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Abstract 42 

Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting 43 

to climate change have been subject of active research over the past years. But, ‘to what extent 44 

can breeding gains be achieved under a changing climate, at a pace sufficient to usefully 45 

contribute to climate adaptation, mitigation and food security?’. Here, we address this question 46 

by critically reviewing how model-based approaches can be used to assist breeding activities, 47 

with particular focus on all CGIAR (formerly the Consultative Group on International Agricultural 48 

Research but now known simply as CGIAR) breeding programs. Crop modeling can underpin 49 

breeding efforts in many different ways, including assessing genotypic adaptability and stability, 50 

characterizing and identifying target breeding environments, identifying tradeoffs among traits 51 

for such environments, and making predictions of the likely breeding value of the genotypes. 52 

Crop modeling science within the CGIAR has contributed to all of these. However, much 53 

progress remains to be done if modeling is to effectively contribute to more targeted and 54 

impactful breeding programs under changing climates. In a period in which CGIAR breeding 55 

programs are undergoing a major modernization process, crop modelers will need to be part of 56 

crop improvement teams, with a common understanding of breeding pipelines and model 57 

capabilities and limitations, and common data standards and protocols, to ensure they follow 58 

and deliver according to clearly defined breeding products. This will, in turn, enable more rapid 59 

and better-targeted crop modeling activities, thus directly contributing to accelerated and more 60 

impactful breeding efforts.  61 
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1. Introduction 62 

Global change projections indicate that many parts of the world will continue to face extreme 63 

and erratic climate trends, as a result of rapid population growth, and increasing greenhouse 64 

gas (GHG) emissions (IPCC, 2014). Model-based projections indicate greater heat and drought 65 

stress during the 21st Century (Teixeira et al., 2013; Gourdji et al., 2013b; Li et al., 2015a), 66 

especially (though not only) if no major GHG emission reduction strategies are implemented at 67 

scale (Betts et al., 2011; Schleussner et al., 2016; Rogelj et al., 2016). Compounded by other 68 

drivers of global change (e.g. population growth, changing economic structures, and changing 69 

land use), these changes will reduce crop productivity and increase crop yield variability of 70 

many crops (Li et al., 2009; Deryng et al., 2014; Campbell et al., 2016), with major implications 71 

on farmer livelihoods (Morton, 2007; Jones and Thornton, 2009) and global food security 72 

(Wheeler and von Braun, 2013; Campbell et al., 2016). In light of these projections, crop 73 

improvement efforts aiming at increasing crop production (quantity, quality) in a sustainable 74 

and efficient way have been subject of active research over the past years. 75 

 76 

Crop breeding programs have contributed to farmers achieving higher yields, food security and 77 

income by developing and delivering varieties with higher yield potential, as well as greater 78 

resistance to pests and diseases, tolerance to abiotic stresses, and desirable market quality and 79 

nutritional characteristics in the public (Evenson and Gollin, 2003; Pfeiffer and McClafferty, 80 

2007) and private sectors (Cooper et al., 2014b; Voss-Fels et al., 2019d). Moreover, the use of 81 

varieties resistant to heat stress, drought, and possible future pests and diseases can also 82 

contribute to climate change adaptation (Takeda and Matsuoka, 2008; Habash et al., 2009; 83 

Gourdji et al., 2013a; Gaffney et al., 2015). A key question is, however, ‘to what extent can 84 

breeding gains be achieved under changing climates, at a pace sufficient so as to usefully 85 

contribute to climate adaptation, mitigation and food security?’. Here, we address this question 86 

by reviewing how model-based approaches can assist breeding activities, with particular focus 87 

on the CGIAR (formerly the Consultative Group on International Agricultural Research but now 88 

known simply as CGIAR). We critically discuss limitations and opportunities in light of the need 89 

for greater breeding gains under changing climates. Since the body of published literature 90 
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(especially in some thematic or geographic areas) is substantial, we concentrate on the most 91 

relevant examples, aiming at discussing their strengths and weaknesses, in order to ultimately 92 

determine the main crop modeling gaps and strategies for collaboration with researchers, crop 93 

improvement teams, farmers, and decision and policymakers. We first review the importance 94 

of genotypic adaptation in delivering climate change adaptation outcomes (Sect. 1.1), as well as 95 

the challenges in converting potential adaptations into actual genetic improvement (Sect. 1.2). 96 

We then review tools and approaches for accelerated breeding (Sect. 2), including modeling of 97 

environment- and management- specific yield responses (Sect. 2.1), environmental 98 

characterization (Sect. 2.2), ideotype design (Sect. 2.3), the linking of crop modeling and genetic 99 

data (Sect. 2.4), and simulation methods for optimizing breeding pipelines (Sect. 2.5). Finally, 100 

we discuss limitations in terms of data, models, and approaches (Sect. 3), and conclude by 101 

proposing a set of next collaborative research activities that can contribute to maximizing 102 

breeding gains under climate change. 103 

 104 

1.1. The importance of genotypic adaptation under climate change 105 

Modern varieties developed through years of crop improvement have contributed to large 106 

increases in crop production in the last 60 years, and they will continue to do so. Evenson and 107 

Gollin (2003) reviewed breeding gains during and after the Green Revolution for 11 major food 108 

crops, estimating that the contribution of modern varieties to yield growth is in the range 17–109 

50 % in the period 1961–2000. One notable example is the 70 % yield potential increase from 110 

the release of the semi-dwarf rice variety IR8 by the International Rice Research Institute (IRRI) 111 

in the 1950s and 1960s (Peng et al., 2008). Fischer et al. (2014) indicate a rate of progress in 112 

potential yield of 0.5 to 1.08 % per year for wheat, rice, maize and soybean, as a result of crop 113 

improvement. Genotypic adaptation to climate change –that is, the process of designing and 114 

developing novel crop varieties to enhance productivity and stability under future climates, has 115 

the potential to continue delivering productivity gains under changing climates (Rötter et al., 116 

2015; Ramirez-Villegas et al., 2015). 117 

 118 

Evidence of how genotypic adaptation can effectively contribute to climate change adaptation 119 
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generally arises from two types of studies: those in which models are used to simulate future 120 

growing conditions with and without adaptation; and those that quantify the yield benefit of 121 

climate-adapted genotypes by means of field experimentation. Model-based studies generally 122 

indicate potential for substantial gains in both yield and yield stability. A systematic review of 123 

the literature (by searching the keywords ‘climate change’, ‘genotypic adaptation’, and 124 

