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Effects of Ground Manifold Modelling

on the Accuracy of Stixel Calculations
Noor Haitham Saleem, Hsiang-Jen Chien, Mahdi Rezaei, and Reinhard Klette

Abstract—This paper highlights the role of ground manifold
modelling for stixel calculations; stixels are medium-level data
representations used for the development of computer vision
modules for self-driving cars. By using single disparity maps
and simplifying ground manifold models, calculated stixels may
suffer from noise, inconsistency, and false-detection rates for
obstacles, especially in challenging datasets. Stixel calculations
can be improved with respect to accuracy and robustness by
using more adaptive ground manifold approximations. A com-
parative study of stixel results, obtained for different ground-
manifold models (e.g. plane-fitting, line-fitting in v-disparities or
polynomial approximation, and graph cut), defines the main part
of this paper. The paper also considers the use of trinocular
stereo vision and shows that this provides options to enhance
stixel results compared to binocular recording. Comprehensive
experiments are performed on two publicly available challenging
datasets. We also use a novel way for comparing calculated stixels
with ground truth. We compare depth information, as given by
extracted stixels, with ground-truth depth, provided by depth
measurements using a highly accurate LiDAR range sensor (as
available in one of the public datasets). We evaluate the accuracy
of four different ground-manifold methods. Experimental results
also include quantitative evaluations of the trade-off between
accuracy and run time. As a result, the proposed trinocular
recording together with graph-cut estimation of ground manifolds
appears to be a recommended way, also considering challenging
weather and lighting conditions.

Index Terms—Ground manifold, v-disparity, stixels, monocu-
lar, binocular, trinocular, membership function, obstacle height,
dynamic programming

I. INTRODUCTION

S
TIXELS are “stick elements”. They have been introduced

in computer graphics in [1], and defined recently a useful

way for describing 3-dimensional (3D) scenes in computer

vision [2], especially in the context of vision-based driver-

assistance systems (VB-DAS).

VB-DAS are integral components of modern cars [3].

Besides cameras, other types of sensors are also commonly

used, defining the more generic advanced driver assistance

systems (ADAS), being a development towards autonomous

vehicles. The designed systems aim at an understanding of

traffic environments in order to improve traffic safety and

efficiency [4], and also for better travel comfort. Examples of

ADAS technologies are auto-braking systems, evasive steering

assistance, or blind spot monitoring.

We briefly define three basic terms used in this paper. The

ground manifold is the estimated surface function for road and
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adjacent levelled areas; a plane defines the simplest model (i.e.

a ground plane [5]); in this paper we consider different surface

functions as models for the ground manifold. The ego-vehicle

is the vehicle in which the system is operating in [6]. The free

space is a region ahead of the ego-vehicle where this vehicle

may potentially (i.e. safely) drive in, for example, in the next

few seconds [7], [8].

In 2009, stixels have been proposed as a medium-level (i.e.

between pixel data and semantic segments) representation for

urban road scenes. This compact representation of disparity

maps aims at simplifying subsequent semantic segmentation

of a given scene. A projectively recorded scene can be mapped

into a top-down view, to be divided into adjacent cells of an

occupancy grid. Cells of this grid are of size w×w measured

in pixels. Disparities, measured for real-world objects within

one cell of this grid, are assumed to be about at the same

depth. A stixel [6] forms now a vertical “stick” above such a

w × w base cell; in this original definition it is a square-base

thin column on a ground plane (i.e. on a regular occupancy

grid) as shown in Fig. 1.

Fig. 1. Stixels (vertical sticks) describing obstacles: The (original) stixel has
a square base, and goes from a defined ground plane to the top of an object,
located on the stixel’s square base.

A stixel maps pixels that belong to an object (i.e. which

are at about the same distance to the recording camera)

vertically into “columns” [2], sitting on the ground plane.

A stixel is ideally upper-bounded by the top of an object.

See Fig. 2 for such a representation in a real-world scene.

Technical terms used in the caption of this figure (e.g. “cost

image”) are explained later; this figure indicates at this point

a general process of stixel calculation defined by disparity-

map calculation (top-left), base-point detection in the ground
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Fig. 2. Stixel representation of a street scene. Top-left: Disparity map (using an SGM-variant for stereo matching) visualized by applying a color key.
Top-right: Base-point selection by a minimum cut (shown in green) through a cost image. Regions in deep blue show lower costs which are preferred by a
dynamic programming-based optimizer. Bottom-left: Top-point selection by a minimum-cut (shown in green) through a cost image, subject to the base points
(shown in red). Bottom-right: Extracted stixels.

manifold (top-right), followed by top-point detection (bottom-

left), and the resulting stixels (bottom-right). Generated stixels,

also called the stixel world, surround the free space in the

assumed ground plane.

Ground-plane (or ground-manifold) estimation can be ap-

proached using either monocular or multi-ocular vision [10].

Monocular vision also supports ways of distance estimation

(e.g. by inverse perspective mapping); see [11]. There are also

combined monocular-binocular stixel methods; free-space is

estimated by using a single camera only, followed by obstacle

detection using stereo vision [36]. In order to detect free-

space from a single camera, we may employ a time-efficient

lane-based free-space detection method [8]. For example, lane

detection can be performed by using a Hough transform for

straight lines following edge detection; the Hough transform

is a basic method for line extraction [51].

Figure 3 illustrates possible steps: Cropping of a recorded

frame into a defined region of interest (ROI), edge detection

using the Sobel operator due to its “unbiased” definition,

and straight line detection by application of an optimised

Hough transform; the transform is applied recursively, using

optimized (Otsu algorithm [52]) threshold values, until a pre-

defined number of lines is found, or the threshold reaches its

minimum. Finally, that “dominant” pair of lines with the best

correspondence in angular directions is selected for specifying

road contours (i.e. the free-space) in such a monocular vision

approach.

As illustrated by Fig. 3, there remain many spaces which

were not properly estimated regarding free-space or possible

base-points of obstacles; these deficiencies would yield an

early estimation of obstacles.

