a speci�c task. This approach is often used for image recognition
tasks. In this case, the nature of the pre-trained network would be expected to be discussed in any
assurance argument. This discussion would also be expected to address the possibility of the pre-trained
network introducing a backdoor, or otherwise undesirable, behaviour [21].

COM2-4: Adverse effects arising from distribution shift should be protected against.

Discussion: Distribution shift occurs when the operational inputs provided to the algorithm differ, in a
statistically meaningful sense, from the samples used during development. This is important because, in
addition to encoding requirements, training data also captures information relating to the domain in which
the algorithm can safely be used.

Examples: There are a number of different types of distribution shift, including cases where the inputs
change and cases where the input-output relationship changes [35]. The possibility of each type of
distribution shift would be expected to be considered and appropriate protection provided. Any detection
of distribution shift is statistical in nature. This means that a balance needs to be struck between the
possibility of false alarms (i.e., false positives) and the probability of false negatives; this balance may be a
hard wired feature, or it may be tuneable.

Since the algorithm is meant to generalise the input-output mapping of the training data, there are
dangers in taking too rigid a statistical approach. More speci�cally, the inputs seen by the algorithm during
operational use are not expected to be precisely the same as those used during training. Consequently,
the algorithm may be better suited to providing operational predictions for inputs that lie inside (i.e., within
the convex hull of) the training data than to providing predictions for inputs that lie outside the training
data.

There are other reasons why a naive comparison of training and operational distributions is likely to
be inappropriate. For example, to increase robustness the training data may be supplemented with
adversarial examples [20]. Additionally, the frequency of “rare but important” examples may be arti�cially
increased within the training data by generating synthetic data.
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Also note that, in some cases, data can be statistically similar, but semantically different. Consider a
distribution with zero mean, that is symmetric about this value; swapping the sign on all samples would
produce a data set that was statistically similar, but semantically different. This possibility should be
considered and, if appropriate, protected against.

From a computation-level perspective, the focus is on detecting distribution shift. Appropriate responses
are best enacted at either the architecture-level or the system-level.

3.3 Task

This projection is focused on the performance of the algorithm; that is, whether it can be safely used
within the intended system context. As with traditional safety-related software, requirements would be
expected to be passed down from the system-level. Whilst there are some similarities, there are also some
differences between evidence that traditional software satis�es its requirements and the corresponding
evidence for algorithms developed using ML techniques. This evidence is, obviously, an important
component of an assurance argument.

There are seven objectives associated with this projection.

COM3-1: The functional requirements imposed on the algorithm should be de�ned and

satis�ed.

Discussion: Ultimately, the algorithm is expected to be used as part of a system. In order to perform as
part of that system, the algorithm will have to satisfy a number of functional requirements. For example,
rather than returning a single prediction, it could be required to return a probability vector that expresses
the likelihood of an input belonging to each of a collection of classes. Alternatively, or additionally, it may
be required to provide some measure of con�dence in its prediction.

Examples: Traditional software testing techniques may be helpful in demonstrating some of an algorithm’s
functional properties. Depending on the criticality of the algorithm, these may involve formal review of test
cases and tests being independently conducted (and witnessed).

InML approaches, functional requirements are not systematically decomposed into low-level requirements
that can be unambiguously coded against. This means that traditional software testing techniques should
be supplemented by other types of testing. These could include the types of test that are more traditionally
seen at the system-level.

Note that the performance of the algorithm is considered in Objective COM3-3.

COM3-2: The non-functional requirements imposed on the algorithm should be de�ned

and satis�ed.

Discussion: The algorithm will be embodied in a wider system. This means it will have to satisfy some
non-functional requirements. For example, it may be required to produce an answer within a given time.

Examples: As discussed in Objective COM3-1, traditional software testing techniques may be helpful
in demonstrating some of an algorithm’s non-functional properties, but they should be supplemented
by other forms of testing. This could be informed by a set of standard scenarios [10], or situations (as
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discussed in Objective COM1-3).

This will depend, however, on the technologies in use. AS often use novel technology, and it may be that
there are no established techniques for measuring a given non-functional property.

A key non-functional requirement for traditional safety-related software is execution time. Consequently,
signi�cant effort is often expended measuring (or, in some cases, calculating) the Worst Case Execution
Time (WCET). Many algorithms developed using ML techniques will apply exactly the same computational
process, regardless of the input; this is the case for NNs, for example. This means that establishing WCET
for these algorithms may be no worse than is the case for traditional software.

There are, however, uses of AI for which this is unlikely to be the case; route planning is a possible
example. In such circumstances, WCET estimates would be expected to be guided by both knowledge
of the algorithm and the likely ways in which it will be used.

COM3-3: Algorithm performance should be measured objectively.

Discussion: Fundamentally, this objective is about how performance is measured. The question of what
level of performance is required is, essentially, a system-level concern.

Typically, an algorithm would be expected to achieve at least a minimum level of performance. For
classi�cation algorithms, this often involves measuring properties like precision, recall or accuracy. These
are measured using a validation data set, which is withheld from the training process for this purpose.
Note, however, that this involves a statistical measure of correctness.

Examples: Although they can be useful, there are limits to what can be gained from measuring properties
like precision, recall and accuracy. For example, the existence of adversarial inputs (i.e., inputs that are
very close to a sample in the training data, but which are con�dently predicted as belonging to a different
class) for well-performing algorithms (e.g., [49]) indicates these measures are unlikely to capture all relevant
features of algorithm behaviour.

Special care needs to be taken if the data set is imbalanced; for example, if in a classi�cation problem a
large proportion of the data falls within a single class. In such cases poorly chosen performance measures
can be dominated by the algorithm’s performance on the large class [23].

COM3-4: Performance boundaries should be established and complied with.

Discussion: Depending on the nature of the algorithm’s input domain, theremay be some combinations of
features that do not represent a valid input. Consider, for example, the classic Iris data set that is available
from the University of California, Irvine (UCI) Machine Learning Repository [13]. This relates information
on speci�c Iris features (e.g., petal sizes) to the associated species of plant. In this case, there is some
relationship between the length and width of an Iris petal. Hence, even though it would fall inside an
algorithm’s input domain, it would be unreasonable to expect the algorithm to predict Iris species for a
very wide, very short petal (since this combination does not occur in nature).

