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ABSTRACT In the fifth-generation (5G) mobile networks, proactive network optimisation plays an impor-

tant role in meeting the exponential traffic growth, more stringent service requirements, and to reduce capital

and operational expenditure. Proactive network optimisation is widely acknowledged as one of the most

promising ways to transform the 5G network based on big data analysis and cloud-fog-edge computing, but

there are many challenges. Proactive algorithms will require accurate forecasting of highly contextualised

traffic demand and quantifying the uncertainty to drive decision making with performance guarantees.

Context in Cyber-Physical-Social Systems (CPSS) is often challenging to uncover, unfolds over time, and

even more difficult to quantify and integrate into decision making. The first part of the review focuses on

mining and inferring CPSS context from heterogeneous data sources, such as online user-generated-content.

It will examine the state-of-the-art methods currently employed to infer location, social behaviour, and

traffic demand through a cloud-edge computing framework; combining them to form the input to proactive

algorithms. The second part of the review focuses on exploiting and integrating the demand knowledge

for a range of proactive optimisation techniques, including the key aspects of load balancing, mobile

edge caching, and interference management. In both parts, appropriate state-of-the-art machine learning

techniques (including probabilistic uncertainty cascades in proactive optimisation), complexity-performance

trade-offs, and demonstrative examples are presented to inspire readers. This survey couples the potential

of online big data analytics, cloud-edge computing, statistical machine learning, and proactive network

optimisation in a common cross-layer wireless framework. The wider impact of this survey includes better

cross-fertilising the academic fields of data analytics, mobile edge computing, AI, CPSS, and wireless

communications, as well as informing the industry of the promising potentials in this area.

INDEX TERMS Online data, data analytics, proactive network optimisation, 5G.

I. INTRODUCTION

The 5G mobile network is the foundation of the future

Cyber-Physical-Social Systems (CPSS) by supporting three

highly heterogeneous services, enhanced mobile broad-

band (eMBB), ultra-reliable and low latency communica-

tions (uRLLC), and massive machine type communications

(mMTC). 5G and beyond 5G services need to support an

600x to 2500x capacity increase [1], sub 1ms round-trip

latency [1], and 10,000 or more low-rate devices per cell

The associate editor coordinating the review of this manuscript and
approving it for publication was Dakai Zhu.

site [2]. Such significant improvements translate to a sharp

rise in the operational expenditure (OPEX) and optimisation

complexity (≈ 60× increase [3]), which is not desirable. As a

result, the expenditure of some leading mobile operators may

exceed revenues if no effective action taken by the end of this

decade [4]. Accordingly, there are widespread concerns that

the ambitious quality of the 5G heterogeneous network will

be considerably disadvantaged by the OPEX hike.

To alleviate the threat of complexity and OPEX explo-

sion, proactive optimisation has the potential to transform

the trade-off between performance and revenue in a funda-

mental way. One example in 3GPP of successful proactive
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optimisation is the video context-aware scheduling, based

on the user-side attention information, which is a promising

implementation in CPSS [5] associated with the cloud-edge

computing techniques. Data-driven proactive optimisation

aims to closely couple network resource allocation dynam-

ics in cyber and physical spaces with predicted consumer

dynamics in social spaces, allowing it to respond before a

negative situation arises (e.g. signal outage or network con-

gestion) and leads to the negative consumer experience. For

example, the 3GPP Release 15, System Architecture for the

5G System, includes building user device mobility pattern

for Access and Mobility Management Function to benefit the

priority in radio resource management [6]. The transforma-

tion from passive/reactive to proactive optimisation requires

several new network elements that are previously neither seen

in 1G/2G/3G/4G nor current 5G standards.

These are:
• Data mining and analytics to infer consumer demand,

context, and experience. They require the fusion of qual-

itative and quantitative analytics in cyber, physical and

social spaces;

• Coupling between forecasting and network optimisation

functions. This ideally would use the posterior probabil-

ity of forecasts to inform risks in optimisation;

Current research efforts encounter the bottleneck of both

collecting the data for retrieving consumer demand and

behaviour context, as well as forecasting at a sufficiently

high resolution across slices with uncertainty quantification.

Whilst an increasing amount of online information (from the

Internet) is generated and accessed, the accuracy is sparse,

and reliability is subject to varying platform bias. So while

online-data analytics is promising to break the bottleneck for

proactive optimisation, much evidence-based work is needed

to show the envelope of its applicability. This survey repre-

sents an attempt to couple the potential of big data analytics of

online information and proactive network optimisation with

machine learning, and show its potentially useful areas using

demonstration examples.

A. FROM REACTIVE TO PROACTIVE

NETWORK OPTIMISATION

Radio resourcemanagement (RRM) and network deployment

are the primary focus areas of the survey, and there are

many underlying optimisation functions include scheduling,

mobile edge caching, backhaul optimisation, interference

management, load balancing, as well as many aspects of

coverage and capacity optimisation. From a historical per-

spective, RRM and network optimisation have moved from

engineering expertise based (e.g. human-expertise driven

manual configuration in the late 1990s) to reactive numerical

optimisation (e.g. expertise-driven numerical functions with

parameter inference in post-2010). With increased complex-

ity and the need for real-time analytics that is personal to

consumers, it now needs to evolve into big-data-driven proac-

tive self-optimisation. We will first briefly review the historic

development of optimisation before diving into the enabling

technologies for proactive optimisation.

1) REACTIVE NETWORK OPTIMISATION

In the early days of the 2G network, radio engineers moni-

tored the network statistics and tuned the network to improve

key performance indicators (KPI). Engineers used their field

knowledge and previous experience (e.g. drive testing) to

diagnose the origin of problems [7]. However, it took a

long time for engineers to manually detect and diagnose the

problem, and the network might need several hours from

the occurrence of a problem to network recovery. For 3G

optimisation, researchers and operators tried to reduce the

human-machine interaction. For example, the 3GPP proposed

Minimisation of Drive Testing (MDT) in [10] and designed

Markov Decision Tree-based optimisation to maximise traf-

fic offload in Wide-band Code Division Multiple Access

(WCDMA) [8]. However, each optimisation algorithm typ-

ically still required frequent configuration by engineers and

was not personal to individual consumers, but more towards a

service area (e.g. city council or a shopping mall) or a service

genre (e.g. maximum rate or proportional fair). Besides in the

automatic examples, the schedulers still required more than

one hour to coverage (76 minutes in [9]).

2) DEVELOPMENTS IN SELF / PROACTIVE OPTIMISATION

In the 4G period, the 3GPP stated the significance of

implementing automatic optimisation and introduced Self-

Organising Network (SON) in Release 8 [16]. In the past

decade, a significant number of SON implementations have

been developed to enable cell sites to self-optimise their

coverage and capacity [11], energy savings [32], and load

balance [12], [15]. The commonly used optimisationmethods

included reinforcement learning [32], Fuzzy controllers [11],

regression tree [15]. One challenge with machine learning

approaches is that the integration of data is typically low

dimensional (e.g. channel estimation or QoS reporting) and

both the contextual information is missing to personalise

services as well as the forecasting capability to enable proac-

tive optimisation. As such, typically advanced SON engines

reacted over 10 minutes after a severe event [15], [17].

In the 5G, to meet the fast-changing context in dense

network deployment, the SON decision process has to con-

verge to a satisfactory solution in a very short time. The

optimisation time is influenced by algorithm time complexity,

computing ability, the time to trigger the algorithm, as well

as the uncertainty of the decision’s benefit (regret function).

This is important because many optimisation algorithms

are time-sensitive that the time-scale highly influences the

QoS delivery. For example, in a Power Load Sharing (PLS)

research [17], the user dissatisfaction rate would increase

nearly 20% if the time to trigger the algorithm was delayed

from one minute to one hour. That is because network

recovers after the degradation of performance. This outage

period increases user dissatisfaction experience [17] and risks

increased customer complaint and lower customer loyalty to
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TABLE 1. Developments of cellular network optimisation from passive to proactive, data-driven, and self-optimisation.

their network [33]. As we can see in the ‘Time Scale’ column

of Table 1, the optimisation time is developed to be closer to

real-time and even proactive to save cost and improve loy-

alty. Approaching this purpose requires heterogeneous data

sources to sense the fast-changing network context. On the

one hand, current developments in cloud-fog-edge comput-

ing have laid the foundation to enable large-scale big-data

analysis on cloud and small-scale streaming-data analysis on

edge [34]. On the other hand, proactive optimisation in 5G

and beyond 5G offers low-latency and reliable communi-

cation services to transfer data in CPSS. The widely-used

machine learning algorithms aim to configure model-free

optimisation for reducing real-time complexity [3], [24], [35],

and a current trend for improving SON decision time horizon

is triggering the algorithm in advance (e.g. proactive). Table 1

summarised the network optimisation the general view of

developments from 2G to 5G. It also provides the gaps of

current optimisation.

3) GAPS IN DATA USAGE

Current research for RRM and network optimisation tend to

be usingmobile network data (subscriber-level and cell-level)

as the only data source [14], [23], [24], [36]. The general user

behaviour is needed but abstracted to homogeneous mathe-

matical models or statistical assumptions which have limi-

tations to represent the real-world changing complexity and

diversity. The vast majority of these approaches self-simulate

a single user-side measurement as a proxy for more complex

behaviour aspects [3], [14] [24]. Such a fact indicates difficul-

ties in collecting and integrating multi-dimensional data from

different sources, especially if it involves both structured and

unstructured metadata. The lack of consumer context causes

cold start problem that the algorithms require some time to

collect information and then start optimisation. Furthermore,

in current passive load balancing, inter-cell user distribution

is unknown so that all neighbouring cells become active for

offloading. It is inefficient when the over-load cell has a

skewed user distribution.

B. ENABLERS FOR PROACTIVE OPTIMISATION

The 3GPP Mobile Data Applications Impacts (Release 11)

[18] mentioned that network optimisation will be boosted if

it can understand user behaviour and spatial-temporal traffic

pattern through application data. In that case, the optimi-

sation needs the status information of concrete entities in

the social space (e.g., UEs) or virtual entities in the cyber

space (e.g., software), such user-centric meta-information is

called context in [37], [38]. The context represents all the

user information indicating spatial-temporal network traffic

characteristics for a user-centric network, including geolo-

cation and user behaviour. The methods to gain the con-

text are named context-aware or context-awareness. And

the computing works rely on cloud-fog-edge computing.

The optimisation algorithm requires a context-aware module

which automatically collects and analyses data from differ-

ent sources (e.g., online data and personal devices), then

supplies context for adequately re-allocating communication

resources [17].

1) ONLINE DATA

Many users on online social networks voluntarily generate

personal data, and the data is interleaved with geograph-

ical, public, and other information [39]. The online data

directly and tightly connects to users’ intents, and there-

fore appropriate for transforming network optimisation to

be proactive and user-centric. As stated in [40], [41], CPSS

aims to offer services to be not only high-quality but also

proactive and personalised, which results in an irreplaceable

role for the online big-data analysis. Online data can be

divided into different types: social networks, video/photo
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FIGURE 1. The framework of data-driven network for proactive optimisation.

sharing sites, online forums, product reviews/ratings, and

wikis. This survey focuses on three of them, social net-

work (e.g., Twitter, Facebook and Instagram), comments and

reviews (e.g., Amazon customer review), and multi-media

hosting sites (e.g., YouTube). These types of online data

inherently contain substantial hidden information about users

and hold different data merits and pitfalls.

2) SOCIAL NETWORK DATA

Online social platforms change users from content viewers to

content creators and distributors. It not only owns plenty of

shared information about public and individuals [17] but also

supplies real-time details for forecasting spatial and temporal

attributes of future events. The social network data consists

of four data formats: geolocation, timeline, text, and pho-

tos/videos. Text and photos have plenty but noisy information

to grasp users’ desire, by contrast, timeline and geolocation

have a clear and structural format but limited information.

The social network also records the social relationship/tie

which benefits the estimation of the weights of D2D links.

For example, the forecasting of social ties in [42], [43] enable

D2D in caching delivery with finding the most influential

user [42] and sharing with friends [43].