‘ideotype’ in http://scholar.google.com in June 2019) identified 19 studies, from which 389 125 

individual data points for eight crops were drawn. While some publication bias is expected in 126 

the meta-analysis, the identified studies indicate that gains from genotypic adaptation are 127 

positive for a number of crops (Fig. 1). For instance, modelling by Semenov and Stratonovitch 128 

(2013) suggested that if certain traits could be improved adequately, wheat ideotypes could 129 

outperform current cultivars in Europe by up to 65 % under future climates. Similarly, 130 

simulations by van Oort and Zwart (2018) showed that favoring varieties with greater thermal 131 

time can compensate for climate change-induced yield reductions in African rice systems. 132 

Similar findings have been reported for Asian rice (Li and Wassmann, 2010; Mottaleb et al., 133 

2017), groundnut (Singh et al., 2012, 2014b), sorghum (Singh et al., 2014c), pearl millet (Singh 134 

et al., 2017), chickpea (Singh et al., 2014a), maize (Tesfaye et al., 2017), and wheat in China 135 

(Challinor et al., 2010). 136 

 137 

[Figure 1 near here] 138 

 139 

Experimental studies also provide robust evidence on the benefits of genotypic adaptation, 140 

corroborating or extending model-based findings. On-farm maize trials in Africa have shown 141 

that drought-tolerant maize can yield between 20–25 % more than current commercial 142 

varieties, with no yield penalty in ‘good’ years (Setimela et al., 2017; Cairns and Prasanna, 143 

2018). Suarez Salazar et al. (2018) identified common bean lines adapted to a heat-stress 144 

environment in the Colombian Amazon, where commercial bean varieties show low yield. 145 

Mondal et al. (2016) estimated genetic yield gains in the range 0.5–0.8% per year when 146 

breeding short-cycle heat-adapted wheat varieties in South Asia. Success has also been 147 

reported for drought tolerance in maize for the United States corn belt (Cooper et al., 2014a; 148 
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Messina et al., 2015) and other regions and crops (Sinclair et al., 2020). These studies provide 149 

initial evidence that genotypic adaptation can indeed deliver greater yields in stress-prone 150 

environments, thus likely contributing to future adaptation outcomes. 151 

 152 

1.2. Current warming rates will reduce yields unless breeding and seed system efficiency is 153 

enhanced 154 

The process of breeding a novel cultivar, increasing seed availability and achieving significant 155 

adoption often takes more than a decade (Langyintuo et al., 2008; Challinor et al., 2016). This 156 

means that temperature increases during the breeding cycle can lead to a systematic (and 157 

unintended) yield reduction due to decreases in the duration of the growing cycle (Zheng et al., 158 

2016; Challinor et al., 2016). Researchers confirmed that the challenge is more critical in many 159 

subtropical areas with emerging precipitation trends under climate change (Rojas et al., 2019). 160 

The breeding of climate-ready crops should, therefore, seek to deliver more productive and 161 

resilient crops that keep pace with climate change (Ramirez-Villegas et al., 2015; Challinor et al., 162 

2016). In doing so, it is important to implement a wide range of solutions aiming at making the 163 

breeding process more effective and efficient. Anticipatory and predictive tools using crop-164 

climate models (reviewed in Sect. 2 and 3) can enable preemptive breeding and can help 165 

enhance and accelerate breeding gains, ultimately ensuring crop improvement contributes 166 

effectively to addressing major challenges for agriculture within the context of climate change. 167 

 168 

2. Tools and approaches for accelerating trait discovery in target environments 169 

For plant breeding, multi-environment trials (METs) are conducted regularly to study Genotype 170 

(G) × Environment (E) × Management (M) interactions (G×E×M), assess genotypic adaptability 171 

and stability, and make predictions about the breeding value of the genotypes in other 172 

environments and years that will allow crop improvement teams to accurately select the 173 

parents for the next breeding cycle. This section reviews modeling approaches to assess G×E 174 

interactions (Sect. 2.1), characterize target breeding environments (Sect. 2.2), understand ideal 175 

plant types for such target environments (Sect. 2.3), predict breeding values (Sect. 2.4), and 176 
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breeding cycle optimization (Sect. 2.5). We review both process-based eco-physiological models 177 

as well as statistical approaches to G×E prediction. 178 

 179 

2.1. Modeling Genotype × Environment × Management 180 

Accurately predicting G×E responses allows identifying well-adapted genotypes for specific sites 181 

or stress situations (Hammer and Broad, 2003; Banterng et al., 2006), or testing ‘virtual’ 182 

genotypes to inform breeding programs (Cock et al., 1979; Suriharn et al., 2011; Bogard et al., 183 

2020; Hammer et al., 2020). Similarly, predicting management responses allows identification 184 

of appropriate levels of fertilization, tillage, irrigation, weed control, amongst others, for a given 185 

set of genotypes (Boote et al., 1996; Artacho et al., 2011; Deryng et al., 2011). Accurate 186 

prediction of genotype performance across environments and management options is 187 

contingent on various elements, including (i) the development of a model with the necessary 188 

physiological processes represented at an appropriate level of complexity (Challinor et al., 189 

2009; Boote et al., 2013; Hammer et al., 2019); (ii) the development of a well-constrained 190 

parameter set (Iizumi et al., 2009; Angulo et al., 2013); and (iii) high quality environmental (soil, 191 

climate) data to drive the model (Lobell, 2013). As discussed below, the CGIAR has made major 192 

contributions in these three areas. The use of models for analyzing G ×E ×	M interactions for 193 

accelerating breeding is described in Sect. 2.1.2. 194 

 195 

2.1.1 Model development, parameterization and input data 196 

Model development requires the acquisition of a deep understanding of the biological basis of 197 

G×E interactions (i.e. crop physiology), and the translation of such understanding into computer 198 

code. Physiological processes of interest, and approaches to model those processes, can vary, 199 

sometimes substantially, between contexts. During the early 1980s, progress in process 200 

understanding by CGIAR scientists led to the development of three crop models that ably 201 

captured G×E×M responses, while also contributing data and knowledge to many other models. 202 

Perhaps the earliest crop model developed and used in the CGIAR was the cassava model 203 

developed by the International Center for Tropical Agriculture (CIAT) (Cock et al., 1979), upon 204 

which various components of the GUMCAS model (Matthews and Hunt, 1994), the CROPSIM-205 
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Cassava model (Jones et al., 2003), the model of Gabriel et al. (2014), and the MANIHOT model 206 