Robust obstacle segmentation and scene understanding are

key tasks for visual sensors (cameras) in self-driving cars for

being able to interpret dynamic environments. Cameras are

playing a significant role in autonomous driving; they are

capable of providing rich information including distances to

obstacles given in traffic scenes.

Currently emerging vehicle testbeds (e.g. equipped with

sensors along roads, and vehicle-to-infrastructure communi-

cation; see [21] for an example) aim at exact and compar-

ative evaluations of control components designed for driver

assistance or driver-less vehicles. Having different options

for sensors and ground-manifold models, it is, of course,

important to compare efficiencies and possible accuracies of

stixel calculations. Accuracy of stixels requires a disparity

signal of “good” quality; this quality often decreases in cases

of occlusions or textureless image patches [22]. Since noisy

3D points have a considerable impact on ground-manifold

estimation, it is crucial to identify unreliable disparity values

before they are transformed into 3D space and used for stixel

estimation. Unfortunately, these issues are common in traffic

scenes, thus more efforts are needed to improve disparity

signals, also aiming at more reliable free-space estimation

and stixel calculations. Due to road-geometry variations, and

difficulties in recording those properly (e.g. due to weather

conditions or traffic density), there is ongoing work to improve

Fig. 3. Free-space detection using monocular vision, shown for two images
of the KITTI road dataset. Top: Selected ROI (i.e. “middle rows” of a frame
only). Middle: Edge detection using Sobel. Bottom: Detected free-space.
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ground-manifold estimation and stixel calculation. However,

current research as reported in [4], [23], [24] still uses just a

ground-plane for modelling the road-surface; we discuss how

this is prone to errors as road-geometry is not always perfectly

planar.

The reminder of this paper is structured as follows: Sec-

tion II provides at first a brief literature review on work related

to stixel computation. Section III recalls then previously spec-

ified ways of stixel construction, considering the used ground-

manifold specification as a variable subprocess. In Section IV,

a number of methods is deployed to detect a ground manifold

for stixel construction. Section V explains how to use trinoc-

ular recording for stixel calculations. Section VI evaluates

effects of those different ground-manifold models, and of bi-

or trinocular recording. Section VII concludes.

II. RELATED WORK

We briefly discuss work on road surface and stixel extrac-

tion, which are both considered to be crucial steps towards

stixel calculation. Road boundary segmentations are applicable

for modelling the space where an ego-vehicle is potentially

driving in. Detected road boundaries support concepts of

ground versus obstacle segmentation.

Stixel calculation requires depth estimates and is better

approached by multi-ocular stereo vision or other depth sen-

sors; thus it also makes sense to use depth data also already

for the ground-manifold estimation step. Vision sensors and

related data analysis define a core component in ADAS;

A binocular vision system depends on calculated disparity

values for calculating scene depth; disparities are calculated

by implementing stereo matching algorithms [16] on images

obtained by a left and right camera. There might be pre-

processing applied before the stereo matching step, such as

in [17], [18], for enhancing matching outcomes. Results can

be filtered by applying confidence measures; see [19] for

various stereo-matching confidence measures. Stereo-vision

results may also be improved by using a trinocular vision

system rather than just a binocular one; see, for example, [20].

A row-wise histogram of a calculated disparity map D
is known as v-disparity map [5], where v denotes row

coordinates of an image. The analysis of v-disparity maps

(e.g. calculations of lower envelops, or other forms of curve

approximations) defines a common way for ground-manifold

estimation. Noise in disparity maps results in noise in v-

disparity maps. It is challenging to identify an “ideal” curve

in v-disparity space using a curve-approximation method and

v-disparity for binocular vision alone. Stereo vision supports

the use of techniques such as v-disparity representation [5],

disparity analysis [31], or occupancy grid generation [2], [32].

Rapid stixel-based analysis enhances stixel extraction by

having lower computational costs; in [35] a direct stixel

computation is presented by changing the parametrization

from disparity space into a pixel-wise cost volume for speed

improvement. In [36], the authors use deep convolutional neu-

ral networks for free-space detection using monocular vision,

while obstacle detection and stixel calculation is done by using

stereo vision. A fast stixel computation without using depth

maps is proposed in [37]. It supports high-speed pedestrian

detection (at the speed of 200 fps).

Color fusion models compute stixels by using stereo images

(i.e. depth cues) in combination with color appearance. Such

methods have been presented for stixel segmentation [22],

[38], [39]; their implementation can be done by using a

low-level fusion of depth with image signals or semantic

information in the stixel generation process. Scharwächter

et al. employed pixel classification with random decision

forests [38], while in [39] semantic information via object de-

tectors is used for a suitable set of classes. Yet another method

has been presented in [22] to improve stixels using low-level

appearance models in an on-line self-supervised framework.

Recently, joint stixel representations, combining semantic data

and depth, are proposed to integrate both categories in terms

of a joint optimized scene model [25].

Despite the proven effectiveness, such techniques may also

have negative impacts on stixel segmentation [25]. Rapid

stixel-based methods have some drawbacks which are prone

to low depth accuracy, which in turn affects stixel extraction

negatively. Therefore, we consider the use of stereo-matching

confidence maps (see [19] for different options for such maps)

with the aim of improving stixel segmentation. (Effects of

confidence-involvements contributed to the images shown in

Fig. 2.) We focus on a careful analysis for identifying a rec-

ommended way for curve detection (i.e. ground-manifold esti-

mation) in v-disparity space. With promising results achieved

by employing optimization techniques, this paper provides

• a new method, called trinocular graph-cut, for generating

a robust lower envelope in v-disparity space to improve

stixel detection, verified on KITTI data,

• a new ground-truth measure for stixel accuracy evalua-

tion, proposed for the 6D Vision Dataset, and

• an extensive analysis of a low-cost and accurate archi-

tecture for reducing false-positives in stixel estimation

using a model with a reduced number of parameters for

ground-manifold detection.

III. STIXEL REPRESENTATION

A stixel starts on top with a detected upper “end” of an

object and ends at the bottom on the ground plane (or ground

manifold in general, also addressing non-planar surfaces).