C. THE FRAMEWORK OF DATA-DRIVEN

PROACTIVE OPTIMISATION

To make the enablers drive proactive optimisation, we pro-

pose a framework in Fig. 1 that involves data acquisition,

integration, and using forecasting to drive RRM and net-

work optimisation. The complex computation relies on cloud

and edge computing. Example frameworks of combining the

cloud-edge computing and the CPSS big data analysis is put

forward in [34], [40], [44]. In these works, a cloud plane is

responsible for global big data with large-scale and long-term

(cloud computing) while local data is processed by an edge

plane (edge computing) because of its small scale and short

term. Our work follows a similar idea, the remote cloud and

the edge cloudwork as the cloud and edge planes respectively.

In Fig. 1, the remote cloud (data-driven proactive optimisa-

tion module) is placed between the Gateway and the core

network. An example of this implementation is shown in [45]

that placed the caching module close to the small BS and

between the core network and edge network. That will benefit

the data storage, analysis and learning, but the precondition

is that the latency should be acceptably low. The following

parts illustrate the functions of the framework.

1) DATA

This step includes data collection, cleaning, and storage.

For a more detailed process, the work [34] further divides

it into organisation, representation, cleaning, reduction and

integration. These aspects have been successfully imple-

mented thanks to the support of the edge computing and

well-accepted in CPSSs. The data collection is a process

of gathering information on variables of interests through

multiple online and offline available sources, such as the
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TABLE 2. List of acronyms.

Internet, vehicular, satellite, base station, user devices, gov-

ernment and business databases, and sensors. The combined

data may vary in sparsity and resolution across urban and

industrial areas [46]. For the Internet data, the providers

provide Application Programming Interfaces (API) for the

third parties to access the open data. More details of data

collection can be found in Section III.A.1. Then, the raw data

can be noisy and redundant, so it needs a cleaning process

(e.g., sort, filtering) to be established in a systematic fashion

and stored in the edge data centre or cloud data centre for

further analytics. Tensor-based method is effective to analyse

big data by focusing on typical features [47]. The extensible

order tensors can represent unstructured and structured data.

Typical applications of this method are in [48], [49]. These

works illustrate how the tensors work in cloud-edge comput-

ing. Big streaming data is also a challenge for real-time big

data processing. High-order singular value decomposition is

proved efficient to avoid redundancy (see examples in [50]).

2) PREDICT CONSUMER BEHAVIOURS

The network traffic fluctuates according to consumer

behaviour. This step is building models to predict demand

changes. The input is the online data from the Internet,

and the output is the probability of different demand levels

across various behaviour contexts and slices. Understand-

ing the posterior distribution of predictions will generate

a spatial-temporal consumer demand distribution that helps

predict the network KPI.

3) CORRELATE TO NETWORK KPI

The correlation models a path of mapping predictive

behaviours to network KPIs, such as the network traffic.

The polynomial regression (in the figure) and statistics anal-

ysis (e.g., Pearson correlation) are two commonly used

approaches. Therefore, themodel input is the behaviour prob-

ability, and the output is the probability of KPI, such as the

probability of high-load occurrence.

4) PROACTIVE NETWORK OPTIMISATION

The predictive network KPIs are injected into this function.

The optimisation algorithm needs to configure the parameters

in advance for the upcoming condition changes to achieve

targets. An example is proposed in [51] about optimising

the network in a proactive and energy-efficient way. They

presented a framework with implementing a big-data-aware

intelligent platform between the core network and Baseband

Unit (BBU) pool for analysing user behaviour and network

patterns to output control strategies. Note that, these analytics

and leanings are available to be carried out by both remote

cloud plane and edge plane. The cloud computing can gen-

erate a general trend context of public behaviours, such as

traffic of a city in rush hours, which suggests a macroscopic

optimisation. At the same time, the edge computing processes

personalised context with the help of edge data centre, edge

tensors, edge data management and analysis. Finally, the net-

work configuration in the physical space is decided according

to both trend and individual context.

D. SURVEY OBJECTIVES

The core concept of this survey is to identify the user-oriented

contexts that proactive network optimisation requires, then

categorise the available online data and methods to acquire

these contexts, finally to characterise the relationship

between different proactive network optimisation and each

online data. In this case, this survey probes further into these

questions:
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TABLE 3. A comparison of related reviews in the areas of data, context, and optimisation with this survey.

• Which user and demand contexts can help personalise

proactive network and RRM optimisation?

• How to retrieve or infer the CPSS contexts from online

data?

• What are the inputs and outputs of the Cloud-Fog-Edge

computing?

• What is the supply-demand relationship between online

data and proactive network optimisation?

• What are the open research areas in proactive network

optimisation for 5G?

The main academic contributions of this survey are as

follows:
• To help readers understand the categories and character-

istics of the available online data.

• To review and summarise the useful CPSS contexts

provided by online data and the spatial-temporal traffic

pattern.

• To clarify the role of Cloud-Fog-Edge computing in

proactive network optimisation.

• To analyse each network optimisation to be proactive

regarding the required contexts.

• To build a supply-demand business relationship between

online data and network optimisation.

• To provide applications of proactive optimisation by the

cloud and edge computing in CPSS.

The remainder of this survey is organised as follows:

Section II discusses related survey papers about online data,

contexts, and network optimisation. Then, Section III sum-

marises the contexts, data sources, and analytic methods.

In Section IV, the authors analyse each proactive network

optimisation and build a link between contexts and opti-

misation. After that, an online data-proactive network opti-

misation supply-demand relationship map is put forward.

Section V proposes open challenges and future research

directions. Finally, Section VI concludes this survey.

II. RELATED WORK

This section discusses relevant surveys in three aspects

(data-driven optimisation, consumer context, and online

data), summarises and compares them with our survey

(in Table 3).

There are several data-driven network optimisation works

with focus areas of exploiting big-data [55], [57], con-

structing SON engine architecture [56], and developing in

machine learning [31], [97]. The authors of [55] exploited

big data-driven 5G network optimisation. They first presented

a general framework to integrate operator big data, then

introduced optimisation cases (e.g., resource allocation, inter-

ference coordination, and cache deployment). Furthermore,

self-optimisation is emerging in recent years. The survey [56]

was one of the pioneering-literature about reviewing cellular

self-optimisation for a tutorial purpose. Readers were pro-

vided with projects, features, standards, taxonomy, solutions

and design guidelines in detail to start their research in this

area. Then, a hot topic of applying machine learning in

SON has been reviewed in [31]. Moreover, the work [97]

provided a comprehensive tutorial on applying artificial neu-

ral networks (ANN) in wireless communication scenarios

(e.g., proactive caching). Several key types of the neural net-

work were presented, such as feed-forward, recurrent, spik-

ing, and deep neural networks. Besides, the authors in [57]

proposed a review and two case studies on data-driven small

cell RRM and deployment. Although the above works pro-

vide detailed reviews in data-driven optimisations, to our

best knowledge, there is still no particular work to reveal

the paths of taking the advantages of online data to proactive

network optimisation. Compared with other works (as sum-

marised in Table 3), ours mainly contributes to using online

data to make user behaviour predictive to drive proactive

optimisation.

The methods for forecasting consumer behaviours were

reviewed [53], [54], including users geolocation, link qual-

ity, network traffic, and social information. The work [53]

aimed at constructing a predictive frame to obtain intelli-

gence for detecting user behaviour and network environ-

mental changes. The authors presented a detailed context

classification of prediction techniques but did not introduce

data sources. Isolated examples of network optimisation were

briefly discussed, such as mobility prediction for network

offloading. The reviews of data sources from the online plat-

form can be found in [39], [52]. Moreover, the researchers

in [54] investigated existing big-data mobility works for

geolocation prediction. The authors summarised the basic

principles and common methods for mining users’ distribu-

tion and mobility patterns. Furthermore, GPS, Global System

for Mobile Communications (GSM), and WiFi data records

could all be used to track popular regions, so the authors com-

pared them in the areas of data analysing and model building.
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TABLE 4. Common methods of data collection, cleaning, and analytics to retrieve useful network context from online information.

The above surveys presented the feasibility of applying online

data for forecasting consumer behaviours (demand), whereas

it is still not clear how to couple these techniques with proac-

tive network optimisation. This survey also contributes to this

aspect through integrating the demand knowledge for a range

of proactive optimisation techniques.

III. ONLINE DATA FOR BEHAVIOUR PREDICTION

The users’ behaviour can be fully understood and even pre-

dicted based on meta-information such as: time, history,

geolocation, identity, social status, schedule, and events.

In this section, wewill lead the way to forecast user behaviour

and inferring data demand.

A. OVERVIEW OF ONLINE DATA ANALYTICS TECHNIQUES

Table 4 presents an overview of the common data-analytics

tools in the following reviewed literature. We divide these

methods into two main categories: data collection and data

analytics.

1) DATA COLLECTION

The online data consists of three major categories, social

network (e.g., Twitter and Facebook), media hosting site

(e.g., YouTube and Instagram), comments and reviews

(e.g., e-commerce reviews and topic talk). The geo-tagged

social network data is the source for extracting the

geo-location context. Forecasting social behaviours requires

different kinds of online data for modelling user activi-

ties and corresponding meta information. The traditional

method for collection is using an Application Programming

Interface (API).

The API-collection method is widely used (see applica-

tion examples in Table 4, ‘Search API’ and ‘Stream API’

columns). It allows automatic data collection from service

providers in an economical way. The search API and the

stream API are all in this category. However, it still has

some challenges, such as poor efficiency and difficulty in

gathering historical data. Also, service providers could limit

the collection.

Building own datasets, such as collecting from volunteers

or purchasing from service providers, can avoid the above

limitations. This method provides a nearly complete dataset

and achieves a flexible setting of the environmental vari-

ables. A popular method is sending friend requests to other

users with a statement that researchers are collecting the data

for researches with privacy protection. The volunteers could

feel free to accept or reject friend requests. For example,

the researchers in [98] invited 19,484 users agreed to join the

experiment. Sometimes, incentives can improve the perfor-

mance of collection that contributors who would be rewarded

with payment according to their contribution [99], [100]. This

method can be costly and requires ethical approvals, or one

can use open datasets to reduce this cost.

The open datasets can reduce the cost in data-collection.

Many organisations make available their datasets for trans-

parency or research purposes, such as Kaggle datasets [101]

and European Union Open Data. One typical example is the

Italia Telecom operator dataset (see data from [102]). It is

used to forecast cellular traffic pattern [103]. Some public

projects will also open their data to other researchers. For

example, an ECH2020 RISE Project DAWN4IoE has opened

the datasets, such as cellular traffic data [104] and Twit-

ter density [95], [105]. Researchers are required to choose

their methods for collection and pre-process the raw data for

further data analytics.

2) MOST COMMON ONLINE-DATA ANALYTICS TECHNIQUES

Scalable machine learning emerged in recent years as it gives

the computer system an ability to learn user behaviour from

online data. We compare the most commonly used machine

learning methods regarding proactive optimisation require-

ments in Table 5 and list the sections where these methods

have been used. The complexity refers to the number of

computation operations that should be performed to achieve

the desired result. The training data and time indicate the

required data amount and training efficiency. Then, the accu-

racy suggests the supposed performance that the algorithms

generate. Finally, the evaluated levels (low/fair/high) is based

on the previous literature cited after each name.

From Table 5, we can find some common characteristics

of the machine learning usage. For example, the geo-location

modelling usually requires unsupervised clustering meth-

ods, such as K-means and Density-based Spatial Cluster-

ing of Applications with Noise (DBSCAN). This has the
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TABLE 5. A summary of the reviewed machine learning methods with the usage position in sections and a comparison of time complexity.

advantage of not requiring labels in a sophisticated problem

setting and rely on topological features as a compressed

representation of high dimensional attributes. However,

the ill-defined nature of clustering means initial parameter-

isation is highly related to researcher bias or intuition (see

details in Section III. B). In contrast, social behaviours usu-

ally have limited categories (e.g., positive and negative in

user sentiment), so supervised classification is commonly

selected, such as Support Vector Machine (SVM) and K

Nearest Neighbour (KNN) (Section III. C). For time series

forecasting, regression and Markov methods are good at

predicting network traffic (Section IV.A). In network opti-

misation, more sophisticated methods are chosen, such as

reinforcement learning (Section IV. B) and the neural network

(Section IV. C). However, many of the non-Bayesian methods

face challenges of catastrophic forgetting and dealing with

high-dimensional inputs. That requires more-advanced learn-

ing methods, such as deep Gaussian process, meta learning,
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deep reinforcement learning, and neuro-evolution deep learn-

ing. These approaches either provide quantitative uncertainty

estimates, high-dimensional feature capture, and/or improved

adaptation to the environment.