(CIAT, unpublished), were later developed. The ORYZA1 rice model (Kropff et al., 1993a, 1994), 207 

developed at the International Rice Research Institute (IRRI), incorporated many years of eco-208 

physiological research from IRRI and elsewhere. ORYZA1 quickly evolved into ORYZA2000 209 

(Bouman et al., 2001), and later into ORYZAv3 (Li et al., 2017). The International Potato Center 210 

(CIP) has also led the development of the SOLANUM and the dynamic carbon photosynthesis 211 

model (DCPM) models for potato (Condori et al., 2010; Quiroz et al., 2017) and sweet potato 212 

(Ramírez et al., 2017). Lastly, CIAT also led the early development of the BEANGRO model, 213 

which is currently part of the ‘CROPGRO’ module within DSSAT (Decision Support System for 214 

Agrotechnology Transfer) (White and Izquierdo, 1991; Hoogenboom et al., 1993; White et al., 215 

1995). The International Center for Agricultural Research in the Dry Areas (ICARDA) and the 216 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) have extensively 217 

contributed to the development and improvement of the Simple Simulation Model (SSM) 218 

(Soltani and Sinclair, 2012; Sinclair et al., 2020), the CROPGRO for peanut and chickpea, and the 219 

CERES model for sorghum and pearl millet, also available in DSSAT. 220 

 221 

The determination of parameters for crop models, whether they are statistically- or process-222 

based, is crucial to ensure that the model correctly captures genotype behavior across different 223 

combinations of climate, soils, and management options. This is especially important for 224 

process-based crop models, since the sometimes large number of parameters required means 225 

that there can be many more degrees of freedom in the model than can be constrained by the 226 

available data (Challinor et al., 2014; Wallach et al., 2016). Progress in model parameterization 227 

has been enabled by extensive eco-physiological trials conducted by the CGIAR. Notably, recent 228 

progress in characterizing yield changes in response to heat stress for wheat, at least in part, 229 

was possible due to data collected in the International Heat Stress Genotype Experiment 230 

(IHSGE) carried out by the International Maize and Wheat Improvement Center (CIMMYT) 231 

(Asseng et al., 2014). Based on CIMMYT data, too, statistical models by Lobell et al. (2011) and 232 

Gourdji et al. (2013a) assessed maize and wheat genotype responses to temperature, 233 

respectively. Li et al. (2015b) used IRRI trial data from Los Baños (Philippines) and Ludhiana 234 
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(India) to calibrate and evaluate 13 different rice crop models, and Fleisher et al. (2017) used an 235 

experiment from Bolivia conducted by the International Potato Center (CIP) as part of the 236 

calibration and evaluation dataset for nine potato crop models. The use of remote sensing has 237 

also been tested for the estimation of crop model parameters at a low cost (Quiroz et al., 2017). 238 

 239 

Attempts to estimate model parameters from genetic information date to work in the 1990s at 240 

CIAT on common bean, where simulations from gene-based estimates of model parameters 241 

were generally as accurate as manually estimated parameters (White and Hoogenboom, 1996; 242 

Hoogenboom et al., 1997). Similar work in collaboration with CIMMYT, showed that differences 243 

in phenology of winter wheat cultivars could be simulated based on genetic information (White 244 

et al., 2008). Work also extends into the development of a gene-to-phenotype model for 245 

common bean based field trials conducted by CIAT and the University of Florida (UF) (Hwang et 246 

al., 2017). Compared to success in linking gene-to-phenotypes achieved by other institutions 247 

(Messina et al., 2006; Chenu et al., 2009; Bogard et al., 2020), progress in the CGIAR remains 248 

slow. 249 

 250 

The CGIAR has also contributed to the development of key spatially-explicit climate datasets 251 

that are used as inputs into crop models. These include WorldClim (Hijmans et al., 2005) and 252 

the Climate Change, Agriculture and Food Security (CCAFS)-Climate database (Navarro-Racines 253 

et al., 2020), as well as methods to generate daily weather data for crop model simulations 254 

(Jones and Thornton, 2000, 2013). Contributions to soil (Jones and Thornton, 2015; Vågen et al., 255 

2016; Piikki et al., 2017) and crop geography (You et al., 2009, 2017; IFPRI, 2019) for crop 256 

modeling have also been made in recent years. By contrast, CGIAR work on developing datasets 257 

that characterize crop management for crop modeling is limited to specific regional or national 258 

studies (see Sect. 2.1.2). 259 

 260 

2.1.2 Explaining and simulating G×E×M interactions 261 

Using available data and models, CGIAR modelers have studied G×E×M interactions extensively 262 

in close coordination with breeding programs. Virtually all centers have done modeling for their 263 
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mandate crops. Use of models has focused on assessing the stability of economically important 264 

traits and predicting the performance of newly developed genotypes evaluated under varying 265 

environmental conditions and management practices.  266 

 267 

Statistical approaches have the longest history in plant breeding. These models can be used to 268 

study both univariate (Crossa et al., 2004) and multivariate responses (Montesinos-López et al., 269 

2018d). A recent study with on-farm wheat trials (Vargas-Hernández et al., 2018) used a 270 

univariate model to assess the combined effects of the wheat lines and their interactions with 271 

the farmer-irrigation-year combinations for several traits. For single trait grain yield, the study 272 

identified stable wheat lines across all environments, as well as the environments that caused 273 

most of the G×E interaction. Multivariate models, though less used, are particularly useful when 274 

measurements are available for multiple response variables (i.e. multi-trait), and the objective 275 

is to increase our understanding of the complex nature of particular phenomena under field 276 

conditions. Many studies have shown that a multivariate approach is better than univariate 277 

approaches because it identifies the existing (co)variation between the response variables 278 

(Xiong et al., 2014). Moreover, the multivariate analysis also improves accuracy when 279 

classifying and identifying superior genetic components (Montesinos-López et al., 2018d). In 280 

addition, it increases the precision of genetic correlation parameter estimates between traits, 281 

which helps crop improvement teams perform indirect selection. Multivariate models have 282 

been implemented using Bayesian analysis (Montesinos-López et al., 2016b) as well as deep 283 

machine learning regression (Montesinos-Lopez et al., 2018; Montesinos-López et al., 2018c). 284 

Notably, Montesinos-Lopez et al. (2018) report that the performance of multi-trait and multi-285 

environment deep learning (MTDL) is commensurate with that of the Bayesian multi-trait and 286 

multi-environment approach. Erzos et al. (2020) and Washburn et al. (2020) review machine-287 

learning approaches in crop improvement. 288 

 289 

Process-based crop models have also been used for assessing G×E×M interactions within the 290 