Stixels are computed from a disparity map1 D at three stages:

1) Base point detection. Base points are identified by

locating the boundary of free space in the given image.

The boundary is found by first building an occupancy

map from range data above an estimated road manifold,

then solving for an optimal cut separating free space

from the rest of the grid cells in the map.

2) Height segmentation. Foreground pixels are separated

from the background, and an upper boundary (i.e. top

points) of obstacles “resting on the ground” are detected.

3) Stixel extraction. Column-wise obstacles are grouped

and represented by bounding boxes, and depth values

1We adopt a semi-global matching (SGM) algorithm [16] for disparity
calculation.
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of pixels in the same group are integrated to form a

stixel with one unified depth value.

In this section we provide an in-depth walk-through for

this process following papers which introduced stixels as a

medium-level scene representation.

A. Base Point Detection

The first step of stixel construction is to find the bottom of

the closest obstacle for every column [2], [32]. The search is

based on the the free space analysis by means of occupancy

grids [40], which represent the scene as a 2D discrete map.

The use of occupancy grids for free space detection dates

back to 2007 [7]. A probabilistic occupancy grid can be

built by projecting depth data (or, equivalently, disparities)

along the Y -axis of the camera (this axis goes from ground

plane upward) into the ground plane, and then by binning the

projected data using a 2D histogram. The grid can be defined

in either 2D Cartesian coordinates (on the XZ ground plane)

or in polar coordinates. In the latter case, the grid shows a

distribution of pixels in the column-disparity space, which is

also known as a u-disparity map 2 (contrary to the v-disparity

map that is introduced in the following section). An example

is shown in Fig. 4.

Fig. 4. Occupancy map showing the distribution of objects above the road
surface. Left: Computed polar-occupancy grid. Right: After background object
removal. The green curve visualises a column-by-column maximum cut found
by means of dynamic programming. The larger a disparity, the closer is the
object to the camera.

To correctly find the free space from an occupancy map, the

ground manifold has to be estimated to include only obstacles

above the ground to build the grid. Details regarding the

estimation of ground manifold are discussed in Section IV.

By means of an occupancy grid, the free space is efficiently

found using a graph-cut algorithm. The nearest prominent

object is first identified for each column, and the grid cells

behind are occluded. After removing background objects from

the occupancy map, a dynamic programming technique is

2In the original paper (u, v) is used to denote image coordinates; we are
using (x, y) for image coordinates.

Fig. 5. Reconstructed 3D points from a disparity image, road manifold
(green), and obstacle manifold (red) from an occupancy map.

carried out to locate the maximum-cut through the map that

separates free space and the obstacles [7]. For each column

x in disparity map D, the process decides a disparity d,

as illustrated in Fig. 4. Back-projecting such a cut in the

occupancy map to the image-disparity space and subsequently

into the Euclidean space defines an obstacle manifold, as

rendered in red in Fig. 5.

At the end of this stage, a base point is decided for each

column of D by locating the intersection of the obstacle man-

ifold and road manifold (see Fig. 5). The per-pixel distances

between the road manifold and obstacle manifold are then

computed as a cost function for deciding base points (see

Fig. 2 for example). The minimum cut through the cost then

defines the base points of stixels, as represented as a set of

row indices {b1, b2, . . . , bNcol
} where Ncol is the number of

columns of the image domain, and (x, bx) denotes the image

coordinates of base point in column x.

B. Height Segmentation

The height of obstacles, which sit on the ground manifold, is

obtained by seeking an ideal segmentation between foreground

and background disparities. The goal of the stage is to find top

points t1, t2, . . . , tNcol
that together with those base points, that

are found at the previous stage, define the span of obstacles

in a column-wise manner.

In [6], the height-of-obstacle calculation begins with select-

ing membership votes. Briefly, the membership values rely on

the selection of every disparity of each column from the dispar-

ity for its member to the foreground obstacle. A membership

value can be positive if it does not exceed the maximum

distance of the expected obstacle disparity; otherwise, it will

be negative.

The Boolean membership vote brings the challenge to

identify a threshold value for the distance; if this value is too

large then all disparities will be chosen from the foreground

membership, and vice-versa. Therefore, the application of

Boolean membership in a continuous variation is a better
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alternative with an exponential function of the form

M(x, y) =

{

21−δ2(x,y) − 1, if y < bx

0, otherwise
(1)

where

δ(x, y) =
dx −D(x, y)

dx − Z−1 (Z(dx) +△Z)
(2)

with dx = D(x, bx), the disparity of an obstacle’s base point

in column x, Z as the disparity-to-depth conversion function,

and △Z as a defined soft constraint range in depth. The

approximated Boolean function is illustrated by Fig. 6.

An example of evaluated membership values is shown

in Fig. 7. Foreground regions end at the bottom of each

contributing column at a base point.

The next step is to decide the boundary between foreground

and background votes from the membership function. For this

purpose, the cost image is computed as follows:

C(x, y) =

{

∑y−1
j=1 M(x, j)−

∑bx
j=y M(x, j), if y < bx

∞ otherwise
(3)

A minimum cut, that divides the cost image into upper and

lower parts, is then found by using a dynamic programming

technique as in [6], while maintaining a smoothness constraint.

The cut defines the top points {t1, t2, . . . , tNcol
}. (There are

further options for calculating such a cut; we selected due to

performance results.)

A visualization of a cost image, used for the height segmen-

tation, was already illustrated in Fig. 2. As can be seen, there

are lower costs which show a high likelihood for performing

a foreground-background separation.

C. Stixel Extraction

Stixels are extracted by combining at first base points

b1, b2, ...bNcol
, obtained as outlined in Section III-A, and top-

points t1, t2, ...tNcol
, calculated as per Section III-B; then, a

column-wise grouping technique, proposed in [2], [41], is

carried out. Given w ∈ Z
+, a predefined width of stixels,

every w neighboring columns are grouped across the whole

image, resulting in ⌊Ncol

w
⌋ non-overlapping stixels.