3) PREDICTION ERRORS AND OPTIMISATION OVERHEAD

The machine learning approaches thus far produce predic-

tion errors because of the scarcity of training data or the

mismatch of prediction functions. The probability of error

can be described by uncertainty in the predictions. In further

optimisation, the overhead of the system will be incurred

because of such uncertainty. We draw lessons from other

prediction and optimisation systems in other areas of science

and engineering.

In prediction systems, such as climate science and struc-

tural mechanics, big data helps to inform the likelihood of

outcomes of predictions that arise from dynamical systems.

Probabilistic numerics translate input uncertainty into output

uncertainty (e.g., probabilistic finite element). The uncer-

tainty caused by data/estimation errors is required to mon-

itor and control the computational overhead. In that way,

the paper [121] provided an illustration of using the proba-

bilistic numerics to describe the uncertainty with diagnosing

error sources in computations. However, the Gaussian Pro-

cess needs to be coupled with deep learning to face more

complex tasks, so the deep Gaussian process emerges.

The deep Gaussian process acts as a deep neural network

but with Gaussian Process governing the mappings between

layers. It will give an empirical confidence interval to quan-

tify the uncertainty. The higher uncertainty could mean a

higher potential to cause overhead. In network optimisation,

the forecasting associated with high potential of overhead

could be discarded in the decision making. For example,

the work [111] successfully learnt natural human motion by

the Deep Gaussian Process even with scarce data. Besides the

uncertainty (overhead) quantification, a parallel system offers

a useful structure to improve the robustness.

The parallel system owns a reliability-wise structure.

It allows the system to functionwith anymechanismworking.

For example, if the network unexpectedly operates in a bias

condition, it still has time to alter to a reactive optimisation.

Such a method works as the parallel system as introduced

in [122] to improve reliability. Based on the above methods,

this survey proposes a framework to create a regret func-

tion for the poor performance in the proactive optimisation

(see IV.A.6. The Quantification of Uncertainty in Proactive

Optimisation).

4) PRIVACY AND DATA UTILITY

The privacy problem is critical in data analysis. The challenge

is to gain high utility in data while ensuring confidentiality,

integrity, and availability [123]. Besides, the network opera-

tors and the data providers should achieve not only encryp-

tion of all data but also a strict access control to avoid the

unpleasant data collection, storage, and usage. In that case,

the trade-off between data utility and privacy needs to be

solved in three aspects.

Firstly, current users are usually unaware of the collection

of personal data, which causes the anxiety about potential

defraudation and hurt feelings. Appropriate notices and ask-

ing authorisation can relieve the anxiety during personal data

collection. For example, in the Internet of Things (IoT),

the users are notified about IoT privacy properties [124]. This

‘right to know’ alleviates anxiety and provides users with

choice. An example is the current usage of Internet cookies

(see cookies consent under the EU General Data Protection

Regulation [125]), but it requires that consumers trust data

storage and usage.

Secondly, the stored data must be provided with both

privacy and authenticity. For this purpose, the encryption

schemes will transform the data into a ciphertext with a

symmetric-key mechanism to satisfy the two requirements

(see Authenticated Encryption [126]).

Moreover, data protection not only needs to encrypt infor-

mation but also protect them from attacks, which is a classifi-

cation problem. For example, the classification of legal/illegal

user can be achieved by utilising the radio channel infor-

mation [127]. The work [128] used Recurrent Neural Net-

works (RNN) to detect various attack variations, and the

work [129] provides a panoramic survey of security in

cyber-physical systems.

Finally, during the data usage, researchers need to protect

sensitive latent information while reserving utility. Such a

trade-off is studied in [130] by measuring data utility loss

and latent-data privacy matrices. Another method to secure

outsourced data analytics is by applying the homomorphic

encryption [131].

5) SUMMARY OF FINDINGS AND LESSONS LEARNED

In summary, the main findings and lessons learned from this

sub-section include:

• Collecting online data fromAPIs is the most economical

way, but the service providers could limit the process.

In contrast, building their own datasets can suit the

requirements well, but it will cost time or money to find

or reward the contributors. The other way is to use the

public datasets which are increasingly available due to

transparency and reproducibility drives.

• Geo-location modelling is often an ill-defined unsuper-

vised clustering challenge. In contrast, behaviour mod-

elling is usually a supervised classification problem.

Next, the traffic prediction can be addressed by the

regression methods, including the polynomial regres-

sion, Gaussian Process, and RNN. In the network

optimisation, the parameters and principles become

dynamic and numerous, so high-complexity methods

(e.g., reinforcement learning and the neural networks)

are becoming increasingly suitable.

• The prediction errors cause undesirable overhead in

the proactive optimisation modules. It is necessary to
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FIGURE 2. Population and BS density vs. 3G network traffic adapted form
our work [95].

quantify such overhead and also take into account other

utility functions such as privacy and security.

B. MODELLING GEOLOCATION

Geolocation represents the real-world measured location of

users, which offers spatial traffic distribution. It contains three

components, observation time, moving objects, and geoloca-

tion records [54], which can bemined from data of GPS, Base

Station (BS), and landmarks. In that case, the online data is

suitable for providing the context of the popular region [94]

or forecasting the nodes of the personal trajectory [132].

1) POPULAR REGION

A popular region is a specific place with the potential to gen-

erate high communication traffic where a group of location

records gather around a centre at a particular time. This region

can be attractive all the time, such as commercial and tourists

areas. In Fig. 2 from [95], we present the spatial correlations

between 3G traffic and population density. This verifies the

hypothesis that popular regions (with high population) have

high probabilities of generating high demand. The network

optimisation schemes should allocate resources in these areas

to satisfy the imbalance traffic distribution, especially during

events.

In the network optimisation, the prediction of the popu-

lar region represents the upcoming hotspots whose popular-

ity is correlated with social network traffic (e.g., Twitter).

It will benefit resource deployment [95], load balancing [94],

and caching [133] by finding the place with high demand.

The time requirement for hotspot prediction generally needs

to be two hours in advance [94], [95] due to the achiev-

able high accuracy (correlation> 0.85 in [95]). In contrast,

the geographic resolution requirements for hotspot predic-

tion depend on the requirements of different network opti-

misations. For example, in [133], the predicted resolution

of hotspot decided the flying height (332 m) of the flying

BSs for proactive caching. Moreover, the work [94] achieved

FIGURE 3. Popular region clustered by DBSCAN based on the
geo-locations in Twitter of London adapted from our work [134]. The cells
are visualised using Voronoi diagram. Smaller cells represent
more-popular regions.

a load-resource matching with a 120-meter resolution. The

popular regions (hotspots) are usuallymodelled by clustering,

such as k-means in [133]. It is to maximise similarity in

the same group and guarantee that the assigned objects in

different clusters are as different as possible.

a: K-MEANS BASED SPATIAL MODEL

In using this model, researchers manually choose the number

of clusters (k), then the algorithm groups GPS coordinates

according to k centroids cooperated with map information.

For example, the users can be clustered into different groups

to guide the location and height of flying BS to cover them

(see the research in [133]). However, the k has to be manually

determined, and the cluster range is out of control. To deter-

mine the number of clusters and a cluster radius, Ashbrook

and Starner [61] tried to use a variant of K-means which

simulated radius regarding cluster numbers and picked the k

at the convergence starting point.

In fact, popular regions’ ranges can vary a lot in both size

and shape, which requires automatic range optimisation and

methods to reduce computation cost. Besides, this model can-

not avoid the influence of noise data. In that case, the method

named DBSCAN emerged.

b: DBSCAN BASED SPATIAL KERNEL

The DBSCAN is a density-based algorithm that groups the

points with many nearby neighbours and ignores the points

lying along in low-density area as outliers (noise). This model

requires no prior knowledge of clusters and no radius and

results in fitting cluster shapes. Researchers choose only a

minimum range and the minimum number of points in this

range. Then a cluster with a minimum density is generated

with arbitrary shape. For instance, the work [135] used this

method to search popular regions considering the diversity of

users and adaptive density. We applied the DBSCAN-based

method on a Twitter dataset in London. The result is pro-

posed in Fig. 3. The density parameter is set as the average

density, so the popular regions (high-density cluster) own

higher density and smaller size. For convenience in visu-

alisation, a Voronoi diagram is used, so only the centres
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FIGURE 4. An example of Twitter traffic heatmap before and during event at a cinema, Leicester Square, London (adapted from our work [134]). Regular
hotpots still exist, but the hottest spot changed to the event location. (a) Before event (15/02/2016-19/02/2016). (b) On the day of event (22/02/2016).

and borders are displayed. Popular regions, like the city of

London, own denser small clusters indicating the high traffic

demand. Even the spatial clustering algorithms are widely

applied to find popular areas, only clustering in one dimen-

sion was not enough, such as recognising sub-areas for the

evolution of events. Therefore, researchers considered using

a spatial-temporal model.

c: SPATIAL-TEMPORAL CLUSTERING MODEL

Geolocation clustering has two main sub-categories, spa-

tial clustering and temporal clustering, which make the

objects gather regarding both dimensions (location and time).

We need to consider the temporal dimension to find changing

popular areas along with time. For example, the temporal

dimension can be added to an extension of DBSCAN to take

time changes into account to separate regions in both space

and time. K. Tamura and T. Ichimura proposed an example

work in [58] by analysing Twitter data.

d: EVENT-DETECTION BASED MODEL

A place with an attractive event becomes popular in a particu-

lar period. Detecting events means to retrieve necessary infor-

mation of a planned public occasion, such as schedule, topics,

and attendance. Thanks to the online information, the occur-

rence of events can be automatically detected [59], [62].

Statistic method is chosen to forecast the regularity and the

events. The city region can be partitioned into sub-areas by

clustering. Then, in each sub-area, a geographical regularity

estimation was executed, it was the usual condition of crowds

moving pattern. Finally, the statistic method, such as box-

plot, was chosen to find out the outliers. For example, in [62],

R. Lee and K. Sumiya developed such an event detection

algorithm to identify festival occurrence through analysing

the Twitter data. Fig. 4 provides an example that we use

this method to detect the event in London. It displays the

density of geo-tagged Tweets before and during the event.

The popular region has changed from regular hotspot to the

event hotspot. The network optimisation schemes require to

be changed for fitting the new-emerging event hotspot.

However, the extracted features of events can be incom-

plete while using only one data source. To improve in

this aspect, H. Becker et al. proposed an approach [59]

for identifying scheduled events from not only the social

networks (e.g., Twitter, Flickr) but also media hosting site

(e.g., YouTube). Another challenge is that the majority of

online data is not geo-tagged, which limits the upper bound-

ary of the detection precision. K. Watanabe et al. proposed

a real-time local event detection system in [63] using both

geo-tagged and non-tagged Tweets.

2) PERSONAL TRAJECTORY

The personal trajectory describes the individual moving path

that refers to an ordered time sequence of stops where a

user pass or stay [54]. With this context, one can max-

imise network performance based on the adequately allocated

resources. Social network data has the GPS records to find

user’s staying locations, such as home and workplaces.

In the wireless network, the personal trajectory directs the

efficient resource distribution for continuous optimisations,

such as cooperative caching. The mobile users may handover

to other BSs before finishing the content transmission. In that

case, it is better to predict user movement and distribute the

caching segments along the trajectory. The required accuracy

for a beneficial caching is > 75% or higher [116]. In proac-

tive load balancing, the handover margin’s re-configuration

has to be finished before the high traffic (crowds) comes.