CGIAR. At ICRISAT, crop models are used to investigate whether and how changes in G and M 291 

result in positive change in yield across different environments, as a way to prioritize breeding 292 
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and agronomic intervention decisions, including sowing density (Vadez et al., 2017), irrigation 293 

(Vadez et al., 2012), the combination of better-adapted genotypes and irrigation (Soltani et al., 294 

2016), and different traits and combinations of traits (Kholová et al., 2014). ICARDA has 295 

employed the Simple Simulation Model (SSM) to characterize the stress scenarios in target 296 

regions of focus, as well as to explore plant traits and/or management to be exploited in stress-297 

adapted cultivars for specific target environments (Ghanem et al., 2015; Guiguitant et al., 298 

2017). CIP has used the SOLANUM (Condori et al., 2010) and LINTUL (Spitters, 1988, 1990) 299 

models to compare the performance of native and hybrid potato genotypes under extreme 300 

climatic conditions (Condori et al., 2010, 2014) and climate change (Quiroz et al., 2018), 301 

demonstrating that appropriate choice of germplasm and crop management practices could 302 

significantly secure and increase potato production under future climate conditions.  303 

 304 

Similar work has been conducted by IRRI, whereby high yielding and stable genotypes were 305 

identified using the ORYZA2000 crop model (Li et al., 2013a). At IRRI, simulations have also 306 

been used to simulate potential yield across environments (Kropff et al., 1993b), identify 307 

ideotypes for increasing rice yield potential (Kropff et al., 1995; Aggarwal et al., 1997; Dingkuhn 308 

et al., 2015, 2016), and to inform national certification processes for the release of crop 309 

varieties (Li et al., 2016). At CIMMYT, grid-based global-scale simulations are used to assess the 310 

value of certain traits. This modeling capacity was developed in a consortium of UF, CIMMYT, 311 

and the International Food Policy Research Institute (IFPRI) that incorporated three crop 312 

models, including CERES-wheat, CROPSIM, and NWheat (Gbegbelegbe et al., 2017; Hernandez-313 

Ochoa et al., 2018). At CIAT, crop models have been used to understand drought responses 314 

across G and M for rice and beans (Heinemann et al., 2016; Ramirez-Villegas et al., 2018), as 315 

well as to assess the value of drought tolerance traits (Heinemann et al., 2019). At IFPRI, a grid-316 

based crop modeling framework was developed and linked with the IMPACT global trade and 317 

economic model (Robinson et al., 2015) to simulate the potential impacts of adopting 318 

agricultural technologies (e.g. precision agriculture), management practices (e.g. integrated soil 319 

fertility management), and breeding target traits (e.g. drought and/or heat tolerance) on global 320 

food security and economic implications under climate change scenarios (Rosegrant et al., 321 
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2014; Islam et al., 2016). Analyses of climate risk for rice in Africa have also been possible by 322 

crop simulation at the Africa Rice Center (van Oort et al., 2015b; a).  323 

 324 

2.2. Environmental characterization for setting breeding priorities 325 

The existence of significant G×E×M interactions can slow plant breeding progress for broad 326 

adaptation and/or for adaptation to specific conditions within a region (Löffler et al., 2005; 327 

Chenu et al., 2011). The Target Population of Environments (TPE) approach aims at addressing 328 

G×E×M through model-based environmental characterization (Lacaze and Roumet, 2004; 329 

Chenu, 2015). In the TPE approach, process-based crop models are used to assess and detect 330 

stress patterns and their impacts. This, in turn, allows prioritizing stress types by their intensity 331 

and frequency across geographies, as well as identifying sites where selection for given stresses 332 

is likely to be more successful. Thus, TPEs offer a concrete way to aid breeding programs 333 

through effectively setting trait and geographic priorities. The TPE approach has been used with 334 

success by wheat breeding programs in Australia (Chenu et al., 2011, 2013; Lobell et al., 2015), 335 

and more recently has been applied to maize in Europe (Harrison et al., 2014). 336 

 337 

Compared with the applications described in Sect. 2.1, CGIAR’s work on TPEs for breeding 338 

programs is less in terms of number of crops covered and published studies (Fig. 2A, B). CGIAR’s 339 

collaborative efforts include studies addressing drought for rice (Heinemann et al., 2015; 340 

Ramirez-Villegas et al., 2018) and beans (Heinemann et al., 2016, 2017) under current and 341 

future climate in Brazil. Significant breeding progress has resulted from these studies, including 342 

improvements in drought phenotyping in a drought-prone environment which allows 343 

controlling the timing, intensity, and duration of drought, reducing the uncertainty associated 344 

with climate variability trials in the main season (Martinez et al., 2014). 345 

 346 

[Figure 2 near here] 347 

 348 

For rainfed beans, EMBRAPA (Empresa Brasileira de Pesquisa Agropecuaria) initiated a drought 349 

tolerance breeding program following the results of Heinemann et al. (2016, 2017), though its 350 
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implementation was halted due to the Brazilian economic crisis. For post-rainy sorghum in 351 

India, Kholová et al. (2013) report five main types of stress conditions requiring different 352 

breeding/agronomic approaches (Fig. 2B). A related larger-scale method, referred to as Mega-353 

Environments, has been used by CIMMYT to target breeding since the 1990s (Rajaram et al., 354 

1994; van Ginkel et al., 2002; Cairns et al., 2013). Though less mainstream in the CGIAR in terms 355 

of centers and traits, TPE and Mega-Environment work has the potential to help better-target 356 

breeding programs across scales (see Fig. 2C). Similar TPE analysis has also been done for 357 

chickpea in India (Hajjarpoor et al., 2018). 358 

 359 

The first step across breeding programs should be to map what stresses exist currently (in 360 

recent decades) to then analyze changes in stress patterns under future climates (Harrison et 361 

al., 2014; Lobell et al., 2015). Using TPE results to stratify the target geographic area of the 362 

breeding program, in combination with socio-economic (e.g. farmer preference) studies, 363 

breeding programs can then decide which products are most relevant and impactful. Contrary 364 

to the private sector (Cooper et al., 2014a; Voss-Fels et al., 2019a; c), however, to the best of 365 

our knowledge, the extent to which this is currently done in a systematic way across the CGIAR 366 

system is very limited. Yet, taking into account the TPE definition as part of the definition of the 367 