For the i-th stixel we have a set of w base points Bi =
{bxi

, bxi+1, ..., bxi+w−1} and a set of w top points Ti =
{txi

, txi+1, ..., txi+w−1}, where xi = (i − 1)w + 1. The

rectangle spanned from column x = xi to x = xi+w−1, and

Fig. 6. Exponential membership function (blue) adopted to approximate the
Boolean membership (red). The width of the function is determined by ∆Z

in (2).

Fig. 7. Evaluated membership of pixels in background (black) and foreground
(white) classes. For pixels below the base points, the membership value
remains undefined (grey).

from row y = min(Ti) to y = max(Bi), defines the scope of

a stixel in the image domain.

Instead of using only base points’ disparities, all the dis-

parities within the scope are integrated to yield a more robust

estimation of the stixel’s depth zi, by means of a histogram-

based regression technique proposed in [2].

Stixel detection represents also a way for ground manifold

estimation; all the base points of stixels can act as interpolation

points for ground-obstacle segmentation using geometry data

with the aim of improving the accuracy. Besides that, a stixel

clearly represents the height of the first obstacle facing the

vehicle along a given viewing direction. Resulting stixels

have been illustrated in Fig. 2, bottom-right. The colours

of the stixels encode the distance to the ego-vehicle. Red-

scale colours represent closer objects while blue-scale colours

represent farther objects.

The accuracy of extracted stixels is directly affected by

the estimated ground manifold. In the following section we

provide details about ground-manifold estimation methods.

IV. GROUND MANIFOLD MODELLING

A ground manifold, found at this stage, may be coded as

a disparity map G where G(x, y) stores the disparity of the

ground at pixel location (x, y). Let D be the disparity map

computed by stereo matching, pixel (x, y) is considered to be

above the ground manifold if D(x, y) > G(x, y) + ε, where

ε > 0 defines a tolerance margin.

A variety of methods has been proposed in literature [5],

[7], [10], [20], [42] to obtain map G. Some methods directly

work on raw data, such as image intensities, disparities, or

3D points, while others apply data projections to reduce the

dimensionality of the raw data. Direct methods and projection-

based methods are reviewed in this section.

A. Plane Fitting

In a typical road scene, the ground manifold is the domi-

nating surface that lower bounds other objects in the scene. In

this case, the manifold can be identified by finding the best-fit

3D surface given to a set of 3D points.

When the ground manifold is assumed to be flat, the

estimation can be approached by means of 3D plane fitting.

In case that the 3D points are derived from a disparity map,

the fitting can be done directly in the image-disparity space.

This is shown as follows.
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Consider a plane a0X + a1Y + a2Z + a3 = 0 in 3D

Euclidean space with plane coefficients a0, . . . , a3 ∈ R. A

point (X,Y, Z) in 3D space is mapped onto an image pixel

(x, y) following the pinhole model

x = fx ·
X

Z
+ xc, y = fy ·

Y

Z
+ yc (4)

where (fx, fy) are the focal lengths, and (xc, yc) is the

principal point.

Two calibrated and horizontally rectified pinhole cameras

introduce a disparity space, where every pixel (x, y) in the

(say) left image is mapped to (x − d, y) in the right image

via d ∈ [0, dmax), the disparity value bounded by dmax. The

disparity-to-depth conversion follows

Z = fx ·
B

d
(5)

where B is the length of the baseline (connecting the focal

points of the two cameras) in world units.

By first substituting (4) into the plane equation, resulting in

a0 ·
Z

fx
(x− xc) + a1 ·

Z

fy
(y − yc) + a2Z + a3 = 0 (6)

and then (5) into (6) producing

a0 ·
x− xc

fx
+ a1 ·

y − yc
fy

+ a2 + a3
d

Bfx
= 0 (7)

the plane in the Euclidean space is now modelled in the image-

disparity space as another plane:

a′0x+ a′1y + a′2d+ a′3 = 0 (8)

in terms of a′0 = (Bfy)a0, a′1 = (Bfx)a1, a′2 = fya3 and

a′3 = (Bfxfy)a2−(Bfyxc+Bfxyc). This way the road plane

can be found without any need of back-projecting a disparity

map into the 3D Euclidean space [43].

An example of a road manifold, modelled in the image-

disparity space using the proposed plane fitting technique, is

shown in Fig. 8.

Fig. 8. Road manifold (green) found using the plane-fitting technique in
image-disparity space.

Fig. 9. Demonstration of v-disparity-based ground-manifold modelling. First

column: Line fitting. Second column: Polynomial-based curve fitting. Third

column: Graph-cut-based curve fitting. Fourth column: Graph-cut-based curve
fitting with enforced monotonicity.

B. Line Fitting

When the height of the road manifold does not change

significantly along the image’s x-axis, the plane model in (8)

reduces to a line:

d = −
a′1
a′2

y −
a′3
a′2

= my + b (9)

which turns road manifold estimation into a line-fitting prob-

lem of seeking the best-fit line model (m, b).

A computationally efficient way to find the best-fit line is

to use a histogram that models the distribution of (y, d) in

2D space. Such a histogram is known as a v-disparity or

row-disparity map [5]. A v-disparity map is computed by

accumulating pixels in the same disparity interval in one row

y, 1 ≤ y ≤ Nrow, of the disparity map:

V (y, d) = card{x : 1 ≤ x ≤ Ncol ∧Q(D(x, y)) = d} (10)

where 0 ≤ d ≤ dmax defines the quantized disparity range for

D in the Nrow ×Ncol disparity map, and Q is a quantization

function. See Fig. 9 with dmax = 60.

In [5], [44], a Hough transform is used to detect the road

manifold in form of a straight line in the v-disparity map.

A more efficient and noise-resistant approach is to locate

the dominating line following a stochastic process known as

random sample consensus (RANSAC) [45]. The process first

selects two bins randomly from the histogram, and a line hy-

pothesis is solved (m̂, b̂). As values in the map define a density

distribution, fitness of the hypothesis can be determined by

summing up all the entries in V (y, d) that are considered in

the line up to a tolerable deviation (i.e. those inlier). Such a

process is repeated for a finite number of iterations and that

hypothesis, which achieves the highest fitness, is considered

to be the dominating line.