More generally, as noted above (in sub-section 3.2), the training, test and veri�cation data encodes
information about the region of applicability for the algorithm. Since this data covers the scope over which
the algorithm has been developed and tested, this also establishes boundaries (albeit fuzzy ones) within
which the measured performance may, in some sense, be expected.

SC
SC
-1
53
(J
an
20
19
)

17



3
C
O
M
PU
TA
TI
O
N
A
L-
LE
VE
L
FR
A
M
EW
O
R
K:
O
B
JE
C
TI
VE
S

Note that the question of what response should be provided if the algorithm receives an invalid input is
best addressed at the system level. As such, it is not considered here. If appropriate, this response could
also be extended to realistic, but very unlikely, points in the input domain.

Examples: The approach to this objective is similar to that of Objective COM2-4. However, the two
objectives differ in that COM2-4 adopts a more theoretical, data-focused approach, whereas this objective
takes greater consideration of the wider system and application domain.

COM3-5: The algorithm should be veri�ed with an appropriate level of coverage.

Discussion: Branch coverage, statement coverage and Modi�ed Condition / Decision Coverage (MC/DC)
[11] are well established measures of test coverage for traditional software. These measures, and other
related ones, allow judgements to be made regarding the su�ciency of a test set (e.g., one based on the
software requirements). More colloquially, in some sense they allow an informed decision to be made that
su�cient testing has been achieved.

From the perspective of an algorithm developed using ML approaches there is a similar need to provide
objective evidence that a su�cient level of testing has been completed.

Examples: Coverage measures would be expected to consider two perspectives: one focused on the
input domain; and one focused on the internal features of the algorithm.

Approaches that address the former perspective (i.e., the input domain) are likely to be common across
all ML approaches. These may consider the input domain it its raw form (i.e., as measured by system-level
sensors); alternatively, they may consider a simpler representation of this data, for example, one developed
using Principal Component Analysis (PCA). In some cases, they may also involve approach-speci�c
characteristics, for example, considering the feature space represented by a particular layer in a neural
network. However, since this space is dependent on the training data, by themselves these types of
consideration would not be su�cient. One option may be to consider characteristic sets that categorise
input scenarios (e.g., by weather, road type, tra�c level) and then establish a form of combinatorial
coverage across these sets [10].

Approaches that address the latter perspective (i.e., algorithm internal features) are likely to be speci�c to a
particular type of algorithm, or family of algorithms. For example, in the case of random forests, a measure
of howmany branches are covered in each tree by the veri�cation data may be informative. Understanding
how this value varies across individual trees in the forest (and, especially, the minimum value) is also likely
to be informative. In the case of neural networks, measures based on neuron activations are likely to be
helpful [48], especially those based on activations of combinations of (rather than individual) neurons.

Another potentially useful approach to establishing test coverage is that of negation. Consider, for example,
a pedestrian detection function. This could be tested with images that: (a) should be classi�ed as containing
pedestrians; (b) might be classi�ed as containing pedestrians; (c) should de�nitely not be classi�ed as
containing pedestrians. More generally, the latter class (which can be viewed as negating the requirement)
can be an easy way of generating powerful test cases.

COM3-6: The test environment should be appropriate.

Discussion: Since test results will form part of the assurance argument, there must be con�dence in
the test environment that produced these results. This environment includes physical assets, software
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code and test cases. In addition, the test environment would be expected to be under con�guration
management, so that it could not be arbitrarily changed.

Examples: Much of this objective would be satis�ed by traditional approaches to the development of
safety-critical, or safety-related, software. However, it is possible, perhaps likely, that the test environment
will include some representation of the real world, for example, because the test environment includes
a representation of the system within which the algorithm is embodied or because it includes a
representation of the real world process that generated the training data. In either case, there is a
need to validate the representation of the real world entity, or process. This could be achieved using
standard approaches for simulation validation [44], potentially supported by a standard set of scenarios
(as discussed in Objectives COM1-1 and COM1-3).

Although it is primarily an architecture-level concern, in some cases it may be helpful to include a run-time
monitor that compares the representation of the real-world included in the test environment with the
world experienced during operational use [17].

COM3-7: Each algorithm variant should be tested appropriately.

Discussion: For the purposes of this document, it is helpful to distinguish between instantiations, which
may yield different behaviour (as discussed in Objective COM1-3), and variants, which are intended to yield
different behaviour. For example, different algorithm instantiations would be expected in all autonomous
vehicles operating in the United States of America, whereas different variants would be needed to obey
state-level driving laws. More generally, algorithm variants can facilitate adherence to local legislation, or
local practices.

Examples: The question of how much testing of one variant can be read across into another is, inevitably,
situation speci�c. Nevertheless, the use of algorithm variants has some similarity to the notion of software
product line development [37].

3.4 Algorithm

Different types of algorithm have different strengths and weaknesses. Hence, the type of algorithm that is
used has to be suitable for the task in hand. In particular, the choice of algorithm should be based on the
requirements it has to satisfy and the application domain; it should not be an arbitrary choice, nor should
it be based solely on developer familiarity.

There are four objectives associated with this projection.

COM4-1: An appropriate algorithm type should be used.

Discussion: A variety of algorithm types are available, including NNs, random forests, SVMs and RL. There
are further divisions within each type. For example, the NN family includes: Deep Neural Networks (DNNs),
which feature hidden layers of neurons; Recurrent Neural Networks (RNNs), which have loops within the
network structure; and Convolutional Neural Networks (CNNs), which have features designed for image
classi�cation.

In most cases, the ML process that produces these algorithms is controlled by hyper-parameters. These
may include, for example: the way the available data is split between development and veri�cation activities;SC
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the number of layers, and the number of neurons in each layer, of a NN; the neuron activation function;
and dropout rates [47].

Examples: Any computation-level assurance argument would be expected to include justi�cation
for the chosen algorithm and, also, any hyper-parameters that were used. This could include
appropriately-referenced theoretical arguments, for example, arguing that the available literature
demonstrates the utility of CNNs in image classi�cation tasks [30].

Empirical arguments are also likely to be required; for example, the performance of a number of different
algorithms could be investigated in order to justify the choice of the �nal algorithm. Likewise, a structured
investigation of the effect of different hyper-parameter settings would be expected.

COM4-2: Typical errors should be identi�ed and shown to be protected against.