breeding products will allow modelers to impact breeders, while allowing breeders to discuss 368 

model results from the start of the breeding process. 369 

 370 

2.3. Design of ideotypes for future target environments 371 

With a clear understanding of the target stresses for breeding, a key use of process-based crop 372 

models is to determine which traits can maximize yield in each target environment. When 373 

applied to a range of traits simultaneously, this then becomes a process referred to as ideotype 374 

design (Donald, 1968; Rasmusson, 1987). Ideotypes can be developed for current as well as for 375 

future climates via a variety of methods ranging from iterative testing changes in model 376 

parameters (Suriharn et al., 2011; Dingkuhn et al., 2015), optimization to maximize mean yield 377 

and minimize yield variability (Semenov and Stratonovitch, 2013; Hammer et al., 2020), or by 378 

developing gene- or trait ×	gene-specific components into the crop models (White and 379 
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Hoogenboom, 1996; Hoogenboom et al., 2004; Messina et al., 2006). Modeling in this case is 380 

based on traits that have previously indicated promise for example in boosting yield potential 381 

(Reynolds et al., 2012), adaptation to heat stress (Cossani and Reynolds, 2012), amongst others. 382 

Table 1 summarizes all existing studies in which models have been used to design ideotypes 383 

within the CGIAR; that is, conducted by CGIAR scientists on CGIAR mandate crops and 384 

geographic areas. 385 

 386 

[Table 1 near here] 387 

 388 

The 12 studies listed in Table 1, published in a span of 9 years, indicate that CGIAR Centers are 389 

very active in this area of work. The list, while not extensive in terms of crops or countries (i.e. 390 

covers five crops across five countries), offers valuable insights as to the methods used and the 391 

potential value of these analyses for breeding programs. Foremost, we note that all studies use 392 

systematic parameter modifications to create ideotypes, which suggests opportunities to 393 

explore optimization methods as well as more direct gene-to-phenotype modeling (e.g. van 394 

Eeuwijk et al., 2019). Additionally, the similarity in the ideotypes proposed for different studies 395 

(e.g. chickpea, sorghum and groundnut) suggests the need for refinement in the traits assessed 396 

through discussion with crop improvement teams, or through the use of more detailed eco-397 

physiological models (Rebolledo et al., 2015; Dingkuhn et al., 2016). Such similarity could also 398 

suggest that the models may fail to capture cropping system dynamics realistically when 399 

subjected to these parameter modifications. Furthermore, little connection is seen in most 400 

studies between the parameter variations proposed and existing ideotypes for these crops, 401 

except for the study of Mottaleb et al. (2017). Additionally, there is a need to ensure that 402 

parameter modifications, especially when several traits are simulated simultaneously, are done 403 

within realistic biological bounds (Koornneef and Stam, 2001). 404 

 405 

Finally, we note that moving from a set of prescribed changes in model parameter values (as 406 

reported in the studies listed in Table 1) to a range of phenotypic screens that can be feasibly 407 

measured and selected for in breeding trials is not a trivial process. Most notably, it requires 408 
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delivering information on (i) the available genetic diversity, (ii) heritability, and (iii) high-409 

throughput phenotyping methods for the trait in question. Future research within and outside 410 

the CGIAR will need to capitalize on existing well-calibrated models, results from environmental 411 

characterization, methods to connect eco-physiological models with genetic data (see Sect. 412 

2.4), in better connection with existing ideotypes and crop improvement teams and their 413 

knowledge, needs and priorities. 414 

 415 

2.4. Assisting varietal selection through linking crop models and genetic information 416 

A more recent area of work aims at directly linking crop model and genetic information with the 417 

aim of addressing two different, but related, questions (i) what is the phenotypic response of a 418 

set of genotypes for which the genetics are known, but on which no phenotyping has been 419 

conducted?; and (ii) what is the phenotypic response of a set of genotypes (with known 420 

genetics) in a location where environmental (soil, climate) characteristics are known, but no 421 

phenotyping has been conducted? As the methods to be used may depend on the crop and 422 

geographic areas of interest (e.g. due to differences in data availability, targets, and breeding 423 

methods), several potential avenues need to be explored to address these questions (Asseng et 424 

al., 2019a). These are discussed below. 425 

 426 

2.4.1 Link environmental information into genomic selection models 427 

Genomic selection (GS) that leverages genome-wide molecular marker information to select 428 

individuals based on their predicted genetic merit (Meuwissen et al., 2001) is a promising tool 429 

for accelerating crop genetic gains in the face of climate change. In a recent paper, Zhang et al. 430 

(2017) reported genetic gains of 0.225 ton ha-1 per cycle (or 0.100 ton ha-1 year-1) from rapid 431 

cycling genomic selection for four recombination cycles in a multi-parental CIMMYT tropical 432 

maize population (Fig. 3). However, in spite of these early findings and the fact that GS has 433 

revolutionized animal breeding by increasing the accuracy of selections and reducing cycle time 434 

and cost (Hayes et al., 2013; Hickey et al., 2017), its implementation in CGIAR crop breeding 435 

programs is still limited (focusing primarily on the major cereals), in part due to costs associated 436 

with routine evaluation and relatively low prediction accuracy due to G×E. 437 
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 438 

[Figure 3 near here] 439 

 440 

CGIAR has done extensive research to evaluate the genomic predictabilities of several traits 441 

including phenology, grain yield and its components, disease resistance, quality and 442 

micronutrients (Grenier et al., 2015; Crossa et al., 2016a; Juliana et al., 2017a, 2018; Sukumaran 443 

et al., 2018). The accuracy of forward predictions for grain yield (using a previous nursery/year 444 

to predict the next nursery/year) is, however, low and highly influenced by the environment 445 

(Juliana et al., 2018), thereby highlighting the importance of incorporating environmental data 446 

in genomic prediction models for grain yield (van Eeuwijk et al., 2019; Bhandari et al., 2019). 447 

Several novel methods and statistical models for modeling genomic relationships, pedigree 448 

relationships, environmental data and genomic × environment (Gi×E) interactions have been 449 

developed and evaluated in the CGIAR. These methods (see Table 2) vary in the type of 450 

information they use as input, the way they assess Gi×E interactions, and their prediction 451 

purpose and accuracy. Notably, studies comparing the predictive abilities of some of these 452 

approaches have also been conducted (Pérez-Rodríguez et al., 2012; Juliana et al., 2017b; 453 