For example, when a group of users moved to a desti-

nation cell in 5 minutes, the network can recover from

over-load in less than 48 minutes with the prediction of

the trajectory (more than one hour without trajectory) [17].
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Moreover, the forecasting of high-mobility users would

reduce the handover frequency in the HetNet [136].

a: CLUSTERING BASED MODEL

Clustering based model is to group personal location records

into different stops or nodes and allocate the context tag to this

location, such as home or work. The stops indicate the loca-

tions where users would require some services (e.g., using

the network) while they were staying longer than a mini-

mum stop duration. It firstly requires to collect the locations

in the testing scenario. Then, the clustering is applied to

model the sub-region with stops. The research [137] used

affinity propagation clustering following the above proce-

dures. Another work [138] also regarded the trajectory as

stops and moves. However, for slow-moving events, such

as city tour, previous methods miss some interesting places

as objects are moving. Palma et al. [70] considered speed

by a spatial-temporal clustering to achieve unknown stops

discovery.

Another challenge is to avoid the influence of half-way

data because the half-way location records distributed

sparsely and cost less time for users to stay. According to this,

we can filter the half-way coordinates out of raw data through

time-based clustering. A time interval can be set to pick out

the places with a longer time duration. J. H. Kang et al. stud-

ied this method in [68] according to the time characteristic

using real WiFi-based location system. The WiFi-based tra-

jectorymodelling is also a kind of indoor fingerprinting local-

isation and tracking system whose accuracy can be improved

by the Kalman filter [139].

b: MARKOV MODEL

In the Markov model, the future states only depend on their

current state and have no relation with all previous states.

In that way, it is an available choice to model personal

trajectory with probability. Each node is a location, and a

transition between two nodes means the probability of the

user mobility between those two locations. D. Ashbrook and

T. Starner proposed the paper [61] for forecasting multiple

users’ movement by the Markov model composed of nodes

and transitions. However, the GPS data faces a problem that

indoor positioning is not as accurate as outdoor. We still

need other data source to compensate the model for loss.

A work about using BS handover data was published recently

by H. Farooq and A. Imran in [69] to predict the students’

mobility using a Semi-Markov model.

c: SENTIMENT MODEL

The stops of trajectory have both physical and semantic

meanings. As reviewed, the online data can be used to detect

both of them [64], [65], such as eating at home or offering

presentations at workplaces. Previously reviewed literature

concentrated on physical trajectory but gave fewer efforts to

know the semantic meanings of interesting places (e.g. home,

work). The researchers in [66] utilised Bayesian networks to

investigate GPS temporal patterns to find semantic meanings

of frequently visited places. Such personal trajectory model

tracked visited places to predict future regular visits. How-

ever, we require to know not only the regular movements

but also a judgement of the outliers of their daily trajectory.

For example, cognitively-impaired elders or blind people

will encounter problems if they have such irregular move-

ments. Q. Lin et al. studied this problem in [67] based on

mining historical GPS data. Moreover, the trajectory during

events can also be different from the daily movements. The

authors of [53] regarded modelling the user’ movements as

an event-based trajectory that records new geolocations when

we detected new events.

3) SUMMARY OF FINDINGS AND LESSONS LEARNED

In summary, the main findings and lessons learned from the

modelling of geolocation include:

• The popular regions indicate the hotspots distribu-

tion in a spatial traffic pattern. The proactive opti-

misation needs this context to decide the most prof-

itable region for resource allocation and infrastructure

deployment.

• The clustering methods, K-means and DBSCAN, are

widely chosen in the popular region modelling. The

K-means is easy to implement with low complexity but

requires a manual selection of the cluster number k ,

leading to a degree of arbitrary parameterisation based

on user bias/intuition. Some variants of K-means can

mitigate this problem by re-simulating a series of k

values, but still meet the negative influence caused by

noisy samples. In that case, the DBSCAN based spa-

tial kernel is selected to reduce the noise and high-

light the high-density areas. The setting of minimum

density determines the popular regions that can be

found.

• The clustering method is good at modelling the stops in

the trajectory, but it is difficult to track the slow-moving

objects which have few stops. In that way, the speed of

objects is taken into consideration. Besides, the half-way

locations with less staying time require to be ignored.

Therefore, it is better to also analyse the data in the

temporal dimension through setting the minimum stay

threshold. Another problem is that trajectory prediction

also requires the transfer probability between the stops.

The Markov model can provide such a transition proba-

bility. As this model assumes that the next stop is only

correlated to the current one, it will ignore the potential

influence of the previous stops.

C. MODELLING SOCIAL BEHAVIOUR

Humans have diverse behaviours and attitudes towards a

specific object [140]. Understanding user behaviour can help

choose the suitable communication service type (e.g., video,

audio). Moreover, the attitude becomes the key to guide oper-

ators to improve service quality. Social behaviours include

content popularity, preference, and relationship.
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1) CONTENT POPULARITY

Frequent-accessed content generates the majority load of

the network. Content popularity tells which content is liked,

accessed and shared by a high number of users. There are

two targets of modelling content popularity, the first one

is to judge which content will be popular, and the other

one is predicting the level of popularity [141]. The content

popularity decides the content placement, transmission and

storage in proactive caching. Traditional statistic popularity

models (e.g., Zipf distribution) have no parameter optimisa-

tion, such as the gradient descent in machine learning. One

of the promising methods for improvement is to use machine

learning based on online data for modelling the popularity

model instead of using Zipf distributions, such as applying

regression methods to model published YouTube videos’

popularity for new video’s proactive caching [142]. The error

tolerance is low in caching (error rate < 0.5% [116]) due

to the high backhaul cost while meeting errors. Moreover,

the models are required to be updated continuously to main-

tain a lower overhead (cost) [116].

a: CLASSIFICATION BASED MODEL

Classification is a supervised-learning method that identifies

which category a new observation belongs, its training pro-

cess is based on the data set whose categories are already

known. The work [142] extracted video features as vectors

and used SVM to classify videos and build the popularity

model. The videos in the same classified category should

have a similar popularity trend. Besides, we can also mark

contents with tags of popular or not popular, then describe

the content with popularity in the first hours and popularity

in the later days, finally use classification tomodel the content

popularity. The authors in [73] proposed an example of using

the Naive Bayes classifier to recognise stably popular and

highly popular YouTube video based on popularity patterns

and content-requesting times.

b: REGRESSION BASED MODEL

The content popularity varies along with the changes of some

independent variables, such as comments and visit counts.

The regression-based model can make the network under-

stand this variation. For example, after the content publi-

cation, the first-hour popularity can reflect its level after a

month. Such correlation can be described by a linear regres-

sion [72]. The authors in [72] worked on an online newspa-

per article popularity prediction using readers’ comments on

Digg. However, online content in text-form occupies much

lower cellular resources than online videos. The popularity

of online videos was studied in [76].

2) USER SENTIMENT

User sentiment is a sense of a user’s perception to cer-

tain contents or services (positive or negative), and it may

affect its subsequent actions (e.g. stop usage or complaint).

Understanding user sentiment can help best fit their tastes

FIGURE 5. Case study of using user sentiment to detect cellular
blackspots adapted from our work [33]. (a) The blackspots where users’
complaints about the cellular network detected. (b) A comparison of the
actual poor signal zones and the poor QoE zone from Twitter.

to increase QoS and even cache the preferred content in

advance. In the network optimisation, user sentiment usually

indicates the areas with poor network performance and the

content a consumer likes or not. Users could complain about

network experience through the social network, and such

behaviour offers an opportunity to classify the complaints

into different service categories. In a work about network

coverage blackspots detection [33], the detection accuracy

was achieved over 0.6 F1 score with 80 training size. In that

work, we used Twitter data as the source to detect spatial user

sentiment and provided a case study of London Bridge as

shown in Fig. 5. Consumer requests reflect their sentiment

on the contents. The works [116], [133] cached each user’s

interested content in the BS along the trajectory.

a: LEXICON DICTIONARY

Sentiment analysis is mining affective states subjective infor-

mation. It is a combination of using natural language pro-

cessing, text analysis and unsupervised learning. An example

is given in [33] building an NLP based model using Twit-

ter data to help telecom operators to find QoE blackspots

where network optimisation or better deployment is required.

They filtered the words related to complaints and located

the blackspots with the geo-tags in the Tweets. Such

blackspots can be translated to coverage holes caused by

uneven BS deployment, power-exhaustion BSs, or emer-

gence BSs under the attack by extremes weathers [143].

Sensors’ coverage self-healing provides a path to solve the
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coverage problem, such as coverage hole repairing of mobile

edge nodes [144], [145].

b: SUPERVISED LEARNING BASED MODEL

Supervised learning produces an inferred model which maps

the training data and its labels. Then, this model can allocate

new observations with the existing labels according to the

estimated probability. The authors in [116], [133] predicted

the Youku (like YouTube) video’s content-requesting proba-

bility by using a neural network. The input of this model was a

vector of user context, and the output was the content request

distribution. Other researchers estimated the user sentiment

from feedback and ratings in [81] using such as Naive Bayes

Neural Network, and Nearest Neighbour algorithm. Similar

works using different data based on this model, such as the

investigation on searching result preference [82], [83]. How-

ever, individual preference is not stable over time because of

the influence of environments, experiences, and education.

Generally, for machine intelligence at the individual level,

calibration is needed on a daily basis [146].

3) USER RELATIONSHIP

The online platforms record the relationship between users

like Facebook friendship or Twitter subscription. One can

use friendship, interaction, latent, and following graphs for

representation [147]. These relationships not only indicate

the role of a user in society but also provide us with a

model to reveal information spreading rules to benefit the

dissemination of content [148]. According to [149], [150],

the diffusion of information in Social-Physical Networks can

be modelled by the strength of social ties. In the network

optimisation, sharing the cached contents in friends circles

dramatically alleviates the pressure of the core network. This

can be done by finding the most influential user in social

ties [42]. An example of using Facebook friends in a coop-

erate caching is [43].

a: INTERACTION GRAPH-BASED MODEL

Online relationship is less valuable than offline ones [89]

because some of them might have little interactions after

building connections. This skewed distribution of online

friendship challenges in estimating close relationships.

Therefore, the interaction graph takes visible interactions into

account to build the user relationship model. The proactive

caching work [43] considered both connections and interac-

tion on Facebook to find users with similar requests. In [85],

the interactions, such as wall posts and photo comments, were

used to improve traditional friendship graphs on Facebook.

However, not all the interactions are as visible as comments.

b: LATENT GRAPH-BASED MODEL

Besides visible interactions, there are also some ‘latent’

interactions, such as profile browsing or posts glancing,

occur every time while using. In [86], J. Jiang et al.

built latent interaction graphs based on social links and

the tracked profile-visiting histories using statistic methods.

However, ‘close relation’ can be reflected from not only

interactions but also the geolocation that effective close rela-

tionship should have overlapped trajectory in their daily life.

Otherwise, its value will be discounted in network opti-

misation. The work [88] studied friendship and location

by using statistics to estimate the probability of friendship

that is roughly proportional to the inverse of the distance.

Similar work is in [90] using Gaussian distribution and

Expectation-Maximisation (EM) to fit the periodic and social

mobility model which forecasts the relationship between

friendship and mobility.

c: FOLLOWING GRAPH-BASED MODEL

In Twitter, users subscribe to others and see all of their public

posts. It indicates a weaker offline relationship than Facebook

but reflects more power in information spreading on the news

media level. H. Kwak et al. modelled this relationship as the

following graph in [91] and found that Twitter had a nature

of broadcasting, which verified its role as the emerging news

media. The information-spreading ability is influenced by

numbers of the follower and influential user rankings. Under-

standing the spatial properties of the broadcasting graph can

enable proactive content caching and D2D and P2P joint

optimisation [151].

4) SUMMARY OF FINDINGS AND LESSONS LEARNED

In summary, the main findings and lessons learned from

modelling the social behaviours include:

• In proactive caching, the popularity prediction is critical

to guide the deployment, storage, and transmission of

the segments for maximising the caching hit ratio. The

forecasting of content popularity becomes a classifica-

tion problem which matches the known popularity of

published contents to the unknown popularity of the

new similar contents. The Naive Bayes and SVM clas-

sifiers are all popular supervised choices. It should be

noted that the selection of dimensions in the classifica-

tion requires it to maximise the difference between the

diverse kinds of content for avoiding the misclassifica-

tion. It would be useful if the data sets are visualised with

the dimensions. Besides, the popularity correlates to the

number of visits and comments.