Discussion: Broadly speaking, there are four different places where errors can arise: within the training (or
veri�cation) data; within the way individual steps are composed to form an algorithm; within a supporting
framework; and within the execution environment [55]. These approximately map to the experience,
algorithm, software and hardware projections, respectively. Consequently, this objective is concerned with
issues relating to ML approaches in general, the class of algorithm and hyper-parameter choices.

Examples: Comparatively, there is much less experience as to what typical errors may be in algorithms
trained using ML techniques than for traditional safety-related software. Nevertheless, there are some
indications of things that should be avoided, including over-�tting, where the algorithm learns the speci�c
data rather than the generic relationship and data leakage, where the algorithm has access to information
that should not legitimately be available [24]. Adversarial examples may also be a typical error for
large-dimensional data sets [19]. Another typical error may be the under-representation of rare events
in the training data [53].

Whilst some indicative typical errors are beginning to emerge, it is less clear how these errors can be
detected and corrected. In the speci�c case of over-�tting, it appears that groups of neurons that �re for a
single class may be indicative of memorising the speci�c training data, rather than generalisation [34].

Although supporting frameworks can simplify the use of ML approaches, their nature can make it di�cult
to detect errors. For example, many learning processes have stochastic features; this means that bugs are
hard to reproduce and, furthermore, success criteria are statistical in nature (which means incorrect code
can appear to be working) [55].

COM4-3: The algorithm’s behaviour should be explainable.

Discussion: Algorithms developed using ML approaches do not feature the formal, traceable, hierarchical
decomposition of requirements that is typical of traditional safety-related software [4]. This lack of
traceable decomposition contributes to a lack of understanding regarding how a speci�c piece of algorithm
behaviour contributes to the �nal output. Expressed another way, it is easy to see what an algorithm is
doing; it is less easy to see why.

Examples: There are two main perspectives that should be considered when thinking about explaining
behaviour [22]:

• Explaining a single output from an algorithm. A number of approaches have been proposed,20 SC
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including: training simpli�ed (human-understandable) models to represent the algorithm’s behaviour
for the input of interest [39]; and providing visual representations [26].

• Explaining algorithm behaviour in general. There is apparently less work in this area. It is notable
that behaviour in general cannot be explained by looking at behaviour in even a large number of
individual cases: the non-linear nature of many ML-developed algorithms means it is not appropriate
to extrapolate from the speci�c to the general.

The objective of explainable behaviour suggests a preference for low-complexity approaches. However,
in isolation, these approaches may not be able to achieve the required level of performance. Combining
several algorithms, either in series or in parallel, may be a suitable way forward.

Depending on the way the algorithm is used, the need to explain the algorithm’s behaviour, which is
an important part of any computation-level assurance argument, may have to be balanced against the
possible effects an explanation may have. Consider, for example, a medical diagnosis system that uses
doctor’s notes as one of many inputs. If the doctors were informed that using a particular word (e.g.,
“unusual”) was a signi�cant trigger for a particular decision from the algorithm, this may change the way
they write their notes (which would be a form of distribution shift, so Objective COM2-4 is relevant). Whilst
this is a system-level consideration, it is informed by computation-level knowledge.

Although the precise details are outside the scope of this document, it should be noted there may be legal
(or ethical) factors that affect the extent to which an algorithm’s behaviour has to be explained [51].

COM4-4: The algorithm should support post-incident analysis.

Discussion: The process of air accident investigation is, arguably, one of the main reasons that air travel is
comparatively safe. Given the relative immaturity of autonomous systems, analysis of incidents (including
those that do not result in an accident) is likely to make a signi�cant contribution to safety in this �eld.
Consequently, the algorithm is expected to support post-incident analysis.

Examples: This objective is related to Objective COM4-3 in that explanation of a single result (or a small
number of results) from the algorithm will be an important part of the post-incident analysis. However,
su�cient information needs to be recorded to allow the algorithm’s behaviour to be reconstructed after
the incident. This may involve storing internal state information, including any data used to support
non-deterministic choices within the algorithm.

Some aspects of this (e.g., provision of su�cient storage space) are system-level issues. Other aspects may
affect both the system and the algorithm: for example, a requirement to support post-incident analysis
for anything that has occurred sometime in the last 30 days may drive a different algorithm design to a
requirement to support investigations over a 30-second period.

A computation-level assurance argument would be expected to demonstrate that post-incident analysis
can be conducted. One way this may be achieved is by treating discoveries during development and testing
as pseudo-incidents and con�rming that su�cient information was recorded to support post-incident
analysis.
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3.5 Software

Any algorithm will rely on software. Consequently, software needs to be considered in a computation-level
assurance argument. The software associated with development of the algorithm is likely to be different
to the software employed during operational use. Consequently, it is helpful to consider objectives in the
software projection from both development and operational use perspectives.

There are two objectives associated with this projection.

COM5-1: The software should be developed and maintained using appropriate standards.

Discussion: Even though supporting libraries, or tool kits, are available, at some point an algorithm will
almost certainly rely on some traditional-style software (e.g., because this is what the supporting library is
implemented in). Faults in this software have the potential to undermine an assurance argument.

Examples: Much of this objective is likely to be addressed through the use of an existing standard
for safety-critical software development (e.g., [41]). This should help prevent typical errors (e.g., integer
over�ow) from being introduced. There are, however, a number of areas where an existing standard may
not be straightforward to apply.

Firstly, generally speaking, supporting libraries are not developed to such rigorous standards. There are
several potential approaches to this challenge. For example, it may be possible to provide additional
evidence that relates to the portion of the framework that is actually used. Alternatively, it may be possible
to compare the results from different (independently developed) libraries [46]. It may also be possible
to re-implement the ML algorithm from scratch (e.g., use a library to investigate multiple algorithms,
then re-implement only the chosen one). Whatever approach is adopted, a computation-level assurance
argument would be expected to provide a justi�cation as to why any supporting framework is suitable.

Secondly, the pervasive nature of the framework means it is inappropriate to treat it as Software of
Uncertain Pedigree (SOUP) [29]. In particular, it is not possible to put the framework in a bounded,
protected environment and carefully monitor the inputs and outputs to that environment.

Thirdly, rather than developing an algorithm from scratch, signi�cant savings might be achieved by starting
with a pre-trained model. However, there is a possibility that these models could include trapdoors that
cause the model to exhibit inappropriate behaviour in very speci�c circumstances [21]. The nature of
these trapdoors means it is unlikely that they will be discovered simply by running tests through the
model. Consequently, any use of pre-trained models would be expected to be explicitly justi�ed in any
computation-level assurance argument. For example, pre-trained models should be obtained from trusted
sources, using a distribution mechanism that provides strong guarantees on integrity.