As the precision of a line hypothesis is limited by the grid

resolution, one may optionally perform weighted line fitting

based on all the inliers to further improve the estimation.
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C. Curve Fitting

The previously presented line fitting method can only handle

planar road surfaces [31]. For a non-flat road geometry, the v-

disparity map shows a curved distribution of pixel disparities.

In [5], such a curve is approximated by a piecewise linear

function, which is denoted by the envelop of straight lines

corresponding to the k-strongest peaks in the Hough space,

with k ≥ 1 a chosen parameter.

In more recent work [20], [46], the curve is modelled by a

3rd order B-spline or 2nd order polynomial function. Adopting

the polynomial model, the ground manifold estimation prob-

lem is solved by finding the coefficients of a polynomial f(y)
of degree n that best fits the curve in the v-disparity map:

d = f(y) = any
n + an−1y

n−1 + . . .+ a1y + a0 (11)

where a0, a1, . . . , an are the coefficients, and the degree

n > 1 is selected according to accuracy requirements for the

algorithm.

Similar to the line-fitting technique, the fitness of a curve

is defined by summing up all the curve’s containing entries in

V [10].

In order to generate the coefficients of the polynomial

according to the degree specified, we need to compute a

least-square polynomial for a given set of data. Following the

least-square principle, we obtain the parameters a0, a1, . . . , an,

which minimize the total square error:

E(a0, a1, . . . , an) =

m
∑

i=1

[yi − P (xi)]
2

(12)

where m ≥ n is the number of samples. The optimal

coefficients can be solved linearly.

D. Dynamic Programming and Graph Cut

Curve models with higher degrees provide flexibility to

model a road manifold in v-disparity space. The degree of

freedom is still limited by the adopted parametric model.

Furthermore, curve models do not guarantee monotonicity

that is often desired, as the depth of a road manifold does

in general not increase as the row index goes from y to

y + 1 (i.e. downward in the image). Following a discrete

formulation, the curve fitting process is essentially a graph cut

problem, which aims at finding a set of quantized disparities

d = {d1, d2, . . . , dNcol
} that minimizes a cost function subject

to smoothness constraints.

Such a cut d divides the v-disparity map into left and right

parts. To find the lower bound of the road manifold, the cost

function can be defined by using a first-order derivative Vy of

the v-disparity map V (i.e. along row y) [47]:

E(d) =

Ncol
∑

y=1

Vy(y, dy) + p

Ncol
∑

y=2

Θ(dy−1, dy) (13)

where p ≥ 0 defines a penalty for Θ, the smoothness function.

The value of p depends on the scale of the data term. To

ensure the monotonicity of a cut, the smoothness term can be

specified by an asymmetric L1 Potts model:

Θ(di, dj) =

{

∞, if di > dj

dj − di, otherwise
(14)

Based on dynamic programming, an optimal cut can be solved

using the Viterbi algorithm [48].

V. MULTIOCULAR VISION

The idea of the v-disparity space can be generalised to

a multiocular camera set-up. As disparity spaces, derived

from different stereo pairs, are not consistent to each other,

the disparities have to be converted first into a universal

representation (e.g. by using inverse-depth). Alternatively, one

of the disparity spaces may be chosen as a reference such

that all the disparities can be transformed and integrated

appropriately.

In [20] a trinocular implementation is proposed for a gen-

eralization of the v-disparity map for three binocular stereo

pairs defined by three cameras; Fig. 10 shows a trinocular data

example from the KITTI road dataset [49]. Our extension is

based on transitivity error analysis in disparity space (TED)

as introduced in [50]. The approach is briefed as follows.

A disparity map D : Ω → [0, dmax] maps each pixel

(x, y) ∈ Ω from the left image domain Ω to (x−D(x, y), y)
into the right image. A disparity map defines therefore a

warping function M : Ω → R as follows:

φ(M, D)(x, y) = M (x−D(x, y), y) (15)

Given a collinear m-camera configuration, there are m(m−
1)/2 left-right stereo pairs. The warping function φ can be

used to construct the concatenation of any two disparity maps,

following

τ(Dij , Djk)(x, y) = Dij(x, y) + φ(Djk, Dij)(x, y) (16)

where 1 ≤ i, j, k ≤ m. This concatenation defines the TED-

based disparities.

A TED-based error measure can now be defined as

dik,ijk(x, y) = ‖τ(Dij , Djk)(x, y)−Dik(x, y)‖ (17)

with respect to camera sequence (i, j, k). Function dik,ijk mea-

sures the difference between an explicitly computed disparity

map Dik and the concatenated one τ(Dij , Djk).
To apply TED to build a v-disparity map with respect to

a camera pair, say (0, 2), a trinocular confidence measure is

defined:

Γ(x, y) =
1

1 + ‖τ(D01, D12)−D02(x, y)‖
(18)

and a TED-weighted v-disparity map is constructed following

V (y, d) =
∑

1≤x≤Ncol ∧ Q(D01(x,y))=d

Γ(x, y) (19)

Here, elements with higher TED-based confidence become

more influential in the weighted v-disparity map, which can

then be processed using again the described line fitting, curve

fitting, or dynamic programming techniques.
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Fig. 10. Trinocular confidence and free space. Top row: Trinocular stereo pair from the KITTI road dataset. Bottom left: TED-based disparity. Bottom

middle: Red and blue pixels indicate high and low confidence values, respectively. Bottom right: Calculated free-space (using v-disparity, confidence map,
and proposed trinocular graph-cut).

VI. EXPERIMENTS

We implemented the stixel construction process for four dif-

ferent disparity-based ground-manifold models as introduced

above.3 The base-line stixel method is implemented by map-

ping disparities into occupancy grids. Such a scheme suffers

from shortages highlighted in [6]. Accordingly we selected

four recently discussed models (plane-fit and line-fit [43],

poly-fit [42], and graph-cut [47]) which are mainly dependent

on the v-disparity space. This brings numerous advantages

for ground-manifold detection. It is stated in [6] that working

with original image coordinates, identified by the v-disparity

space, is more practical when including probabilistic densities

into the used model. Using the v-disparity space suppresses

additional quantization artifacts, which is an arising problem

when mapping measurements in Euclidean space into a grid or

voxel space. Line or curve models are (still) dominant when

using the v-disparity space for ground-surface estimation [53],

thus also (still) dominating current stixel calculations [4], [23],

[24].