• The users’ sentiments represent their tastes to different

content or the satisfaction of their experience. In the

proactive optimisation, it will enable the sliced virtual

networks with functionality specific to the service or

customer. Such a sentiment analysis model consists of

natural language processing, text analysis and super-

vised learning, which has already been successfully used

in detecting cellular blackspots. The problem is that the

results highly rely on pre-defined text corpus, which can

have ambiguity and understanding errors. As for mod-

elling user preference, the supervised learning based

models can use the user context as an input and pro-

duce a distribution of future user’s requests of contents.
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FIGURE 6. The number of geo-tagged Tweets per hour in two weeks (15/02/2016-28/02/2016) at a cinema in Leicester Square, London.
A movie world premiere was held on 22/02/2016 where the highest peak of Tweets/hour appears. Such a burst of traffic is unique compared
with all the other days in the two weeks, so it is irregular and not predictive according to only historical traffic data. We applied both ARMA
and Gaussian Process methods for prediction, and results indicate that they are not capable of predicting the random burst.

However, the individual sentiment is unstable, so it

requires a frequent calibration via user prompts [100]

which is subject to inconsistent user participation.

• The modelling of user relationship can help to reveal

the information spreading rules which are required in

the dissemination of contents in the proactive caching,

especially on the D2D level. It has three kinds of rep-

resentations, interaction, latent, and following graphs.

The intensity of interactions reflects their relationship

and the potential of overlapped trajectories as well as

similar requests. In that case, it represents a ratio to

adjust the strength of users’ relationship. However, not

all the interactions are visible, such as the posts glanc-

ing or social mobility. The closer locations and simi-

lar behaviours increase the probability of a friendship.

The Gaussian distribution can be used to fit the social

mobility that the probability of friendship is propor-

tional to the inverse of the geo-distance. The above

models mainly focus on friendship on Facebook, but

there is also another subscription relationship on Twitter.

The following graph-based model can determine the

most-influential user which may benefit the broadcast-

ing of contents in proactive caching.

D. PREDICTIVE USER BEHAVIOUR

1) SEASONALITY IN USER BEHAVIOUR

The previousmodels represent the connection between online

data and user context. Major of them aim to model the sea-

sonality (regularities) in user behaviour, such as places with

daily visits and preferred content. The regular behaviour has

a low possibility to change, which brings convenience for

prediction. To track the habits in network usage, it is better

to forecast the regular spatial-temporal pattern according to

historical data [94], [132]. In general, these results indicate

that regular behaviours are predictive because they repeat

over time.

2) ANOMALY DETECTION IN USER BEHAVIOUR

However, the anomaly (irregularity) also exists in user

behaviour, where traffic-burst randomly occurs on the time-

line. It is difficult to model such behaviour along with time,

such as parades. For example, Fig. 6 plots the number of geo-

tagged Tweets per hour around a cinema in Leicester Square,

London in two weeks. A movie world premiere caused an

unusually high peak on 22/02/2016. It is difficult to predict

such an event according to the regular traffic in previous

days (15/02/2016-21/02/2016). To verify this view, we use

an Auto-Regressive Moving Average model (ARMA) and a

Gaussian Process (GP) model to forecast future confidence

interval based on the data from 15/02/2016-21/02/2016.

In the Gaussian Process model, the prediction of Tweets

per hour y∗ is based on the observations y before 18:00,

22/02/2016. Therefore, the probability follows a Gaussian

distribution y∗|y ∼ N (ȳ∗, var(y∗)) [152], in which ȳ∗ is the

mean indicating the best estimate of y∗ and var(y∗) is the

variance representing the uncertainty. The 95% confidence

interval is ȳ∗ ± 1.96
√
var(y∗). This model helps understand

seasonal characteristic in historical data. However, the burst

on the event day does not obey the seasonal trend.
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TABLE 6. Top 5 term frequency of Tweets before and during event
’Grimsby World Premiere and Red Capet’ at cinema on Leicester Square,
London.

The key to solve is using online contents to detect the

future popular event. The event is the dominating distur-

bance that enters early in the process of Tweeting. Therefore,

the ARMAX (ARMA with exogenous terms) model can be

used to track the irregular burst caused by the event. The

events are regarded as unusual outliers in the regular traffic

pattern. For example, as shown in Fig. 4, the hottest traffic

spots will change when the event is approaching, and the

term frequency will also alter to event-related words as shown

in Table 6. Therefore, we need to find irregular conditions

in regularity. We can use machine learning, such as SVM,

to classify the Tweets according to temporal-spatial-textual

dimensions. Then the algorithm detects upcoming popular

events as well as predicts the irregular behaviour of UEs. The

paper [17] proposed a context-aware load balancing based on

predicting an event in simulation, and [153] also studied that

unexpected real-time road traffic prediction and control based

the Tweets by waiting drivers.

3) SUMMARY OF FINDINGS AND LESSONS LEARNED

In summary, the main findings and lessons learned from the

predictive user behaviour include:

• Majority of the prediction models focus on the season-

ality (regularity) in the behaviours because the demand

components have periodic variations. Machine learning

approaches attempt to balance between best fitting of

parameters and avoid overfitting via Bayesian methods.

The application examples include: the small cells can

be turned on or off according to the periodic varia-

tions of network traffic. However, the challenge appears

when the network traffic does not follow the seasonality.

In that condition, random components break the rules of

the seasonality and cause prediction errors.

• The non-periodic random components in the social

behaviours cannot be predicted based on the training

data in the regularity. We applied the Gaussian Process

and the ARMA model to examine the degree to which

uncertainty exists. The conclusion is that extra informa-

tion is required to highlight the time with an anomaly.

For example, in event detection, the event information

has been posted several weeks or months ahead. We can

use this information to determine the anomaly period

and apply the detection methods to track the irregularity.

In that case, the proactive load balancing strategy has to

balance the newly emerging event’s hotspots which can

be very different from the daily hotspots (see Fig. 4).

This proactive action will increase the convergence abil-

ity of optimisation, but it also needs to deal with the

prediction errors and the associated overhead.

• We summarise the reviewed papers of the whole

Section III in Table 7. This table classified the papers

with the fields of used models, data types and amount.

In this section, we also introduce how each context

is required in the proactive optimisation, which is the

link between Section III and Section IV. For exam-

ple, the popular region prediction needs to satisfy the

requirements of proactive load balancing with a mini-

mum spatial granularity of 120 m and 2 hours ahead.

Such a prediction can be executed by using the clustering

methods on the geo-tagged social network data. The

proactive caching also needs the user trajectory predic-

tion with accuracy > 75%. Such requirements can be

achieved by analysing the GPS data using the neural

networks.

IV. DATA-DRIVEN PROACTIVE NETWORK OPTIMISATION

USING CELLULAR AND ONLINE INFORMATION

The context from online data-analysis is the enabler to infer

predictive user behaviours, which also enable cellular traffic

predictions and further shift current reactive network optimi-

sation to proactive. This section will analyse how to imple-

ment them to achieve proactive optimisation.

A. CELLULAR TRAFFIC PREDICTION

Network traffic prediction becomes significant in the proac-

tive optimisation, especially the proactive load balancing.

Traditional algorithms construct regression models for the

one-step prediction based on records, such as the core net-

work [154] or cell-level prediction [155]. However, these

researches face bottlenecks to step further as the resolution

is limited to cell-level. One of the solutions is analysing the

high-resolution GPS data from heterogeneous datasets, then

correlating it to cellular traffic. The work [95] has verified

that the network traffic and the size of online data are both

positively correlated to the number of involved network users.

In that way, online social networks could not only predict

flash crowds’ needs but also offer operators suggestions

about traffic forecasting for resource allocation [87]. This

part reviews the development and provides the findings about

online-data driven traffic prediction.

1) NETWORK-LEVEL TRAFFIC PREDICTION

The network-level traffic indicates the amount of exchanging

information through the backbone network. Such data record

the past traffic as a vector in the temporal dimension, which

is the training data for neural networks. Then, the trained

network forecasts the quantification of traffic at the next

time stamp. The researches in [154], [156] followed this

way by using a feedforward deep neural network or a Long

Short Term Memory (LSTM) recurrent neural network for
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TABLE 7. References summary of online data type, amount, and analysing models.

this purpose. The results are satisfied in predictions, but they

only provide the one-step prediction, which means that the

network needs to be re-trained for multiple-step predictions.

It may negatively impact the time for further optimisation.

If the traffic seasonality and random spike can be decomposed

in the training process, the multi-step traffic prediction can

be transformed into a combination of seasonal prediction

and adding external random information. The Non-linear

Auto-Regressive with exogenous model (NARX) makes pre-

dictions in this way and solve the one-step problem [157].

2) CELL-LEVEL TRAFFIC PREDICTION

This traffic includes both spatial (BS location) and tem-

poral dimensions. The granularity of prediction is usually

in hour-cell level to have a stable seasonality. In other

words, based on the hourly data collected from the BSs,

the cell-traffic will be modelled by statistic models or

machine learning methods.

The temporal traffic consists of the trend, seasonality,

and random components. In detail, the trend indicates the

overall direction in which the traffic is developing or chang-

ing. The seasonality is that the traffic experiences regular

and predictable changes which recur every calendar day or

other periods. In that case, the cell-level traffic becomes

predictable if the trend and seasonality are modelled, which

can be easily implemented by ARMA model or exponential

smoothing [158], [159]. However, thesemodels only consider

a constant time range, which is described by a ‘window’,

so the long-term memory of all the training data is neglected.

The LSTM is designed for solving this problem by feedback

connections in RNN to process the entire sequence of data

with selectively remembering patterns. It has a forget gate

to disable the meaningless information in recurrent states,

such as the random fluctuations in the traffic pattern. One

successful example is in [155], but this technique also has

some limitations. One of them is that the knowledge learnt

from one cell can not be shared with other cells, which is not

intelligent with repeating training effort. It is a promising way

to use meta learning to use the conclusions of other learning’s

results. The records of other learning methods will be stored

and help current training in different cells for learning both

temporal and spatial traffic.

The spatial traffic can be described by a probabilistic

distribution whose parameters are adjusted for fitting the

training data with minimum errors. The traditional method

is to formulate using mathematical statistics, such as Zipf

distribution [160]. This method finds relations between traffic

and locations, and the significance of this relationship. For

example, the work [161] designed an α-stable traffic model

with parameter tuning for a city-wide scale. The common

shortage of this method is that it approximates the parame-

ters without the optimisation like gradient descent so some

important details will be ignored. With the development

of machine learning, this shortage has been overcome by

the neural networks (e.g., LSTM) which owns intelligent

weights’ fine-tuning methods like back-propagation [155].

Although the neural networks performed better in prediction

accuracy, it lacks the ability for quantifying uncertainty as

the mappings between layers governed by weights but not a

stochastic process. The usage of Gaussian Process addresses

this problem [155]. This non-parametric method trains its

hyper-parameters to produce a posterior distribution of pre-

diction with uncertainty quantified. Although the Gaussian

Process may not surpass the performance of neural networks,

it can quantify the risks via the posterior distribution. In that

case, it becomes promising to use deep Gaussian process to

couple the advantages of both deep learning and Gaussian

Process [111].

3) TRAFFIC PREDICTION USING ONLINE DATA

The problem of previous traffic prediction is the lack of pre-

dictive user behaviours, so it becomes difficult to explain and
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FIGURE 7. The spatial and temporal correlation between Tweets and network KPI adapted from our work [95]. (a) The spatial correlation of a
ward-average (a ward is nearly the coverage of a BS) 3G traffic and number of Tweets per second in this ward. It shows a log-linear relationship.
In other words, if the Tweets/s (user behaviour) is predictive, we can approximately know the mobile traffic in advance. (b) The temporal
correlation indicated the traffic prediction up to 2 hours on the same day and for the same time over the following 1-2 days for both the uplink
and downlink channels.

predict the random traffic spike caused by changed services.

In that case, heterogeneous data become more important

because they contain not only cellular information but also the

individual-level geolocation and behaviours (see models in

Section III). In the general methods, the traffic is decomposed

into the trend, seasonality, and random components. The

random components may be the holiday traffic or the traffic

spike during popular events. If such traffic is estimated, one

will combine the quantification of the three components for

the final prediction [162], [163].