COM5-2: Software misbehaviour shall not result in incorrect outputs from the algorithm.

Discussion: Generally speaking, most safety-related systems that use software include protections against
software failures or, equivalently, cases where the software does not behave as expected. This prevents
errors propagating through the system and allows restorative measures to be implemented (e.g., restarting
an application). The key issue is that software misbehaviour is detected and responded to [38].

Examples: Algorithms developed using ML approaches do not fail (or misbehave) in the same way as
traditional software. In particular, it is not apparent that all failures will be readily detectable from outside
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the algorithm. Hence, there may be bene�t in including some form of BIT in the algorithm, which provides
con�dence that it is operating as expected [45].

Some algorithms may provide a measure of con�dence associated with their output. That is, rather than
simply classifying an image as a “cat”, the information provided may be a 75% con�dence the image is a
“cat”, a 13% con�dence the image is a “dog”, and so on. Whilst it may be helpful in some circumstances,
this may not be su�cient to fully address this objective, not least because adversarial examples show NN
can be con�dent in their output yet still wrong [49].

3.6 Hardware

In order to function, any algorithm will rely on computational hardware. Consequently, hardware needs to
be considered in a computation-level assurance argument. The hardware associated with development of
the algorithm is likely to be different to the hardware employed during operational use. Consequently, it
is helpful to consider objectives in the hardware projection from both development and operational use
perspectives.

There are two objectives associated with this projection.

COM6-1: Appropriate computational hardware standards should be employed.

Discussion: Similar to Objective COM5-1, ultimately, any algorithm will run on some form of computational
hardware. This hardware needs to be considered in a computation-level assurance argument.

Examples: Again, similar to Objective COM5-1, much of this objective may be addressed by existing
standards (e.g., [40]). In some cases this may be straightforward; in others, the specialist, complex nature
of the hardware may pose challenges. For example, this hardware could include GPUs or TPUs, used for
massively parallel calculations; alternatively, it may involve a complex System-on-Chip (SoC), featuring a
combination of processor cores, GPUs (or TPUs) and bespoke components (e.g., video coders / decoders).

COM6-2: Hardware misbehaviour shall not result in incorrect outputs from the algorithm.

Discussion: There are several reasons why computational hardware may not behave as expected;
Single Event Upsets (SEUs) are one example. Another aspect, speci�c to algorithms developed using
ML techniques, is differences in development hardware and operational hardware (which may mean the
operational performance differs from what would be expected).

Examples: Any computation-level assurance argument would be expected to consider the possibility
of hardware misbehaviour and offer protections against it. This includes SEUs. It also includes the
effect of different numerical precisions being used on development and operational hardware, as well
as the possibility of non-deterministic behaviour on GPUs, even if the algorithm does not feature
non-deterministic components [36].

Considerations relating to Size, Weight and Power (SWaP) maymean the computation hardware used to run
the algorithm is also used for other purposes. In such cases, the assurance argument would be expected
to demonstrate neither of these uses will interfere with the other. Standard approaches to partitioning are
likely to be helpful.SC
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Depending on the system, allocation of software to computational hardware may be �xed at design time
or it may be dynamically allocated, possibly changing during operation. In either case, a computation-level
assurance argument would be expected to demonstrate that su�cient resources will be available to allow
the algorithm to complete its processing within the expected amount of time.
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4 Architecture-Level Framework: Description

This section will be populated in a later version of the document.
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5 Architecture-Level Framework: Objectives

This section will be populated in a later version of the document.
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6 System-Level Framework: Description

This section will be populated in a later version of the document.
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7 System-Level Framework: Objectives

This section will be populated in a later version of the document.
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8 Summary

For ease of reference, this section lists the objectives discussed earlier.

8.1 Computation-Level

8.1.1 Adaptation

• COM1-1: Inappropriate or unauthorised adaptations should not occur.

• COM1-2: Algorithm behaviour should be appropriate before, during and after an adaptation.

• COM1-3: There should be an appropriate level of commonality across multiple instantiations of an
algorithm.

8.1.2 Experience

• COM2-1: The data should be acquired and controlled appropriately.

• COM2-2: Pre-processing methods should not introduce errors.

• COM2-3: The data should capture the required algorithm behaviour.

• COM2-4: Adverse effects arising from distribution shift should be protected against.

8.1.3 Task

• COM3-1: The functional requirements imposed on the algorithm should be de�ned and satis�ed.

• COM3-2: The non-functional requirements imposed on the algorithm should be de�ned and
satis�ed.

• COM3-3: Algorithm performance should be measured objectively.

• COM3-4: Performance boundaries should be established and complied with.

• COM3-5: The algorithm should be veri�ed with an appropriate level of coverage.

• COM3-6: The test environment should be appropriate.

• COM3-7: Each algorithm variant should be tested appropriately.
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8.1.4 Algorithm

• COM4-1: An appropriate algorithm type should be used.

• COM4-2: Typical errors should be identi�ed and shown to be protected against.

• COM4-3: The algorithm’s behaviour should be explainable.

• COM4-4: The algorithm should support post-incident analysis.

8.1.5 Software

• COM5-1: The software should be developed and maintained using appropriate standards.

• COM5-2: Software misbehaviour shall not result in incorrect outputs from the algorithm.

8.1.6 Hardware

• COM6-1: Appropriate computational hardware standards should be employed.

• COM6-2: Hardware misbehaviour shall not result in incorrect outputs from the algorithm.

8.2 Architecture-Level

This sub-section will be populated in a later version of the document.

8.3 System-Level

This sub-section will be populated in a later version of the document.
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Appendix A Computation-Level Framework: Justi�cation

This appendix summarises the process used to develop the computation-level framework adopted by the
SASWG. In doing so, it provides some justi�cation for the choice of framework. It also provides some
con�dence that the framework covers all relevant topic areas.

Initially, a small-scale survey of existing computation-level frameworks was conducted. This identi�ed the
items listed in Table 3.