Montesinos-López et al., 2018a).  454 

 455 

[Table 2 near here] 456 

 457 

While GS models are promising tools to accelerate breeding gains, further research is needed to 458 

understand how they fit in different stages of the breeding cycle, their comparative advantage 459 

over conventional breeding, their integration with rapid cycling technologies such as speed 460 

breeding (Voss-Fels et al., 2019b), and the type of approach used to integrate crop and genomic 461 

models (Messina et al., 2018; Voss-Fels et al., 2019a; van Eeuwijk et al., 2019). Experience for 462 

hybrid maize breeding in the private sector, however, offers evidence of the potential of GS for 463 

enhancing breeding gains (Cooper et al., 2014b, 2020). 464 

 465 

2.4.2 Models that capture trait-trait relationships 466 
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Crop models aimed at capturing trait-trait relationships, developed with sufficient simplicity to 467 

be understandable, yet with enough mechanistic detail to be robust, can also help crop 468 

improvement teams in the selection process. CGIAR involvement and leadership in this area is 469 

very limited. These models can be useful in situations where a trait is too difficult to screen but 470 

is clearly predictable on the basis of other, more easily measurable, traits. Fundamental 471 

changes in the structure of current crop models would, however, be required for this approach 472 

to be implemented. That is, models should be sufficiently generic to be applicable across 473 

genotypes with limited or no calibration requirements (Soltani and Sinclair, 2012; Kholová et al., 474 

2014; Holzworth et al., 2014). More flexibility in the types of model inputs may also be required 475 

when dynamic changes in certain plant traits are used as predictors. For instance, prediction 476 

modeling for genotype values can use correlated physiological traits measured using high-477 

throughput phenotyping (HTP) platforms. This, in turn, facilitates indirect selection for grain 478 

yield in early-generations. Integration of HTP data for canopy reflectance and vegetation indices 479 

in genomic and pedigree-relationship based prediction models has proven to increase 480 

prediction accuracies in several studies (Rutkoski et al., 2016; Sun et al., 2017, 2019; Juliana et 481 

al., 2019). 482 

 483 

2.4.3 Gene-based crop simulation models 484 

Another way to couple crop models and genetic data is to develop models or model 485 

components that, from the start, use genetic and environmental information and are based on 486 

empirical relationships from available agronomic trial and marker data. This can be achieved 487 

through a highly dynamic approach (Hwang et al., 2017), at the expense of increasing 488 

uncertainty, or through prediction of crop state variables at coarser time scales, at the expense 489 

of mechanistic detail. Dynamic approaches that link genetic information with crop simulation 490 

models have proved successful for crop development variables (i.e. phenology) (White and 491 

Hoogenboom, 1996; Yin et al., 2004; White et al., 2008) as well as for more complex traits 492 

(Chenu et al., 2009; Bertin et al., 2010). The current level of direct engagement and leadership 493 

by the CGIAR in this line of work is very limited, likely due to a combination of CGIAR center-494 

specific focus, funding sources for modelers, and limited uptake and applicability of these 495 
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models in CGIAR breeding programs. 496 

 497 

2.5. Optimization of breeding methods through genetic modeling and simulation  498 

In addition to modeling of cropping systems and trait-specific responses, simulation work also 499 

extends to the design of breeding pipelines. While not directly related to crop modeling, we 500 

include this area of work in our review as constitutes part of the simulation tools available to 501 

crop improvement teams. These computer tools are capable of simulating the performance of a 502 

breeding strategy. For instance, QuLine, can simulate the selection of inbred lines, which means 503 

most major food cereals in the world, plus basically all leguminous crops (Wang et al., 2003, 504 

2005; Wang and Pfeiffer, 2007). QuLine has been used to compare and optimize conventional 505 

selection strategies (Wang et al., 2003, 2009; Li et al., 2013b), to predict cross performance 506 

using known gene information (Wang et al., 2005), and optimize marker assisted selection to 507 

pyramid multiple genes (Wang et al., 2007). 508 

 509 

3. Limitations of existing approaches and future work 510 

The use of crop models to accelerate breeding under changing climates is a complex and rapidly 511 

evolving area of work, especially with regards to linking crop models and genetic data. At the 512 

same time, with the availability and affordability of high throughput phenotyping and 513 

genotyping technologies, most breeding programs are undergoing major transformations in the 514 

way they operate, most notably through the incorporation of genomic selection and modeling. 515 

The CGIAR is no exception to these transformations, as shown by the establishment of the 516 

Excellence in Breeding Platform and the Crops to End Hunger Initiative1, and the existing 517 

research on genomic selection (Sect. 2.4.1). Under these initiatives, breeding programs are 518 

expected to become more focused and impactful, with clearly set product profiles that clearly 519 

outline geographic, farmer and consumer, as well as trait priorities. Hence, it is in the context of 520 

these transformations that crop modeling needs to operate, in an effective, flexible and agile 521 

 
1 The CGIAR Crops to End Hunger Initiative (CtEH Initiative) seeks to improve and modernize CGIAR crop breeding 

programs, moving toward using improved breeding approaches. See document of the 8th CGIAR System Council 

meeting here https://storage.googleapis.com/cgiarorg/2019/04/SC8-08-CtEH-Module.pdf. 
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way, to provide crop improvement teams with tools and information that can help them make 522 

informed decisions.  523 

 524 

An emerging result from the review of Sect. 2 is that there is no common protocol or approach 525 

in the CGIAR to inform breeding programs. This is in part due to the diversity of methods and 526 

approaches used, but also due to the lack of collaboration platforms for crop modelers, as well 527 

as between modelers and crop improvement teams. In addition, varying degrees of leadership 528 

by the CGIAR and coordination between CGIAR Centers also exists with respect to the 529 

integration of modeling into breeding programs. As a result, crop modeling activities have little 530 

perceived and actual impact on breeding decisions and the breeding process itself. We highlight 531 

four suggestions for targeted joint work across the modeling and breeding communities. 532 

(i) Actively take part in the transformation of the breeding programs. Many CGIAR modeling 533 

studies, especially those focused on ideotype design, fail to capture the range of traits 534 

relevant in crop improvement, the range of model outputs and spatial and temporal scales 535 

that would be useful to them, and the parts of the breeding process that need to be 536 

informed (see Sect. 2.3). As breeding programs become more modern (Voss-Fels et al., 537 