This gap is filled by estimating cellular traffic based on

geo-tagged social network using machine learning, such

as using linear regression [95], [96]. Before training, it is

required to select the interested dimensions first, such as

cellular traffic and amount of Tweets. Then, the data will

be fitted by regression models with minimising residuals

like using least squares [96]. The work [96] found a strong

correlation between Tweets and mobile traffic in a stadium

even though the Twitter traffic takes only a small partition

in the whole traffic. However, the correlation is not fixed

when the temporal or spatial scale changes. The strength

of correlation increases along with the decrease of spatial

resolution. It is a trade-off between better spatial resolution

or higher correlation. The current method for this problem

is re-calculating the correlation with different resolutions to

pick an acceptable one [94].

Based on the positive correlation, network traffic becomes

predictive using heterogeneous data. The regression methods

shall provide the optimised parameters for the fitting correla-

tions. One can formulate the model according to the param-

eters. For example, the work [95] predicted spatial-temporal

traffic based on the estimation of correlation (Fig. 7) between

3G network load and Tweets using log-linear regression.

This estimated Down-Link (DL) traffic load r̂DL in cluster c

in time interval t can be described as

r̂ctDL = 10bDL (
nct

τ
)aDLτ (1)

where [aDL = 0.88 kb/Tweet bDL = 2.37 kbps] and τ is

ratio between time interval and second (e.g, in this work τ =
3600 s/hour). This formulation couples Tweets and cellular

traffic but considers only general conditions. Sometimes,

an anomalous traffic emerges without a holiday-like obvious

signal. Therefore, an anomaly detection in traffic prediction

emerges as another research direction.

4) ANOMALY DETECTION

The anomaly traffic does not follow the model of the trend

or the seasonality because user behaviours become different

during irregular conditions. The general method is to model

the regular traffic first, then detect the outliers based on the

modelled regularities. Finally, the outliers will be treated as a

particular group with another model to fit the traffic. In that

case, we need two machine learning models for both regular

and anomalous conditions, which are usually combined with

a clustering and a regression. The clustering methods auto-

matically distinguish the regular and anomalous conditions

in the selected dimension. For example, using K-means on

grouping the BSs with similar traffic will present the BSs

with extremely high or low load [164], [165]. The extreme

values are useful for proactive optimisations, such as load

balancing for extremely high-load cells and BSs turn-off

for extremely low-load cells. Another model for modelling

anomalous traffic is usually undertaken by regression meth-

ods, such as Gaussian Process, neural networks, or NARX

model [157]. These methods performed well but faced a
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FIGURE 8. The framework and sketch diagram of forecasting behaviours with uncertainty estimation. The proactive optimisation is fed
with prediction and its confidence range. It then provides a cascade distribution of QoS. The system can estimate the potential cost and
profit to quantify the overhead and make decisions.

challenge in optimising theweights that they can not avoid the

local optimum with using gradient descent. This is because

the start of the gradient is randomly allocated in the global

space. It is not controlled to walk iteratively to a close local

optimum then converge. One of the solutions is applying

evolution algorithm in parameters’ optimisation. The scheme

is inspired by biological evolution in which the generations

will finish the procedures of reproduction, mutation, recom-

bination, and selection. The mutation provides chances to

jump out of the local optimum. In that case, it is promising

to use neuro-evolution deep learning to better tune network

weights.

5) THE QUANTIFICATION OF UNCERTAINTY

IN PROACTIVE OPTIMISATION

To estimate the overhead caused by data scarcity and mali-

cious attack, the certainty of the prediction needs to be quan-

tified to regret the poor performance. We describe the above

process in Fig. 8. The detail steps are shown as follow:

(i) Gaussian Process and Bayesian learning can gener-

ate the posterior distribution based on the observa-

tions [111], [166]. Such distribution describes the cer-

tainty (confidence region) of demand prediction.

(ii) Then, in the proactive optimisation, the input is the

demand (e.g., traffic) samples generated by the poste-

rior distribution, and the output is the corresponding

network quality which can be statistically counted by

the histograms or the Kernel Density Estimation after

several simulations. In general, the simulator outputs

the QoS metric according to the traffic posterior distri-

bution and provides a cascade QoS distribution.

(iii) Such a cascade distribution will quantify the confi-

dence region of the proactive optimisation to compare

with the reactive optimisation. In other words, its con-

fidence area describes how the network can operate in

future and its probability.

If the QoS of proactive optimisation is estimated to have

poor performance worse than reactive optimisation, the regret

of poor performance occurs. In contrast, the better per-

formance area becomes benefit or profit. Based on the

framework, the final decision is made according to the dif-

ference between profit and cost. In general, the uncertainty

offers a probabilistic numerical estimation of the profit of

proactive-optimisation decisions while facing data scarcity or

malicious attacks.

6) SUMMARY OF FINDINGS AND LESSONS LEARNED

In summary, the main findings and lessons learned from

the traffic prediction are highlighted as the following items.

We also provide a summary Table 8 to compare the methods

and suggest the solutions of current pitfalls.

• The network-level traffic prediction can be addressed

by the regression methods. These methods can pro-

vide high-accuracy results in the one-step forecast but

accumulating errors for multi-step prediction. The prob-

lem is that the network optimisation requires multi-step

prediction to reduce redundant re-training efforts. The

solution is using the NARX model regarding random

spike as exogenous inputs and combine the multi-step

seasonality prediction with the exogenous information.

In that way, it alleviates the influence of errors caused

by random components.

35624 VOLUME 8, 2020



B. Ma et al.: Survey of Online Data-Driven Proactive 5G Network Optimisation Using Machine Learning

TABLE 8. Summary of the literature about network traffic prediction.

• For the temporal dimension, the traffic is decomposed

into the trend, the seasonality, and the random compo-

nents. The first two items are predictable through using

the ARMA or the exponential smoothing, but only part

of the training data is used to deduce the prediction. Such

a requirement about flexible long-term memory makes

the LSTM a feasible choice. Its forget gate is trained to

remember the meaningful items. Moreover, one of the

future researches is to avoid the knowledge catastrophic

forgetting between BSs by meta learning.

• In the spatial traffic prediction, traditional methodsmod-

elled it by mathematical statistics (e.g., Zipf distribu-

tion and α-stable). Compared with machine learning

(e.g., neural networks), the traditional ones have no

parameter optimisation (e.g., gradient descent). Instead,

the parameters are determined using general approaches,

such as maximum likelihood estimation which approx-

imates the parameters without finding a path to the

minimum gradient. The problem of current machine

learning is that the predictions are generated without a

quantification of the uncertainty. It causes difficulties for

future decision makings to quantify the cost and profit

considering potential errors. Such a problem is estimated

to be solved by Gaussian Process or deep Gaussian

process to produce predictions as posterior distributions

(uncertainty).

• The random components in traffic are difficult to explain

and predict due to the lack of user behaviours meta-

information. This difficulty drives data analytics from

cellular only to heterogeneous data (e.g., Twitter data).

Current methods concentrate on using linear regression

to formulate the positive correlation between cellular

traffic and social network. Some statistic methods can

quantify the strength of correlation but not formulate

the model. Current gap of predicting the random traffic

spike is that many anomalous conditions are unknown

in advance (e.g., non-periodic events such as protests).

It needs the anomaly detection to distinguish regular

and anomalous conditions automatically. The general

method is combinedwith a clusteringmethod (for distin-

guishing) and a regression model (for traffic modelling),

such as a combination of K-means and neural networks.

However, the weights selection in the neural network

may meet the local optimum by the gradient descent.

In that case, the neuro-evolution deep learning can jump

out of the local optimum,which is a promisingmethod to

model traffic with fine-tuned weights in the long-term.

B. PROACTIVE LOAD BALANCING

Load balancing is required to cope with the imbalance dis-

tribution of users’ demand [31]. Specifically, the goal is to

handover the UEs at the edge of overlapping or adjacent cells

from congested cell to idle cell through optimising handover

offset values [169], thresholds [12], and the number of han-

dovers [170]. Afterwards, the SON algorithm was developed

to take advantages of Fuzzy logic controllers for auto-tuning

handover margins [13], [171]. However, these methods face

some challenges:
• The controller-based methods are reactive to random

traffic spike, which delays the convergence and results

in the limited ability in adapting the fast-changing

load [17].

• The controller-based methods have a potential occur-

rence of oscillations, which may cause re-overload

occurrence for target cells [171].

Several proactive load-balancing works use machine learning

to deal with the above challenges by deriving, predicting, and

adjusting key parameters (e.g., call blocking ratio (CBR)).

1) BALANCE LOAD WITH PREDICTIVE TRAFFIC

The first requirement to be proactive is forecasting the cell

load (similar to the number of UEs and the BS traffic).

Themachine learningmethods are selected to forecast the cell
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load and decide the offsets according to their correlation. The

offset was adjusted automatically based on the cell load with

being subject to the minimisation of packet loss ratio. The

knowledge learnt from the training process highlighted prof-

itable choices of parameter adjustment. For example, in [19],

they used the polynomial regression to formulate the relation-

ship and adjust the small cell offset value. However, the rela-

tionship between parameters can be complicated and related

to a lot of parameters. Reinforcement learning performs better

than polynomial regression in complex scenarios.

Q-learning is a reinforcement learning to solve the problem

by learning the state-action table from training data. The state

is indicated by the cell load, and the action represents the opti-

misation decisions (e.g., offset values or antenna down-tilt).

With the employment of this model, the Reference Signal

Received Power (RSRP)margin can be continuously adjusted

according to the state-action table to maximise the user QoS.

The works [21], [172], [173] followed this way to self-tune

the cell margin or the antenna down-tilt.

2) BALANCE LOAD WITH CALL BLOCK

RATIO OR UE LOCATIONS

The CBR is an indicator of cell load because such a ratio will

increase along with the rising cell load. Another indicator is

the average distance between the BS and the neighbouring

UEs. If the UEs are far from the BS, the cell load is estimated

to be low. According to the indicators, similar state-action

tables can be trained. The works [20] used such table to

update the CBR-offset fuzzy rules. The work [174] imple-

mented the distance-based target BS-selection algorithm in

the UE to handover to the BS with maximum QoS. The

problem of these methods is that the state-action table is

generated in regular traffic conditions. The networks also

have event-like random conditions with very different traffic

pattern. One of the solutions is considering extra user-context

information, such as the event traffic pattern.

3) MACRO CELL OFF-LOADING

Another way to balance load is to offload traffic from macro-

cells to small-cells, WiFi and D2D connections to max-

imise energy efficiency. The offloading process was coupled

with proactive content caching and finally resulted that most

energy savings were from prediction and delay tolerance. The

first step is to forecast context information, such as network

traffic, user mobility and preference. Then, the offloading tar-

get function is formulated with maximising energy efficiency

or the QoS. For example, the work [175] proposed this study

in the 3G scenario with collecting data from YouTube and

Apple iTunes to forecast consumer mobility and preference

for forming the hot zones. Moreover, the papers [176], [177]

focused on offloading to small cells and D2D connections

toward high energy efficiency.

The Q-learning method builds a table of states (indicated

by the cell load) by actions (the offloading decisions) in the

training process and suggests the best action next time [178].

However, the social relationships and content popularity are

not considered, which can forecast the repetitive content

downloads. Rerouting this mobile traffic to other access net-

works is a good choice to offload the macro cell and the

core network. For example, in [179], they denoted the offload

ratio of content j of user i as wij, the size of content j as

Lj, the requested times of content j from user i as mij, and

the backhaul capacity as CBN. In that case, the backhaul

utilisation UBN is

UBN =
∑

i

∑
j wijLjm

i
j

CBN
(2)

The backhaul utilisation can be forecast if user prefer-

ence mij is predicted (such prediction models can be found

in Section III), and the target is to minimise the backhaul

utilisation in the future actions.