Table 3: Computation-Level Frameworks Considered

Section Framework

A.1.1 Modi�ed Software Safety Assurance Principles

A.1.2 Slightly Extended “Faria Stack”

A.1.3 Douthwaite and Kelly’s “Viewpoints”

A.1.4 Google’s Machine Learning Rubric

A.1.5 Ethical and Safety Principles

A.1.6 Burton’s “Making the Case” Argument

Each computation-level framework is brie�y summarised (sub-section A.1) and a preferred framework is
selected. A top-level mapping between frameworks is completed, to con�rm that the chosen framework
incorporates all relevant parts of the other computation-level frameworks (sub-section A.2). Similar,
top-level mappings from the chosen framework to, �rstly, a typical software development approach and,
secondly, a generic approach to ML-based development are conducted; these demonstrate the framework
provides appropriate coverage of typical development activities (sub-section A.3).

A.1 Computation-Level Frameworks

A.1.1 Modi�ed Software Safety Assurance Principles

The �rst computation-level framework is described in a paper presented at the 2017 SSS [4]. The
paper considers the “four plus one” software safety assurance principles [25] from the perspective of
non-traditional (e.g., ML / AI) software. A slightly revised and extended set of six (or “four plus two”)
principles are proposed:

• Principle One: Software safety requirements shall be de�ned to address the software contribution to
system hazards;

• Principle Two-Primed: The software detailed design shall embody the intent of the software safety
requirements;

• Principle Three: Software safety requirements shall be satis�ed;

• Principle Four: Hazardous behaviour of the software shall be identi�ed and mitigated;

• Principle Four plus One: The con�dence established in addressing the software safety principles shall
be commensurate to the contribution of the software to system risk;
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• Principle Four plus Two: Software required to produce behaviour not predictable at design time
should consider the consequence of behavioural adaptations on its environment.

A.1.2 Slightly Extended “Faria Stack”

The second computation-level framework is a slightly extended version of information presented in a
paper at the International Symposium on Software Reliability Engineering (ISSRE) Workshop on Software
Certi�cation (WoSoCer) [16]. This framework comprises six projections:

• Adaptation, which considers how the computation is updated (e.g., through online learning, through
overnight updates, etc.);

• Experience, which is focused on the data that is available to train a machine learning algorithm;

• Task, which is concerned with the performance of the implemented computation;

• Algorithm, which considers the type of algorithm (e.g., neural network, random forest, etc.);

• Software, which includes considerations such as the language in which the computation is
implemented;

• Hardware, which relates to the computational hardware that is used.

When using this framework it may be helpful to consider, at least, the Software and Hardware projections
from two perspectives, speci�cally training and operational use. For example, it is likely that the
computational hardware used for training will be different to that used during an operational deployment.

A.1.3 Douthwaite and Kelly’s “Viewpoints”

The third computation-level framework was presented at the 2018 SSS [14]. Building on the concept of
distinct viewpoints used in systems engineering, this paper identi�es six viewpoints. Although they were
developed from the perspective of Bayesian Networks, the paper suggests the viewpoints are applicable
to many types of arti�cial intelligence software. The viewpoints are:

• Model, which relates to the structure and parametrisation of the model underlying the learnt
algorithm;

• Data, which covers all data acquisition, processing and storage concerns (including knowledge
engineering and expert elicitation);

• Computational, which includes the properties of all algorithms used for learning and reasoning tasks
within the system, their selection process, and the associated assumptions and design decisions;

• Operational, which focuses on the evolution and maintenance of the system after deployment;

• Technology, which covers the necessity, properties, constraints and assumptions of modelling
frameworks used in the system;

• Implementation, which addresses all “conventional” software and hardware engineering concerns,
including “normal” function allocation, requirements and associated veri�cation and validation
activities.36 SC
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As with the extended “Faria Stack” considered above, there may be advantages in considering some of the
above viewpoints from both training and operational perspectives.

A.1.4 Google’s Machine Learning Rubric

The fourth computation-level framework [6] includes a scoringmechanism that is intended tomeasure how
suitable a machine learning approach is for deployment. It is based on computations used in a web-like
environment, but may be of relevance to wider autonomous systems.

The framework includes four categories, each of which includes several considerations:

• Tests for Features and Data:

– Test that the distributions of each feature match your expectations;

– Test the relationship between each feature and the target, and the pairwise correlations
between individual signals;

– Test the cost of each feature;

– Test that a model does not contain any features that have been manually determined as
unsuitable for use;

– Test that your system maintains privacy controls across its entire data pipeline;

– Test the calendar time needed to develop and add a new feature to the production model;

– Test all code that creates input features, both in training and serving.

• Tests for Model Development:

– Test that every model speci�cation undergoes a code review and is checked in to a repository;

– Test the relationship between o�ine proxy metrics and the actual impact metrics;

– Test the impact of each tunable hyper-parameter;

– Test the effect of model staleness;

– Test against a simpler model as a baseline;

– Test model quality on important data slices;

– Test the model for implicit bias.

• Tests for ML Infrastructure:

– Test the reproducibility of training;

– Unit test model speci�cation code;

– Integration test the full ML pipeline;

– Test model quality before attempting to serve it;

– Test that a single example or training batch can be sent to the model, and changes to internal
state can be observed from training through to prediction;

– Test models via a canary process before they enter production serving environments;

– Test how quickly and safely a model can be rolled back to a previous serving version.

• Monitoring Tests for ML:

– Test for upstream instability in features, both in training and serving;SC
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– Test that data invariants hold in training and serving inputs;

– Test that your training and serving features compute the same values;

– Test for model staleness;

– Test for Not a Number (NaN) or in�nities appearing in your model during training or serving;

– Test for dramatic or slow-leak regressions in training speed, serving latency, throughput, or
Random Access Memory (RAM) usage;

– Test for regressions in prediction quality on served data.

For each item above, one point is awarded for manual tests (including documenting and distributing the
results). A second point is awarded if tests are run automatically and repeatedly. A score is calculated for
each of the four categories by adding the scores for each of the listed items. The overall score is then the
minimum of these four category scores.

A.1.5 Ethical and Safety Principles

The �fth framework identi�es a perspective on the ethics governing decisions around safety-critical
autonomous systems [33]. It aligns with the Modi�ed Software Safety Assurance Principles (discussed
above) and is applicable to ethics only so far as these affect safety.

• Principle One: Ethics requirements governing the autonomous system behaviour shall be de�ned.

• Principle Two: The intent of the ethics requirements shall be maintained throughout decomposition.

• Principle Three: Ethics requirements shall be satis�ed.

• Principle Four: Any autonomous system behaviours which con�ict with the ethics requirements
("ethically hazardous" behaviours) shall be identi�ed and mitigated.