Following [47], the number of missing stixels is used as

an indicator for showing robustness when using the graph-

cut approach. In this paper we extended the idea of using

the graph-cut approach by including one more camera (i.e.

a trinocular setup) utilizing the confidence map derived from

TED. Furthermore, the experimental evaluation reported in this

paper is more comprehensive than in [47] by also using LiDAR

data and a number of statistical measures (more details later).

The computation of our disparity maps is based on the Com-

puter Vision System Toolbox by calling a wrapped semi-global

block matcher from the OpenCV 3.1.0 library. In this

section we report about the evaluation of detected stixels when

applying one of those listed four ground-manifold models, and

also when deciding either for binocular or trinocular recording,

tested on 3, 861 frames. The evaluation is done using two

widely-adopted datasets in the field, namely Daimler’s 6D

Vision Dataset,4 and the KITTI Vision Benchmark Suite.5

A. Different Ground Manifold Models on 6D Vision Dataset

We evaluate the performance of stixel extraction for the

following four ground manifold models: plane-fitting, line-

fitting, polynomial-fitting, and graph-cut. The extracted stixels

3Implementation is in MATLAB R2017A.
4See www.6d-vision.com.
5See www.cvlibs.net/datasets/kitti/.

are verified on binocular stereo-image sequences downloaded

from Daimler’s 6D Vision website [54].

We applied the verification to all the twelve sequences

which consist of 2, 988 10-bit gray-scale stereo frames. The

first six sequences are from the GOOD WEATHER category,

which present fairly good driving conditions with different

illuminations, a variety of road views, shades, and colourings.

The other six sequences from the BAD WEATHER category

present more challenging conditions such as rain drops, oper-

ating wind-shield wipers, and limited visibility.

In our work we compare extracted stixels with labelled

frames provided by the dataset, and calculate a number of

statistical measures. The positive predictive value (PPV), also

known as precision, is calculated as

PPV =
TP

TP + FP
(20)

where TP and FP denote the numbers of true positives and

false positives, respectively. The true positive rate (TPR), also

known as the recall rate, is defined as

TPR =
TP

P
(21)

where P = TP + FN is the number of positive pixels in the

ground truth. We also calculated the accuracy (ACC) following

ACC =
TP + TN

TP + TN + FP + FN
(22)

where TN and FN denote the numbers of true negative and

false negative pixels.

For those true positive pixels, we further evaluate the

deviation of the disparities of the corresponding stixels against

the ground truth. The root-mean-squares of the errors (RMSE)

are also listed. These results are tabulated in Table I, with the

best true positive rate in each sequence marked in bold.

It is found that all the models show low positive predictive

values, ranging from 0.12 to 0.53. Further investigation reveals

that the reason is due to high false-positive responses. In

many cases, a detected stixel is not annotated in the test

sequence. Although stixel ground truth was provided, they

were annotated using a corridor6 instead of the free-space, as

it was observed during our experiments. An example is shown

in Fig. 11.

6The corridor is a subset of the free-space, and it denotes the region where
the ego-vehicle is expected to drive in [8].
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TABLE I
EVALUATION OF STIXEL EXTRACTION USING VARIOUS GROUND MANIFOLD MODELLING ON THE DAIMLER 6D-VISION DATASET

Sequence
Plane-fit Line-fit Poly-fit Graph-cut

PPV TPR ACC RMSE PPV TPR ACC RMSE PPV TPR ACC RMSE PPV TPR ACC RMSE

Seq. 1 0.44 0.69 0.92 1.66 0.42 0.63 0.92 1.52 0.41 0.63 0.92 1.51 0.40 0.64 0.92 1.49

Seq. 2 0.12 0.62 0.82 2.33 0.14 0.74 0.82 2.03 0.13 0.74 0.81 1.99 0.14 0.74 0.82 2.05
Seq. 3 0.47 0.74 0.82 2.45 0.50 0.74 0.83 2.46 0.49 0.68 0.83 2.69 0.50 0.74 0.83 2.53
Seq. 4 0.47 0.89 0.89 3.06 0.51 0.91 0.91 3.03 0.53 0.91 0.91 3.02 0.52 0.91 0.91 3.05
Seq. 5 0.22 0.94 0.80 2.20 0.23 0.95 0.80 2.15 0.23 0.89 0.81 2.40 0.23 0.92 0.81 2.18
Seq. 6 0.34 0.94 0.84 1.99 0.37 0.95 0.86 1.85 0.37 0.90 0.86 1.91 0.37 0.95 0.86 1.85

Average 0.34 0.80 0.85 2.28 0.36 0.82 0.86 2.18 0.36 0.79 0.86 2.25 0.36 0.82 0.86 2.19

Seq. 7 0.28 0.47 0.89 3.36 0.28 0.43 0.90 3.36 0.27 0.43 0.89 3.44 0.29 0.46 0.90 3.41
Seq. 8 0.23 0.80 0.87 4.12 0.24 0.81 0.88 3.93 0.25 0.82 0.89 4.02 0.26 0.83 0.89 3.92

Seq. 9 0.23 0.41 0.88 3.86 0.23 0.26 0.90 3.70 0.22 0.32 0.90 3.66 0.26 0.44 0.89 3.58

Seq. 10 0.26 0.76 0.81 2.90 0.25 0.65 0.82 2.91 0.28 0.78 0.82 2.82 0.28 0.84 0.82 2.82

Seq. 11 0.28 0.76 0.83 4.62 0.31 0.74 0.85 4.22 0.31 0.78 0.85 4.19 0.32 0.81 0.85 4.22
Seq. 12 0.27 0.58 0.91 3.62 0.25 0.34 0.92 3.54 0.28 0.50 0.92 3.53 0.29 0.63 0.91 3.29

Average 0.26 0.63 0.87 3.75 0.26 0.54 0.88 3.60 0.27 0.60 0.88 3.61 0.28 0.67 0.88 3.54

Fig. 11. Annotated ground truth (top) and extracted stixels (bottom) of
the first frame of Sequence 1 from the 6D Vision dataset. The ramp on the
right and the car are not annotated by the ground truth but detected by stixel
implementation (poly-fit).