4) SMALL CELL SWITCH-OFF

The switch-off algorithm can disable idle devices for a sleep-

ing interval [32], [180], which reserves the energy consump-

tion in low-load scenarios. The resource allocation for this

purpose is similar to the marketing models with biding for

maximum profit. The objects toward high profit are mapped

to the trade-off among conflicting financial interests, such as

cost (e.g., power) and profit (e.g., capacity). In detail, the net-

work needs to ‘bid’ for the resource of third parties to carry

their low loads. Therefore, we need to forecast the offload-

ing traffic to ‘buy’ the requested capacity. The work [181]

utilised this model considering time-varying traffic to switch

off HetNet nodes and offload the remain UEs to third parties’

cells.

Traffic prediction decides the involved cells and the time

to wake up. In the temporal traffic prediction, the low-load

intervals provide the basis for a system to determine which

cells need to be turned off for how long. The work [182] did a

similar work with the target of maximising energy efficiency.

Beside load prediction, the sleeping intervals should be set

in advance according to overlapped areas, battery condition,

and previous settings. The traffic prediction is not the only

requirement. The work [183] studied this problem consider-

ing extra context information.

The appropriate number of nodes to be switched off

depends on the traffic pattern. The traffic changes to a

low level at night, so its forecasting will suggest the max-

imum number of nodes to be switched off [184]. In a cell,

the average distance between BS and all the UEs can indicate

the power consumption because the BS has to increase its

power to maintain stable links for further users. Therefore,

researchers choose to switch-off the cells with the highest

average distance with avoiding the QoS degradation [185].

5) DATA-DRIVEN USER ASSOCIATION

The users in the overlapping area become the load to be

balanced. While the cell’s capacity is limited, these users

will still occupy the rare resource in this crowded cell even

through they can be transferred to the adjacent idle cell

without much increase of pathloss. Such traditional user-cell
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FIGURE 9. A comparison of convergence speeds adapted from our work
[57]. The data-driven user association scheme owns the best performance
to balance load in the cell overlapping areas.

FIGURE 10. A comparison of total network utility with different loads
adapted from our work [57]. The proposed method achieved the highest
utility, especially in the condition of heavy load.

association schemes lose the opportunities to connect users

on the far side. To solve this problem, better user-cell asso-

ciation will benefit the total utility of resources by making

rooms for more potential candidates.

To maximise the total utility of users, the users in overlap-

ping areas should be carefully associated even the pathloss

is a little bit worse, but the overall maximum target is

achieved. In detail, each pair of overlapping cells coopera-

tively re-associate users based on analysing the QoE data.

Our work [57] proposed an iterative optimization method

to implement this idea. The analysed QoE information was

shared through X2 interface or cloud message exchange, then

the involved small cells were triggered to optimise current

association profile. Fig. 9 presents the convergence speed

and compares with other three methods, two reinforcement

learning and a social best response. It shows a fast conver-

gence and high sum utility (above 30). These advantages

make the data-driven methods compatible with proactive

optimization. Under the circumstances with different loads,

as shown in Fig. 10, data-driven method also results in the

best-profiting association.

6) PROACTIVE LOAD BALANCING BASED

ON ONLINE INFORMATION

The above proactive algorithms can relieve the pressure of

oscillations and re-overload. However, the learning process

is only cellular data-driven, which has some problems:
• There exists unnecessary cell expansion for the cells far

from a hotspot.

• It lacks user behaviour, such as events.

These problems limit the roof of existing proactive algo-

rithms. To address them, we need a proactive load balancing

based on the analysis of online information.

The context-awaremodule in this algorithm should provide

predictive user distribution of potential high-loaded areas [8].

The research [17] proposed a heterogeneous data-driven

distribution-aware proactive load balancing study aiming to

solve the unnecessary cell-expansion problem. In the design,

the context-aware module collected and consolidated data

from Twitter and GPS, then output user distribution which

was also the forecasting of load difference between the loaded

cell i and its nearest idle cell j, LRdiff(i, j) (it is the input of

the integration module). In the integration module, the fore-

casting of LRdiff(i, j) suggested the loaded cell i to increase

its speed to share the load to its nearest idle cell j. For

example, the loaded cell i reduced its transmission power by

k × 1PTX(i). Such power reduction 1PTX(i) was adjusted

according to the controller’s output. Besides, the integration

module could adjust the strength k to enhance or weaken the

effect of load balancing algorithm according to the prediction

of environmental changes.

Compared with the performance of Fuzzy controller-based

optimisation, the context-aware optimisation could reduce at

least 1.3% more user dissatisfaction rate, and nearly 50%

convergence time. This research indicates a path to couple

proactive load balancing with the online information.

7) SUMMARY OF FINDINGS AND LESSONS LEARNED

In summary, the main findings and lessons learned from the

proactive load balancing include:

• The cell offset needs to be determined according to

the learnt correlation between the offset and the cell

traffic subjecting to achieving the minimum packet loss.

The polynomial regression and the Q-learning are the

commonly chosen tools, where the cell load is an input,

and it outputs the adjustment of the offset. One problem

of this method is that the regular conditions and the

random components are mixed in the modelling, which

causes a slow convergence in an anomalous condition

(because the anomaly is not fully learnt). In that case,

the anomaly detection needs to be implemented here

to learn the anomalous traffic and alert the system to

fit it.

• The behaviour information will enable the network

to fit customers’ demands and forecast the upcom-

ing change of traffic. The localisation systems provide

a high-resolution intra-cell traffic pattern, which will
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TABLE 9. A summary of proactive load balancing according to the
focused parameters.

suggest to enhance or weaken the effect of the controller-

based load balancing according to the forecasting load

difference of cells. Currently, the context-aware module

is not well-designed yet due to the uncertain predictions

and the difficulties to quantify the cost of taking risks to

optimise network following the predictions. Onemethod

to avoid the potentially heavy cost is to use a parallel

model to operate proactive optimisation while reserving

the chance to be shifted back to traditional optimisation

for minimising the risks. This method is reliable but does

not quantify risk in a probabilistic framework. Another

way is quantifying the cost based on the posterior dis-

tribution of predictions. It is a promising direction to

address the concerns of overhead by the Gaussian Pro-

cess or deep Gaussian process.

• In the Table 9, we summarise the proactive optimi-

sation researches’ topic, learning methods, optimised

parameters, and the findings to use online information

to fill the gaps. For example, current proactive meth-

ods need to active all neighbour BSs to participate in

load balancing. This problem can be solved with the

high-resolution hotspots detection and enabling only

the nearest cell for this work. Such hotspots modelling

methods can be found in Section III. B. 1. Popular

Region and Section IV. A. 5. Social Network-based

Traffic Prediction.

C. PROACTIVE CACHING

Mobile Edge Caching algorithm stores relevant data to the

nearby BSs based on predicting user demands. This tech-

nique increases network performance regarding throughput

and latency. To maximise the hit-ratio of the cached content,

the issues about content selection, content placement, content

delivery, and storage utilisation should be addressed in a

proactive way [31].

1) CONTENT PLACEMENT

To maximise the profit, the systems prefer selecting to cache

the most popular content to the closest routers (BSs) to

user-side and distributing content packets along with the path.

This is popularity-based content dissemination which aims

to improve the system performance regarding the server-hit

rate and expected round-trip time. The content popularity

represents the probability that the BS-associated UEs will

request the content in future. The Zipf distribution is a tradi-

tional model to forecast popularity as the accumulated request

probability in simple conditions (e.g., slow changing popu-

larity). The contents are cached according to their estimated

popularity [188]. To improve the performance in complex

scenarios, reinforcement learning is another way to execute

actions (cache contents) according to a trained state table

(service delay). The reward is given with decreasing the

delay (see example in [189]). Generally, the machine learning

methods are used to model user-files correlations to guide the

cache deployment [190].

However, it is inefficient to make the BSs with similar

popularity repeat the accumulating works. Instead, it is bet-

ter to update the estimation according to the knowledge of

other BSs. The BSs can be grouped by clustering methods

according to traffic, content preference, and storage. Then,

the modelled popularity is shared through the control plan

interface (e.g., X2 interface) and updated according to own

preference [191]. This scheme also benefits the cooperative

caching for sharing content between adjacent BSs and dis-

tributed caching for fetching contents from multiple BSs (see

example in [45]). The general idea is following the trajectory

prediction of users and deploy the segments. Nevertheless,

an optimisation is required to maximise profit according to

the above learnt knowledge. It is a matching game by consid-

ering both BS preference (most popular contents) and server

preference (low transmission time). The best result is to cache

the most-requested content with the lowest transmission time

to minimise the backhaul usage. An example is in [192], they

regarded this problem as a many-to-many matching game.

2) CONTENT DELIVERY

The content delivery represents an efficient strategy to pre-

pare the contents before being requested. This process is

usually scheduled during an off-peak time [45]. The tra-

ditional way is broadcasting the most popular contents at

the off-peak time [192]. It is efficient at the beginning but

becomes costly while facing fast changing popular contents.

The developing direction is user-oriented. If the cache place-

ment is in UE-level, the D2D link becomes more efficient for

content delivery. TheUEswith close social ties are potentially

interested in the same contents, so the content delivery based

on social ties becomes a new research direction. It is useful
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to highlight the influential users by using a centrality metric

to estimate the social influence of users (higher centrality

meansmore influential).Moreover, the content dissemination

models can be modelled by a stochastic Dirichlet process,

such as the Chinese restaurant process [42].

3) STORAGE UTILISATION

The issue of storage utilisation rises as the storage of caching

is limited. Some contents have to be removed for refreshing

up-to-date contents. A traditionally used method is the Least

Recently Used (LRU). The LRU algorithm lists a ranking

from most recently used content to least recently used con-

tent and deletes the bottom item for the extra storage [27].

However, continuously tracking the accessing information of

content is expensive. The best way to solve is forecasting

the size of cache and deleting the least-popular items. This

scheme preserves local memory for the upcoming popular

contents and combines the prediction of storage with traffic

for flexible transmission. The reinforcement learning can

build a storage-cache table considering maximising the stor-

age usage [193].

4) DYNAMIC CACHING WITH MOBILITY PREDICTION

The probability of content requesting differs when time and

area change. Testing the caching strategy with dynamic pop-

ularity and behaviours becomes more important these days

even though current simulations are executed with many ideal

assumptions [194]. User mobility is one of the influential

factors. The predictions of cell transition and cell sojourn time

suggest the best segment to be stored and the time to delete

it [195].

Generally, the mobility prediction continuously provides a

ranking of content request percentage. Then, the contents are

cached into the edge BSs (e.g., Remote Radio Heads (RRH))

according to this ranking. Additionally, with mobility pre-

diction, some UEs who are difficult to be supported by BS

caching can be served by the caching on Unmanned Aerial

Vehicles (UAV). RNN is a useful tool to model temporal

dynamic behaviour, such as mobility. The works [116], [133]

applied this algorithm with the Echo States Networks (ESN)

due to its easier training process and less computational

effort. Future improvements could combine the ESN with

reinforcement learning to build a deep reinforcement learning

network for better cache actions considering the complex

scenarios.

5) COLD START PROBLEM

Cold start problem means that the system starts with no

prior information and needs some time to collect sufficient

information and converge. The traditional methods chose to

cache random content or even all files at the start to collect the

popularity of these content [27], [42], [190]. This cold-start

popularity generation required time for enough accuracy and

had difficulties in supporting frequent user movement.

To overcome the cold start problem, transfer learning is

one of the methods. The transferred knowledge can be learnt

FIGURE 11. A comparison of computation iterations used for traditional
resource deployment method and data-driven method. The reduction of
computation time helps to avoid the cold start problem.

from other communications (e.g., D2D interactions) to sup-

port caching at initial stages with content popularity and

social ties. An example of using transfer learning is in [196].

However, this method is hard to quantify the principle of

the required knowledge to transfer in all cases. For example,

the knowledge of rural areas can be very different from

urban areas, but the definition of rural/urban can not be

understood if they are not manually defined. Another method

can avoid this problem by directly gaining prior knowledge

from online data, such as video popularity prediction. Dur-

ing an off-peak time, the content selection and placement

were already done, and there would be no cold start prob-

lem during peak time [116]. Here, we present an example

to show the performance of using data-driven method to

avoid the cold start problem. A spatial popularity map is

analysed and provided to the caching resource deployment.