2019c), crop modelers need to be an active part of crop improvement, ensuring crop 538 

improvement teams are truly multidisciplinary, including crop physiology and modeling, 539 

quantitative genetics, genomic prediction and breeding. Given its potential to enhance 540 

breeding gains (Messina et al., 2018; Voss-Fels et al., 2019a), a critical part of this endeavor 541 

will be the integration of crop modeling with genomic selection (Sect. 2.4.1), and the use of 542 

crop models to map and stratify stress variation and response in the target breeding area 543 

(Sect. 2.2). As has been demonstrated by some private sector breeding programs (e.g. 544 

Cooper et al. 2014), if these tools are integrated to enable the definition and 545 

implementation of breeding products, the impact of the breeding programs can be 546 

maximized. 547 

(ii) Move towards simpler models that ably simulate key traits and their responses across 548 

environments and management conditions. In the last decade, most model improvements 549 

have been relatively slow (compared to the rate of knowledge generation), limited by data 550 
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availability, typically incremental (i.e. without thinking out of the box), and focused on a 551 

small range of crops (Challinor et al., 2014; Maiorano et al., 2017). At the same time, 552 

because crop models are increasingly being used beyond their original design purposes, 553 

they have also tended to become overly complex. Furthermore, as summarized by Rotter et 554 

al. (2011) and Challinor et al. (2018), major limitations exist in process-based crop models 555 

regarding the processes they consider, the accuracy and precision with which they do so, 556 

and the true significance of their parameters. New models need to be designed that 557 

specifically incorporate those traits that are of importance to CGIAR breeding programs and 558 

crops, as well as their response to key stresses and their interactions, considering the 559 

proper balance between parsimony, and biological relevance (Hammer et al., 2019). 560 

Leapfrog changes in crop modeling frameworks, such as those proposed by Droutsas et al. 561 

(2019) and Soltani and Sinclair (2011, 2012), offer promise in creating models that can be 562 

more effectively and rapidly improved to support the breeding process (e.g. by adding new 563 

processes and/or traits, or by connecting them with genetic or phenotypic data) [e.g. 564 

Messina et al. (2015)]. A documented portfolio of models will allow selection of best-bet 565 

models on a case-by-case basis. 566 

(iii) Modernize data storage and interoperability. Collaboration across researchers in crop 567 

modeling in global or regional projects, including the Agricultural Model Inter-comparison 568 

Project (AgMIP), has helped the crop modeling community to identify high-value datasets 569 

(Asseng et al., 2015; Raymundo et al., 2018), resulting in improved models with greater 570 

applicability for breeding under future climates, for example for heat stress response on 571 

wheat (Asseng et al., 2013, 2014, 2019b), or CO2 response on maize (Durand et al., 2018). 572 

As breeding programs become more data-driven (e.g. through the application of genomic 573 

selection), joint efforts between the modeling and breeding communities will help develop 574 

and deploy common standards and inter-connected data storage, translation, transfer, and 575 

use platforms that enable the seamless integration of crop modeling into breeding 576 

methods. 577 

(iv) Fully take advantage of phenotyping and breeding data for modeling key traits. Lack of 578 

appropriate documentation and benchmarking and extensive model evaluation across 579 
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target breeding environments implies that the range of model capabilities is generally 580 

poorly understood within the modeling community itself (Ramirez-Villegas et al., 2015; 581 

Challinor et al., 2018), and even less so by the breeding community. Testing models against 582 

experimental data will generate closer links between crop model parameter sets and 583 

specific crop varieties, and enable faster and more targeted model development and 584 

improvement. 585 

 586 

4. Conclusions 587 

We have reviewed the use of crop models in support of accelerated breeding, with a particular 588 

focus on the CGIAR. Crop modeling can support breeding efforts in many ways, including 589 

assessing genotypic adaptability and stability, characterizing and identifying target breeding 590 

environments, identifying traits and/or eco-physiological characteristics that maximize yield for 591 

such environments, and making predictions about the breeding value of the genotypes. Crop 592 

modeling science, especially within the CGIAR, has contributed to all of these, with clear 593 

strengths around knowledge generation on eco-physiology, the translation of such knowledge 594 

into crop model development and evaluation, and the assessment of G×E×M interactions. 595 

However, much progress remains to be made if crop modeling is to effectively contribute to the 596 

accelerated breeding rates required to adapt to climate change (see Sect. 1.2).  597 

 598 

In a decade in which major CGIAR system breeding program transformations are expected, crop 599 

modelers will need to be part of crop improvement teams, with a common understanding of 600 

breeding pipelines and model capabilities and limitations, and common data and protocols, 601 

ensuring they follow and deliver according to common and clearly defined breeding products. 602 

Doing so will imply more rapid and better targeted crop model improvement activities, and 603 

‘thinking out of the model box’ to create novel approaches that capitalize on the availability of 604 

genetic data, thus ultimately allowing the use of the knowledge embedded in current models to 605 

effectively address breeding program questions. Standard tests of crop model skill, whilst 606 

requiring perhaps a little courage on the part of modelers, will ultimately be of great service to 607 

the modelling and breeding communities, as well as those who use the results of their work. 608 
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Figure captions 1257 

 1258 

Figure 1 Average simulated future potential benefits from genotypic adaptation (including ideotype 1259 

design) as derived from 19 modelling studies for wheat (n=15 simulations), sorghum (n=4), pearl millet 1260 

(n=48), groundnut (n=12), chickpea (n=48), rice (n=159), maize (n=19), and barley (n=48). The number of 1261 

data points used to compute means and error bars follows the number of studies, and the number of 1262 

sites, varieties, and scenarios reported in each study. The height of the bar shows the mean of all 1263 

reported simulations for each crop, and error bars extend 5–95 % of the data. 1264 

 1265 

Figure 2 Three major CGIAR examples of environmental characterization to support breeding. (A) 1266 

Drought stress patterns for rice in central Brazil (Ramirez-Villegas et al., 2018); (B) drought stress 1267 

patterns for post-rainy sorghum in India (Kholová et al., 2013); and (C) map of maize breeding mega-1268 

environments from CIMMYT (Cairns et al., 2013). Panels A and B are redrawn from the original studies, 1269 

and data from C was provided by CIMMYT. 1270 

 1271 

Figure 3 Response to rapid GS cycling for grain yield from the rapid cycling recombination genomic 1272 

selection for four cycles (C1, C2, C3, and C4). Colored dots indicate means of the checks (red) and of the 1273 

entries (blue). Figure taken from Zhang et al. (2017). 1274 

  1275 



 47 

Table 1 Key CGIAR model-based ideotype design studies  1276 

Crop Region Model Proposed ideotype / trait change Reference 

Chickpea 

South Asia 

and East 

Africa 

CROPGRO 

(DSSAT) 

– Increased maximum leaf photosynthesis rate, partitioning of 

daily growth to pods and seed-filling duration. 