We therefore use the recall rate (TPR) as the major index

to evaluate the ground-manifold models.

The four tested models perform similar for the

GOOD WEATHER category. The best recall rate average

is achieved for the graph-cut model, which is just 2% better

than the worst case - the plane-fit model. An overall accuracy

around 0.86 is consistently found among all models, and the

RMSE in disparities is between 2.18 to 2.28 pixels.

In the BAD WEATHER category, however, distinctive results

are found. In five out of six tested sequences, the graph-cut

Fig. 12. Left image with window wiper(top-left) and right image (top-
right) - frame number 142 of Sequence 11 (bad weather) from the 6D Vision
dataset. The ground-manifold detection using binocular graph-cut (bottom-
left). (Bottom-right) is showing disparity map for this challenging scene.

model achieves the best recall rate, which is 30% better than

the worst rates in some extreme cases (Sequences 10 and 12);

the graph-cut model is here followed by the poly-fit, plane-fit,

and line-fit models. In general it is observed that the ground

manifold cannot be effectively modelled by the line-fit method

due to severely corrupted disparity maps under bad weather

conditions.

An overall accuracy of about 0.88 is consistently found

among all the models, and the RMSE in disparities is between

3.60 to 3.54 pixels.

TABLE II
RUN-TIME PROFILING FOR STIXEL EXTRACTION USING VARIOUS

GROUND-MANIFOLD MODELS ON THE DAIMLER 6D-VISION DATASET

Category Plane-fit Line-fit Poly-fit Graph-cut

GOOD WEATHER 0.356 s 0.327 s 0.326 s 0.332 s
BAD WEATHER 0.452 s 0.411 s 0.418 s 0.418 s

We also profiled the run-time for each model and show

the average processing time per frame in Table II. The line-

fit, poly-fit, and graph-cut models show similar computational

time costs with a difference of not more than 5 milliseconds.

The poly-fit yields the fastest approach for GOOD WEATHER

because it is insensitive to slope changes which widely exist

in Sequence 1 (see Fig. 11). The plane-fit model is found to

be most time consuming due to the iterative RANSAC process

over a large amount of 3D data.

B. Comprehensive Evaluation on KITTI Dataset

We evaluate the quality of stixels not only for the selected

four ground-manifold models, but also for binocular versus

trinocular recording, using the trinocular data provided on the

KITTI Vision Benchmark Suite [49].

Regarding previously stated challenges in evaluating stixels

using the KITTI dataset [22], we address those by making use

of the Velodyne high-definition 3D laser scanner data provided

by the KITTI dataset. We use those range data as a ground-

truth reference to evaluate the distance values assigned to the

extracted stixels. This comprises of several processes:

1) Generate a disparity map from extracted stixels. The

map contains valid disparities only for pixels belonging
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Fig. 13. Extracted stixels (color-coded by depth) and LiDAR points marked
by white and red dots. Points hitting any extracted stixel are shown in red
and used to evaluate the accuracy of the extraction process.

to a stixel. The map is then converted into a depth map

following Eq. (5).

2) Project LiDAR points into image coordinates. Figure 13

shows some exemplary LiDAR point projections. The

projections associate a subset of LiDAR range data to

the extracted stixels.

3) For each associated LiDAR point, its depth is compared

with the stixel depth map. The signed difference is then

used to evaluate the performance of the stixel extraction

process.

4) As the extracted stixels are in rectangular shape with

reduced spatial resolution, it is often found close to

edges of a stixel that background LiDAR points are

wrongly assigned to a stixel. To exclude such outliers

from the evaluation, we ensure a zero-mean for the error

distribution of each model. Then, we discard LiDAR

points that are outside the interval [−0.5σ,+0.5σ] of

all the range data associated to the same stixel before

calculating the mode (note: not the mean) and the

standard deviation.

We selected 873 trinocular stereo frames from the ROAD,

RESIDENTIAL, and CITY categories, which include cars,

cyclists, pedestrians, trees, and traffic signals. The test se-

quences are listed in Table III, also called for short A =

2011_09_26_drive_0032, B = 2011_09_26_drive_0035,

and C = 2011_09_26_drive_0091 in the following tables.

TABLE III
SELECTED TEST SEQUENCES FROM THE KITTI DATASET

Category Sequence Frames

ROAD 2011_09_26_drive_0032 390
RESIDENTIAL 2011_09_26_drive_0035 137
CITY 2011_09_26_drive_0091 346

Qualitative results are listed in Table IV using a binocular

configuration. We also use frames captured by the third camera

to conduct additional tests on binocular versus trinocular

stixels. Bold numbers indicate the best case per group, and

colored numbers are the best case over all the seven models.

Note that the plane-fit model is not of relevance here. As

illustrated, a negative value means that laser points are in

front of the stixels. Furthermore, as there are many non-flat

objects present in the scene, and many background points

are covered by the extracted stixels, we expect to see large

standard deviation values.

For the ROAD sequence, the trinocular line-fit model

achieves the lowest rate of a LiDAR-stixel error of −5.3cm,

which is 55.5% better than the worst case yielded by the plane-

fit model −11.6 cm. The main reason for this achievement

is due to open-road scenarios which normally correspond

closely to a straight-line in v−disparity space supplemented by

the confidence measure using TED. This is slightly different

compared to trinocular poly and graph-cut which achieve −6.5
and −6.2cm respectively.

In the RESIDENTIAL sequence, the used data show cars

parked on the side of the road, houses, and road junctions.