• Principle Four plus One: The degree of rigour required to address these ethical principles shall be
commensurate with the contribution of the autonomous system to system risk.

A.1.6 Burton’s “Making the Case” Argument

The sixth, and �nal, computation-level framework comes from a paper presented at the 2017 International
Conference on Computer Safety, Reliability, and Security [7]. The paper outlines an assurance case
structure for a highly automated driving system, which could possibly be extended to cover a wide range
of autonomous systems. A Goal Structuring Notation (GSN) approach is used; key features include:

• GOAL G1: The residual risk associated with functional insu�ciences in the object detection function
is acceptable;

• CONTEXT C1: De�nition of functional and performance requirements on the object detection
function;

• ASSUMPTION A1: Assumptions on the operational pro�le of the system’s environment;

• ASSUMPTION A2: Assumptions on attributes of inputs to the machine learning function;

• ASSUMPTION A3: Assumptions on the performance potential of machine learning;38 SC
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• STRATEGY S1: Argument over causes of functional insu�ciencies in machine learning;

• SUBGOAL G2: The operating context is well de�ned and re�ected in training data;

• SUBGOAL G3: The function is robust against distributional shift in the environment;

• SUBGOAL G4: The function exhibits a uniform behaviour over critical classes of situations;

• SUBGOAL G5: The function is robust against differences between its training and execution platforms;

• SUBGOAL G6: The function is robust against changes in its system context.

A.2 Framework Mappings

Following discussions4, the SASWG selected the extended “Faria Stack” as the basis for the
computation-level framework. The following paragraphs brie�y discuss each projection of the extended
“Faria Stack”, taking into account the other frameworks outlined in the preceding sub-section. Within these
discussions:

• For reasons of brevity, only the top-level of Google’s Machine Learning Rubric is considered.

• Due to their similarity to the Modi�ed Software Safety Assurance Principles, the Ethical and Safety
principles are not explicitly considered.

• For simplicity, only the goals and subgoals are considered from Burton’s “Making the Case” Argument.

The discussions also include a “Not Addressed” pseudo-projection, which captures considerations that
do not readily relate to any of the projections. By checking the contents of this pseudo-projection, and
con�rming that it contains nothing signi�cant, con�dence can be gained that the adopted framework
covers all relevant topics.

A.2.1 Adaptation

The notion of adaptation is directly related to Principle Four plus Two of the Modi�ed Software Safety
Assurance Principles. It is also directly related to Douthwaite and Kelly’s Operational viewpoint.

Possible changes between training and operational data relate to theMonitoring Tests for ML category from
Google’s Machine Learning Rubric, and also to Subgoal G3 from Burton’s “Making the Case” Argument.

Using adaptation, or making a conscious decision not to use it, is related to robustness to context changes,
which is Subgoal G6 from Burton’s “Making the Case” Argument.

A.2.2 Experience

Consideration of the data used to develop the algorithm directly relates to Douthwaite and Kelly’s Data
viewpoint, and also to the Tests for Features and Data category from Google’s Machine Learning Rubric.

The way the data re�ects the operating context directly relates to Subgoal G2 from Burton’s “Making the
Case” Argument.

4 SASWG 7, 17 April, York.SC
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A.2.3 Task

Understanding the task should also include understanding the way it contributes to the wider system and,
also, any associated computation (or software) safety requirements. This consideration relates to Principle
One of the Modi�ed Software Safety Assurance Principles.

Performance measurement against the intended task ought to include explicit measures against
requirements (including safety requirements). It also ought to consider whether the computation has
introduced any new hazards. These considerations relate to Principles Three and Four of the Modi�ed
Software Safety Assurance Principles. They also relate to Goal G1 from Burton’s “Making the Case”
Argument.

More generally, performance management relates to the Tests for Model Development category from
Google’s Machine Learning Rubric.

The properties of the operationally-�elded computation relate to Douthwaite and Kelly’s Computational
viewpoint.

A.2.4 Algorithm

The link between choice of algorithm and intended task mirrors the link between requirements (including
safety requirements) and detailed design. This relates to Principle Two-Primed of the Modi�ed Software
Safety Assurance Principles.

Part of choosing a speci�c algorithm also includes choosing hyper-parameters (e.g., number of nodes
and layers in a neural network). This relates to Douthwaite and Kelly’s Model viewpoint. More general
algorithm-related choices relate to Douthwaite and Kelly’s Computational viewpoint.

A.2.5 Software

The choice of software (for both development and operational use) is part of detailed design. This relates
to Principle Two-Primed of the Modi�ed Software Safety Assurance Principles. It also relates to Douthwaite
and Kelly’s Technology and Implementation viewpoints, and also to the Tests for ML Infrastructure category
from Google’s Machine Learning Rubric.

A.2.6 Hardware

The choice of hardware (for both development and operational use) is part of detailed design. This relates
to Principle Two-Primed of the Modi�ed Software Safety Assurance Principles, to Douthwaite and Kelly’s
Implementation viewpoint, and also to the Tests for ML Infrastructure category from Google’s Machine
Learning Rubric.

The possibility of different behaviour on development (training) and operational (execution) platforms
relates to Subgoal G5 from Burton’s “Making the Case” Argument.
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A.2.7 Not Addressed

The chosen computation-level framework does not readily address Principle Four plus One of the Modi�ed
Software Safety Assurance Principles: “The con�dence established in addressing the software safety
principles shall be commensurate to the contribution of the software to system risk”. This is not a signi�cant
concern as this principle is a cross-cutting issue for all assurance, and thus not something that has to be
speci�cally addressed at the computation level.

In addition, the framework does not readily address Subgoal G4 of Burton’s “Making the Case” Argument,
“The function exhibits a uniform behaviour over critical classes of situations”. It is not immediately clear
whether this, especially the “uniform behaviour” part, is a generic requirement that should be satis�ed by
every computation. If it is a requirement for a particular application then it should be addressed by the Task
level (via the relationship to Principle One of the Modi�ed Software Safety Assurance Principles).

A.2.8 Relationship Summary

For ease of reference, the relationships outlined above are summarised in Table 4. Note that this
presentation is deliberately simple and top-level.