– Drought and heat tolerance: greater rooting density, water 

extraction capacity, and lower sensitivity for seed-set, 

individual seed growth, and partitioning (depending on 

location) 

Singh et al. 

(2014a) 

Peanut India 
CROPGRO 

(DSSAT) 
Longer maturity 

Singh et al. 

(2012) 

Peanut 
India and 

West Africa 

CROPGRO 

(DSSAT) 

– Increased crop maturity, leaf photosynthesis, partitioning to 

seeds, and seed filling duration 

– Greater heat and drought (root traits) tolerance 

Singh et al. 

(2014b) 

Peanut India GLAM 

Increasing maximum photosynthetic rates, total assimilate 

partitioned to seeds, and, where enough soil moisture is 

available, also maximum transpiration rates 

Ramirez-

Villegas and 

Challinor 

(2016) 

Lentil East Africa SSM 
– Shorter cycle of lentil 

– Limited transpiration rates under high vapor pressure deficit 

Ghanem et al. 

(2015) 

Lentil South Asia SSM 
– Shorter cycle of lentil 

– Limited transpiration rates under high vapor pressure deficit 

Guiguitant et 

al. (2017) 

Sorghum 
India and 

West Africa 

CERES-

Sorghum 

– Increased crop maturity, radiation use efficiency, relative leaf 

size and partitioning of assimilates to the panicle. 

– Greater heat (lower sensitivity of reproductive processes) and 

drought (root traits) tolerance 

Singh et al. 

(2014c) 

Sorghum India APSIM 

Limited transpiration rates under high vapor pressure deficit, 

especially combined with enhanced water extraction capacity 

at the root level. Smaller canopy size, later plant vigor or 

increased leaf appearance rate. 

Kholová et al. 

(2014) 

Pearl 

millet 

India and 

West Africa 

CERES-

Pearl millet 

– Increased crop duration and yield potential traits 

(photosynthesis, partitioning) 

– Drought and heat tolerance in arid and semi-arid hot tropical 

climates. 

Singh et al. 

(2017) 

Rice Africa ORYZA2000 
Greater crop duration and increased maximum photosynthetic 

rate at high temperatures 

van Oort and 

Zwart (2018) 

Rice South Asia ORYZA2000 
Deeper roots (from 45 to 50 cm) to reduce plant sensitivity to 

drought. Drought onset occurs 3 weeks after transplanting. 

Mottaleb et al. 

(2017) 

Rice Philippines ORYZA2000 Greater duration and tolerance to extreme temperatures 

Li and 

Wassman 

(2010) 
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 1279 

 1280 

Table 2 List of statistical approaches that incorporate environmental information into genomic 1281 

prediction models 1282 

 Method description Reference(s) 

i 
Prediction model integrating pedigree based additive genetic 

covariances between relatives and G×E interactions  
Crossa et al. (2006)  

ii 
Multi-environment prediction framework for modeling G×E 

interactions using pedigree and genomic information 
Burgueño et al. (2012) 

iii 
Reaction norm model for incorporating the main and interaction 

effects of high-dimensional markers and environmental covariates  
Jarquín et al. (2014) 

iv 

Threshold models incorporating Gi×E and additive × additive × 

environment (G×G×E) interactions for predicting ordinal categorical 

traits  

Montesinos-Lopez et al. 

(2015) 

v 
Bayesian mixed-negative binomial genomic regression model for 

count data that integrates G×E interactions 

Montesinos-Lopez et al. 

(2016a) 

vi 

Marker × environment interaction (Mk×E) genomic model for 

predicting non-phenotyped individuals and identifying genomic 

regions associated with yield stability and environmental specificity 

Crossa et al. (2016b) 

vii 
Models integrating genomic, pedigree and environmental covariates 

for predicting grain yield in different agro-ecological zones  
Saint Pierre et al. (2016) 

viii 

G×E interaction kernel regression models using nonlinear Gaussian 

kernels for modelling marker main effects and marker-specific 

interaction effects  

Cuevas et al. (2017) 

ix 
Single-step approach incorporating genomic, pedigree and G×E 

interaction information for predicting wheat lines in South Asia 

Perez-Rodriguez et al. 

(2017) 

x 
Pedigree-based reaction norm model incorporating G×E interactions 

for multi-environment trial data 
Sukumaran et al. (2017), 

xi 
Bayesian approach and a recommender systems approach for 

predicting multiple traits evaluated in multiple environments 

Montesinos-Lopez et al. 

(2016b, 2018b) 

xii 

G×E interaction model in durum wheat evaluated using three cross-

validation (CV) schemes for predicting incomplete field trials (CV2), 

new lines (CV1), and lines in untested environments (CV0) 

Sukumaran et al. (2018); 

Roorkiwal et al. (2018) 
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 1289 

 1290 

 1291 

 1292 

Figure 1 Average simulated future potential benefits from genotypic adaptation (including ideotype 1293 

design) as derived from 19 modelling studies for wheat (n=15 simulations), sorghum (n=4), pearl millet 1294 

(n=48), groundnut (n=12), chickpea (n=48), rice (n=159), maize (n=19), and barley (n=48). The number of 1295 

data points used to compute means and error bars follows the number of studies, and the number of 1296 

sites, varieties, and scenarios reported in each study. The height of the bar shows the mean of all 1297 

reported simulations for each crop, and error bars extend 5–95 % of the data. 1298 
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 1302 

 1303 

 1304 

 1305 

Figure 2 Three major CGIAR examples of environmental characterization to support breeding. (A) 1306 

Drought stress patterns for rice in central Brazil (Ramirez-Villegas et al., 2018); (B) drought stress 1307 

patterns for post-rainy sorghum in India (Kholová et al., 2013); and (C) map of maize breeding mega-1308 

environments from CIMMYT (Cairns et al., 2013). Panels A and B are redrawn from the original studies, 1309 

and data from C was provided by CIMMYT. 1310 
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 1315 

 1316 

 1317 

 1318 

 1319 

 1320 

 1321 

 1322 

Figure 3 Response to rapid GS cycling for grain yield from the rapid cycling recombination genomic 1323 

selection for four cycles (C1, C2, C3, and C4). Colored dots indicate means of the checks (red) and of the 1324 

entries (blue). Figure taken from Zhang et al. (2017). 1325 
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