Based on the experiments, more obstacles (impacting the v-

disparity map) make identifying a curve (using line-fitting or

poly-fitting) more complicated. For this sequence, the trinoc-

ular graph-cut model has superior performance with a lowest

mean LiDAR-stixel error of −10.2 cm. The disparity map

relatively suffers from low-depth in this dataset due to lighting

conditions accompanied with many pedestrians and buildings

in the scenes. The performance of graph-cut is better suited for

cases where there are irregular changes in a piecewise linear

curve.

On the other hand, the binocular poly-fitting model provides

the lowest mean LiDAR-stixel error of −3.5 cm for the CITY

sequence as there are a number of non-flat objects in this

sequence. This defines only a slight difference compared to

the other techniques.

In addition to the statistics for the LiDAR-stixel error, we

also calculate the improvement by the use of the third camera

applying TED-weighted v-disparities (see Section V) as input

for ground-manifold modelling.

As illustrated in Table V, the trinocular graph-cut approach

covers more valid disparities compared to others, and appears

to be insensitive to weather changes. It outperforms the trinoc-

ular polynomial or line-fit methods regarding robustness. The

improvement rate is obvious for the ROAD and RESIDENTIAL

sequences when using the graph-cut model. We notice that

using trinocular cameras, the performance of poly-fit and line-

fit decreases for RESIDENTIAL. This occurs because disparity

values fluctuate roughly at the end of the data sequence

(Frame 100 and onwards) because of having a round-about

in the shown scenes. There are some values missing between

D01 and D12 and this is reflected in values Γ(x, y) since

they are derived from these maps. The graph-cut model pays

more attention to the disparity values, and using a penalization

scheme is thus still able to recover the most relevant values

compared to the ground manifold. The graph-cut model yields

the highest improvement for ROAD and RESIDENTIAL with

the trinocular configuration, and it still has promising results.

This shows that, with such an extension, we can have a

robust ground-manifold detection, resulting in accurate stixel

estimation.

Finally, we summarise in Table VI the average number

of stixels extracted per frame using binocular and trinocular

vision-based ground manifold models. As shown, the binocular

plane-fit performs best on the RESIDENTIAL sequence with an
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TABLE IV
LIDAR-BASED QUALITATIVE EVALUATION [CM] OF GROUND MANIFOLD MODELLING USING KITTI DATASET (BINOCULAR AND TRINOCULAR

CONFIGURATION).

Sequence

Binocular stereo Trinocular stereo
Plane-fit Line-fit Poly-fit Graph-cut Line-fit Poly-fit Graph-cut

Mode Std.dev. Mode Std. dev. Mode Std. dev. Mode Std. dev. Mode Std. dev. Mode Std. dev. Mode Std. dev.

A -11.6 49.9 -6.6 54.9 -10.2 53.0 -9.5 54.2 -5.3 56.5 -6.5 55.5 -6.2 55.7
B -14.4 54.1 -11.8 53.5 -12.5 54.1 -10.9 52.0 -12.9 53.8 13.0 53.7 -10.2 52.9

C -5.1 47.4 -4.0 48.7 -3.5 50.2 -3.8 50.5 -4.2 48.5 -3.8 49.6 -3.9 50.1

TABLE V
IMPROVEMENT RATE WITH TRINOCULAR GROUND MANIFOLD MODELLING USING KITTI DATASET

Sequence
Line-fit Poly-fit Graph-cut

Mode Std. dev. Improve Mode Std. dev. Improve Mode Std. dev. Improve

A -5.3 56.5 19.7% -6.5 55.5 36.3% -6.2 55.7 34.8%
B -12.9 53.8 -10.2% -13.0 53.7 -4.0% -10.2 52.9 6.4%
C -4.2 48.5 -5.0% -3.8 49.6 -8.6% -3.9 50.1 -2.6%

TABLE VI
AVERAGE NUMBER OF STIXELS EXTRACTED PER FRAME IN THE TESTED KITTI SEQUENCES

Sequence
Binocular stereo Trinocular stereo

Plane-fit Line-fit Poly-fit Graph-cut Line-fit Poly-fit Graph-cut

A 32.6 32.2 33.8 34.2 35.0 35.3 34.8
B 69.1 27.3 24.3 29.1 29.7 26.7 28.7
C 66.9 71.0 69.5 70.7 71.7 71.0 70.6

average of 69.1% stixels detected. On the ROAD sequence, the

trinocular polynomial-fit method yields the best result with an

average of 35.3% stixels detected. The line-fit model achieved

the best result on the CITY sequence with an average of 71.7%
stixels detected per frame.

VII. CONCLUSION

This paper presented an in-depth analysis for binocular and

trinocular vision-based stixel calculations using four ground-

manifold models across two challenging datasets. For a com-

prehensive comparison, we provided an insight into the accu-

racy of extracted stixels on long-run sequences (for a total of

3, 861 frames); we also provided a brief run-time profiling to

illustrate the performance of these models. The main objective

of the reported research was to present an analysis on adopting

a low-cost architecture (ground-manifold estimation method)

for reducing false-positives in stixel estimations. Also, we

extended the graph-cut model for a trinocular configuration

which yields obvious and robust improvements compared to

other models.

In our analysis we covered the number of cameras required

and the road profile for obtaining accurate stixels. Experiments

show for the binocular case, that the graph-cut model (using

dynamic programming) presents a promising technique to

ensure accuracy of stixels for the 6D vision and KITTI

datasets. The number of true-positives is large when the graph-

cut model is used as a minimisation method for calculating a

v-disparity cut; see results for the 6D vision dataset for the

GOOD WEATHER as well as the BAD WEATHER categories.

As illustrated, the polynomial-fit model shows the fastest run-

time for GOOD WEATHER, while the line-fit model achieves

the fastest run-time for BAD WEATHER.

In order to evaluate the effects for the KITTI dataset, a

comprehensive study was conducted not only for compar-

ing ground-manifold models but also bi- versus trinocular

recording. Results show that the number of generated stixels

highly increases when using trinocular line fitting for ROAD

sequences, and binocular poly-fitting for CITY sequences;

finally, trinocular graph-cut proved to be the best alternative

on RESIDENTIAL sequences. Having especially challenging

scenes in mind, altogether we recommend the trinocular graph-

cut approach.
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