Traditionally, meta-heuristic algorithms, like the Simulated

Annealing algorithm, are chosen for deployment. They will

waste efforts in searching low-demand spaces. The spatial

popularity map is effective to reduce the searching space

and used iterations. The computation iterations are compared

in Fig. 11. A Cumulative Distribution Function (CDF) is

given, an average 53.85% reduction of computation iterations

is achieved.

6) PROACTIVE CACHING BASED ON ONLINE INFORMATION

Online information provides the popularity of Internet videos,

which can be represented as pi(t) of the video i at time t with

the total size si and the cached portion αi(t). In that way,

the load of backhaul can be expressed as
∑

i(1−αi(t))sipi(t),

0 ≤ αi(t) ≤ 1. The caching algorithms aim to increase

the αi(t) to minimise the backhaul load according to content

popularity pi(t).

The general method of popularity forecasting of a new

video is to be classified into the categories of the published

videos. Firstly, the unpublished-video features are extracted

by a CNN. Then, the features clustering is applied by treat-

ing multiple published videos with similar features as a
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TABLE 10. Summary of proactive caching literature.

single video category with a representation vector. Next,

high dimensional features extracted from unpublished videos

are transformed to a representation vector to be classified.

Finally, the popularity is predicted by a regression model.

The researchers in [142] worked on this and got a good

result which presented the offloading ratio as a function of

time sequence. The popularity of published video is updated

along with time in the condition of ‘with prediction’, so its

performance is approaching the genie case. Current method

uses the perception ability of CNN to learn the video features,

but it is still short at deciding the optimal cache placement

scheme. In contrast, reinforcement learning is good at deci-

sion making. In that case, deep reinforcement learning is a

promising way to improve the cache decision ability due to

the coupling of deep learning and reinforcement learning.

7) SUMMARY OF FINDINGS AND LESSONS LEARNED

The Table 10 summaries the details of the reviewed literature

in this subsection. The main findings and lessons learned

from the proactive caching include:

• The content placement is a delay-minimising problem

solved by the reinforcement learning or amatching game

to best link contents to BSs. However, the traditional

methods trained the model without knowledge sharing

between BSs. This problem is estimated to be addressed

by cooperative caching based on popularity and mobil-

ity. Then, the content delivery needs the modelling of

traffic seasonality to forecast the upcoming off-peak

time. If the content should be delivered to the UE-level,

the social ties and high influential users will enable the

cache delivery through D2D links or the broadcast of

the most popular content. Finally, the storage manage-

ment has a similar target to save the transferred content

and empty the spaces for another high-popularity cache.

We find that the proactive caching not only needs to

predict content popularity but also the mobility and rela-

tionship. Fortunately, all of them are available in online

data.

• The mobility enables the dynamic caching updated with

the user trajectory predicted by RNN. General RNN

methods require high computational efforts and more

training time, so the ESN is designed for improvement

in this aspect. The gap of using only ESN is that its

ability of decision making is not as good as reinforce-

ment learning. In that case, deep reinforcement learning

becomes a promising way to combine the advantages of

both learning methods. Besides, the cold start problem

exists in current proactive caching schemes. One can

solve it by transferring knowledge from other networks,

but the ‘appropriate’ principles need to be pre-defined

to avoid mis-learning of useless knowledge. Online

data-analytics can avoid this problem by directly learn-

ing from the requested services.

• The online information is the basis for forecasting new

content’s popularity. Based on the popularity, the cache

size will be optimised by the caching schemes to min-

imise the backhaul load. However, there still exists

some challenges in further developments. For example,

the prediction errors or fast-changing popularity can

generate more burden in the fronthaul. The decision

should not only be made according to the probability

of occurrence but also the certainty of this prediction.

Gaussian Process is estimated to be a feasible solution

for this problem.

V. FUTURE RESEARCH DIRECTION: ONLINE DATA

ANALYTICS-BASED 5G PROACTIVE

NETWORK OPTIMISATION

In a 5G network, the explosive communication demands

urge current network optimisation to transfer from passive

to proactive. In detail, the proactive algorithm dynamically

follows the changes of circumstances and executes opti-

mising strategies to maximise the efficiency of resource

usage. In that case, how to monitor rapidly changing envi-

ronments (contexts) is the first problem to be solved. Online

data is no doubt a valuable source with all the users

as environment-monitoring sensors to provide the essen-

tial context for future network optimisation. In our sur-

vey, an optimisation-context-data map is proposed to clarify

which kind of proactive optimisation requires what contexts

through analysing which online data. However, despite the
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work about data analysing (extracting contexts from online

data) and simulated proactive optimisation (assuming that

the contexts are already known), there are still open issues

and challenges to complete the circle of making online data

as a reliable data source. In this section, we discuss these

challenges and issues along with future research directions.

A. REALISATION IN 5G

In the past years, lots of researchers have discussed the

5G network about the key technologies, such as millime-

tre wave, network densification, and massive Multiple-Input

Multiple-Output (MIMO). Among all of them, densification

is regarded to bring significant changes to the current cellular

network because of the increasing inter-cell and intra-cell

handover [29]. Therefore, the proactive trend should fit into

the change of paradigm in 5G with a platform with secu-

rity, collection, analysis, measurements, and efficiency. This

section presents some research directions about achieving 5G

proactive network optimisation.

1) CONTEXT GRANULARITY

Granularity represents the measure of the distinguishable

scale of detail in the context. Specifically, in the popular

area prediction, various levels of granularity of locations are

provided according to different data sizes, geo-tags accuracy,

and data-mining methods. For example, in [62] the festivals’

areas were estimated in the scale of ward or town, while

in [33] the Quality of Experience (QoE) blackspots and high

traffic zones were detected in a much smaller granularity

(in the London Bridge Station). There is no best granularity

for every optimisation, but the real-world data sets indeed

have granularity limitations. Therefore, the first challenge is

to judge if the online data source has an achievable granularity

in expectation.

Furthermore, the granularity of context should be consis-

tent with the requirements of proactive network optimisation.

For load balancing examples in [23] and [17], in [23] the

granularity of cell load (traffic or area popularity) was at

a small-cell level for the cell-offloading research, while the

traffic distribution granularity in [17] was finer as at the intra-

small-cell level for more efficient offloading. In other words,

each network optimisation has required granularity, so it is

necessary to determine it before data analysing.

For the 5G, the cell size varies, and there exist dense

deployments of small cells. In that case, the context granular-

ity becomes the premise factor, and the context extracted from

data sets should achieve at least a small-cell level. Besides,

the authors expect that real-time network data to be collected

and used, so new challenges emerge about the prediction

errors.

2) PREDICTION ERROR IMPACT

Prediction is the process of future context deduction accord-

ing to experience, so the prediction error refers to the context

information that is irrelevant for the future. Such unwanted

variation always exists during sampling, training and testing.

Moreover, both noisy data quality and rapid changing circum-

stance can cause it. For example, in geolocation prediction

based on Twitter data, there are a lot of GPS coordinates

shifts caused by weak signals, especially for indoor Tweets.

In that case, these indoor Tweets provide a location range

(approximate a rectangular area) if Twitter cannot estimate an

accurate coordinate. Such indoor data takes a large number

of all geo-tagged Tweets. On the one hand, the geolocation

prediction is inaccurate if we consider all location records.

On the other hand, the prediction cannot represent the indoor

user’ context after filtering.

Accordingly, reducing the prediction errors and limiting

the impact of unavoidable ones deserve researching efforts.

Online data is unavoidably noisy and related to uncertain

predictions. Therefore, future online-data based proactive

optimisation algorithms have to take the impact of prediction

errors into consideration.

B. AGGREGATION OF ONLINE DATA AND CELLULAR KPIS

Cellular network KPIs refer to radio network performance

monitoring, performance degradation detection, and network

resources optimisation. Such data is usually regarded as the

first choice of cellular big-data mining due to its accurate

measurements, significant amount and tidy format. However,

network KPIs have two shortages. Firstly, the data source

is not open to the public because of privacy and security.

Secondly, the KPIs cannot reflect user’s intents so they cannot

detect demand burst in a long-term period. Therefore, the fol-

lowing two research directions are proposed to alleviate the

negative impact.

1) COLLABORATION WITH DATA PROVIDERS

If the network is expected to learn from past user

behaviour, the choice of data collection becomes critical.

Most researchers collect non-real-time and limited data by

crawling. For example, researchers mainly collected Twitter

data by two APIs, Twitter search API (search Tweets with

keywords in the previous seven days) and Twitter stream-

ing API (up to 1% of all Tweets) [197]. This method is

neither sufficient nor efficient. Besides, the crawled data is

not representative because of the characteristics of different

regions, cultures, and languages diverse a lot [198]. In that

case, we need to build collaboration with service providers.

Another essential data source is the network KPI owned

by mobile network operators. It directly reflects network

status in a short period and becomes the only indicator

for network-optimising specialists. In other words, these

parameters are the foundation for current passive network

optimisation and so as the future proactive optimisation.

However, network operators forbid external access to such

data, so current researchers rely on either historical cellu-

lar data [33], [95] [94] or simulation. Therefore, exploring

collaboration with network operators is also necessary.

Traditional mobile network operators only provide com-

munication services, so they face difficulties collecting

meta-information needed to forecast context-aware demand
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FIGURE 12. An optimisation-contexts-data relationship map. Proactive optimisation algorithms connect to online data through different
contexts. Each optimisation own unique characteristic but have relations with others.

for proactive optimisation accurately. However, as Inter-

net traffic becomes the majority of daily usage, there

appears more cooperation and combination of mobile oper-

ators and Internet service providers. For example, in China,

the Mobile Virtual Network Operators (e.g., Tencent, Weibo,

and Taobao) are also Internet service companies in the

realm of the social network, video, and e-commerce [199].

Such a combination of the service provider and the mobile

provider brings convenience for the heterogeneous data

analysis. Besides, the mobile network operators, such as

China Unicom, also cooperate with service providers to

serve users with particular application goody bags, such

as unlimited mobile data for Youku videos. In that case,

the operators can have traffic data for social behaviour

analysis.

Future proactive optimisation should take advantages of

both network KPIs and online data. Accordingly, finding

a reliable and sufficient data collection method becomes

another challenge.

2) OTHER OPTIMISATION SCHEMES

There are still other aspects in network optimisation, such

as interference management, coverage and capacity, and

resource optimisation. Most of the current attempts are

real-time self-optimisation, but we can find some chances

to benefit them using online data analysis. For example,

H. Claussen et al. proposed a femtocell self-optimisation on

coverage and capacity in [22]. They simulated user mobility

in an indoor scenario as the context for coverage adaption,

which can be modelled by personal trajectory with context

(including way-points and spent time). In interference man-

agement, the researchers use polynomial regression [14],

[200] or a neural network-based cognitive engine [201] to

model the relationship between traffic distribution and tran-

sition power. With traffic distribution prediction, the system

can select the potential high-interference areas and trigger

interference management. For reference, we summarise the

context and potential applications as a map (Fig. 12) with

possible connections for all proactive optimisation.

VI. CONCLUSION

In summary, this survey demonstrated the essential state-of-

the-art technologies in online-data analytics that can offer

promising drivers to shift network optimisation from passive

to proactive in 5G.

Increasingly amounts of online data contain rich meta

information of individual demand context (e.g., personal

trajectory, user preference, and user relationship) and the

wider social context (e.g., popular region, content popular-

ity, and network traffic). The information when appropri-

ately processed through machine learning mechanisms and

environmental data can be used to forecast traffic patterns

across multiple population and spatial scales. Then, in turn,

it provides the capability for proactive optimisation that could

allocate resources to suit diverse service requirements and

the complex dynamics in advance by using the forecast

information.

In this survey, to reveal the potential data to optimisation

mapping, the authors virtualised the context as paths for

connection to help readers find the most valuable context

and its available data sources. Different models are proposed

to retrieve predictive user behaviour and further correlate to

network KPI.

The authors strongly believe that in future 5G networks,

the optimisation will be proactive, service-oriented as well

as user-oriented. In that case, online data becomes an indis-

pensable source to increase QoE and reduce OPEX. However,

open challenges still exist, such as context granularity in the

5G scenario, prediction errors, real-time data analytics, and

taking full advantage of both online and cellular data.
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