Table 4: Relationships between Computation-Level Frameworks

Considered

Stack Level

Modi�ed Software

Safety Assurance

Principles

Douthwaite and

Kelly’s

“Viewpoints”

Google’s Machine

Learning Rubric

Burton’s “Making

the Case”

Argument

Adaptation
Principle Four plus

Two
Operational

Monitoring Tests for

ML
Subgoals G3 and G6

Experience - Data
Tests for Features

and Data
Subgoal G2

Task
Principles One, Three

and Four
Computational

Tests for Model

Development
Goal G1

Algorithm Principle Two-Primed
Model and

Computational
- -

Software Principle Two-Primed
Technology and

Implementation

Tests for ML

Infrastructure
-

Hardware Principle Two-Primed Implementation
Tests for ML

Infrastructure
Subgoal G5

Not Addressed Principle Four plus One - - Subgoal G4

A.3 Software and ML Development Mappings

Table 5 maps the framework’s projections to the activities involved in a generic software development [54].

This mapping shows that the chosen computation-level framework is su�ciently complete to address
typical software development activities.
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Table 5: Mapping Projections to Typical Software Development

Adaptation Experience Task Algorithm Software Hardware

Plan Y

Requirements Y

Design Y Y Y

Implement Y Y Y Y Y

Test Y

Transition Y Y Y

To provide further con�dence, Table 6 maps the projects to the steps that are required to produce a useful
ML-based computation [52]. This mapping demonstrates the framework �ts well with development in an
ML context, with most development steps mapping to a single projection. Note that, since the mapping
is to a development approach, no mappings to the adaptation projection would be expected (since that
projection is concerned with post-development updates).

Table 6: Mapping Projections to Typical ML Development

Adaptation Experience Task Algorithm Software Hardware

Frame the question Y

Collect data Y

Select features Y

Choose algorithm Y

Choose metrics Y

Conduct experiment Y Y

Interpret results Y
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Appendix B Computation-Level Objectives: Justi�cation

This appendix provides some additional justi�cation for the computation-level objectives listed in the main
body. This is achieved by mapping those objectives to separately published material, speci�cally:

• A suggested list of requirements for a standard to support the use of NNs in safety-critical applications
[5]. This source dates from 1996. Consequently, it provides a sound theoretical basis, independent
from recent trends, against which computation-level objectives can be compared. However, its
considerations do not encompass the latest research directions. In addition, whilst many of its
requirements are applicable to a number of ML approaches, they have been derived in the speci�c
context of NNs.

• An analysis of gaps in a current automotive standard with regards to the use of ML approaches
[43]. This source dates from 2018, so it encapsulates recent research. However, the chosen
standard, speci�cally International Organization for Standardization (ISO) 26262 [28] is a functional
safety standard; that is, it only addresses unsafe behaviours caused by system malfunctions. For ML
approaches, there is also a need to consider the Safety Of The Intended Function (SOTIF).

For the reasons outlined above, the computation-level objectives derived by the SASWG would not be
expected to directly match the contents of either reference. Nevertheless, the objectives would be
expected to cover all relevant issues raised in the reference material.

It is emphasised that the mappings established below are top-level and approximate. This is considered
appropriate as the mappings are intended to justify (or, if necessary, re�ne) the computation-level
objectives. More speci�cally, the mappings discussed in this appendix were not a key part of the process
by which the computation-level objectives were derived.

B.1 Requirements for a NN Standard

Table 7 lists the requirements noted in [5]. Note that these requirements use the term Arti�cial Neural
Network (ANN), rather than NN, which is preferred in the current document. Where appropriate, relevant
computation-level objectives are highlighted. If no objectives are relevant, justi�cation for this is provided.

Table 7: Computation-Level Objectives Compared against Requirements

for a NN Standard

Standard Requirement Relevant Objectives

Specify how the high-level goals of, or requirements for, the ANN module

are to be obtained
COM3-1, COM3-2

Specify what should be done to ensure that the training data adequately

represent the attainment of the high-level goals
COM2-3

Specify what type of networks can be used, and how each type is to be

unambiguously designated
COM4-1

Specify how the input-output characteristics are to be unambiguously

designated
COM2-1, COM2-2

Specify how the developer must describe the way in which the

performance function for the network operates during training
COM3-3
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Standard Requirement Relevant Objectives

Specify what details the ANN developer must provide regarding the way in

which the ANN module interfaces with the rest of the system
Out of scope: Architecture-Level

Specify the extent of knowledge, relating to neural networks, required of

management and development team personnel
Out of scope: Sta�ng

Specify what development model is to be used for the ANN module COM5-1

Specify any outputs which the ANN module is required to produce in

addition to its primary functional output
COM3-1

Specify whether formal methods or rigorous argument are to be used to

develop the software which implements the neural network
COM5-2

Specify what methods are to be used for quality assurance in the trained

network
COM2-1, COM5-1, COM6-1

Specify that the Veri�cation and Validation (V&V) team should use

generalisation tests on the trained network to verify that it has learned the

principles implicit in the training data

COM3-3, COM3-6, COM3-7

Specify that the V&V team should validate a Safety-Critical Arti�cial Neural

Network (SCANN) by investigating the behaviour of the SCANN over the

whole of the input space

COM3-5

Specify how the developers should check that the initial safety

assessments made for the system are not affected by the ANN module

and how failures in other modules would affect the system, given the

intended operation of the ANN

Out of scope: System-level

Specify that developers establish possible failure modes of the ANN

module itself and the consequences

Out of scope: System-level (supported by

COM2-4, COM3-4, COM4-2, COM5-2,

COM6-2)

Specify how Hazard and Operability Study (HAZOP) is to proceed, regarding

the operation of network
Out of scope: System-level

Specify the brief and form of the HAZOP committee, as well as guide words

for their use
Out of scope: System-level

Specify that a certi�cation standard should insist that the developers build

the network is such a way that the necessary data are available so that it is

possible to do Failure Mode and Effects Analysis (FMEA) and HAZOP

COM4-3, COM4-4

It is apparent that all relevant requirements established by [5] are covered by one or more of the
computational objectives derived by the SASWG. It is also interesting to note that, �rstly, none of the
objectives associated with the adaptation projection are included in Table 7 and, secondly, all other
objectives are included at least once. The �rst observation is believed to be a consequence of the age
of the reference document; the second provides further con�dence that the identi�ed computation-level
objectives are necessary.

B.2 ML-Related Gaps in an Automotive Standard

The analysis of ISO 26262 identi�ed a number of impacted or new Process Requirements (PRs). The
associated phase and description are reproduced (from [43]) in Table 8. Relevant computation-level
objectives are then highlighted; if there are no such objectives then justi�cation is provided.
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Table 8: Computation-Level Objectives Compared against Impacted or

New PRs

Phase Description Relevant Objectives

(5) Initiation Best practices: coding guidelines COM4-2, COM5-1

(5) Initiation ML decision gate Out of scope: Architecture-Level

(6) Software safety

requirements
Requirements speci�cation COM2-3, COM3-1, COM3-2

(6) Software safety

requirements
Requirements veri�cation COM3-3, COM3-5

(7) Architectural design Fault tolerance Out of scope: Architecture-Level

(8) Software unit design,

implementation
Best practices: notations COM4-2, COM5-1

(8) Software unit design,

implementation
Best practices: design principles COM4-2

(8) Software unit design,

implementation

Best practices: data set collection and

veri�cation
COM2-1, COM2-2

(8) Software unit design,

implementation
Best practices: model selection COM4-1

(8) Software unit design,

implementation
Best practices: feature selection COM2-3

(8) Software unit design,

implementation
Best practices: training COM4-2, COM5-1, COM6-1

(8) Software unit design,

implementation
Best practices: data set splitting Out of scope: Approach-speci�c

(8) Software unit design,

implementation
Best practices: validation COM3-3, COM4-2

(8) Software unit design,

implementation
Best practices: testing COM3-3, COM3-7, COM5-2, COM6-2

(8) Software unit design,

implementation
Best practices: testing structural coverage COM3-5

(8) Software unit design,

implementation

Best practices: test vs. operating

environment
COM2-4, COM3-6, COM6-1

(8) Software unit design,

implementation
Best practices: test result explanation COM4-3, COM4-4

(8) Software unit design,

implementation
Best practices: veri�cation

COM3-3, COM3-4, COM3-5, COM3-6,

COM4-4

It is apparent that all impacted or new PRs established by [43] are covered by one or more of the
computational objectives derived by the SASWG. It is also interesting to note that, as for the previous
sub-section, none of the adaptation-related objectives are used and all other objectives are used at least
once. The apparent lack of consideration of the adaptation project may be due to the nature of the source
automotive standard, which is focused on a single product release (which may be expected to have much
longer time scales than those envisaged under adaptation).
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Appendix C Known Issues

This section provides a list of known issues. These are items that were identi�ed, but not resolved, during
the creation of the current version of the document. For some issues, resolution is best considered
at the architecture-level or the system-level, neither of which is addressed in any detail in the current
document. For other issues, resolution needs a greater amount of knowledge and experience than is
currently available. In all cases, the issue was deemed su�ciently important to warrant speci�c capture
and tracking.

Note that the following list is not intended to be complete.

• The most obvious known issue relates to analysing the architecture-level and the system-level to
derive an appropriate collection of objectives at each level. To help identify and organise these
objectives, frameworks will be used at each level.

• At the moment, the document makes no distinction between different criticality levels, for example,
DALs or SILs. As exempli�ed by the last of the “four plus one” software safety assurance principles
[25], it is bene�cial to target effort towards more critical system elements. In order to achieve this,
some form of graduation is necessary. This could be achieved by requiring certain objectives only
to be completed at higher criticality levels. Alternatively, higher criticality levels may require some
objectives to be completed with independence. Another approach involves addressing an objective
more thoroughly as the criticality level increases. It is unclear which combination of these options will
be most appropriate for the SASWG’s work but, at the current time, it is considered likely that most
objectives will need to be satis�ed, regardless of criticality level.

• At the moment, the document makes little distinction between different types of ML approach. In
some cases this may be captured in the detailed response to an associated with an objective: for
example, Objective COM4-2 (discussed in sub-section 3.4) relates to protecting against typical errors,
which will differ between different types of ML approach. However, there are several places where
a more nuanced approach may be more valuable. One such area is the relationship between the
adaptation projection (discussed in sub-section 3.1) andML approaches that continue to learn during
operational use.

• Objective COM3-7 (discussed in sub-section 3.3) notes the difference between algorithm instances,
which may produce different results, and algorithm variants, which are expected to produce different
results in some circumstances. It is not clear at which point an algorithm ceases to be a variant and
becomes something that should be considered as an item in its own right. A key consideration is
how easily safety assurance evidence can be transferred between items. More generally, this topic is
related to reuse and software product line engineering.

• Currently, the document does not provide much information on integration of Software (SW) and
Hardware (HW); neither SW-SW integration nor SW-HW integration is considered in any detail. This
collection of issues is expected to extend into the architecture level. As such, it is likely to be
addressed in more detail in future editions.

• One particular SW-SW integration issue is the use of multiple algorithms, combined with a voting, or
aggregation, function. This represents a potentially useful approach for engineering AS. It is expected
that this will be considered as part of the architecture-level.
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Appendix D Abbreviations

AI Arti�cial Intelligence

ANN Arti�cial Neural Network

AS Autonomous Systems

BIT Built-In Test

CNN Convolutional Neural Network

CPU Central Processing Unit

DAL Development Assurance Level

DNN Deep Neural Network

FMEA Failure Mode and Effects Analysis

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

GSN Goal Structuring Notation

HAZOP Hazard and Operability Study

HW Hardware

ISO International Organization for Standardization

ISSRE International Symposium on Software Reliability Engineering

MC/DC Modi�ed Condition / Decision Coverage

ML Machine Learning

NaN Not a Number

NCSC National Cyber Security Centre

NN Neural Network

PCA Principal Component Analysis

PDI Parameter Data Item

PR Process Requirement

PSH Product Service History

RAM Random Access Memory

RGP Recognised Good Practice

RL Reinforcement Learning

RNN Recurrent Neural Network

SASWG Safety of Autonomous Systems Working Group

SCANN Safety-Critical Arti�cial Neural Network

SCSC Safety Critical Systems Club

SEU Single Event Upset
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SIL Safety Integrity Level

SMS Safety Management System

SoC System-on-Chip

SOTIF Safety Of The Intended Function

SOUP Software of Uncertain Pedigree

SSS Safety-critical Systems Symposium

SVM Support Vector Machine

SW Software

SWaP Size, Weight and Power

TPU Tensor Processing Unit

TQL Tool Quali�cation Level

UCI University of California, Irvine

V&V Veri�cation and Validation

WCET Worst Case Execution Time

WoSoCer Workshop on Software Certi�cation
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