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A B S T R A C T

The overuse of antibiotics in animal husbandry is widespread and believed to signiicantly contribute to the
selection of antibiotic resistance genes (ARGs) in animals. Thus, there is a global drive to reduce antibiotic use in
the agricultural sector. However, it has not been established whether a reduction in the use of antibiotics in
livestock production would be efective in reducing the spread of ARGs. A microcosm approach was used to
determine how the addition of manure with either reduced antibiotic levels or with typical antibiotic levels
could afect the spread of antibiotic resistance genes between soil, earthworms and the phyllosphere. When
compared to the control soil, earthworm and phyllosphere samples had the greater increase in ARG abundance
in conventional manure treatments (P < 0.05). Reduced antibiotic manure also enriched the abundance of
ARGs in the phyllosphere and soil but not earthworm guts when compared to the control (P < 0.05). In both
soil and earthworm guts, the enrichment of ARGs was lower in reduced antibiotic manure than in conventional
manure. This study has identiied bacterial transfer through the soil-earthworm-phyllosphere system as a po-
tential means to spread ARGs between habitats after fertilization with livestock derived manures.

1. Introduction

The overuse of antibiotics in livestock production is a global issue
(Martinez, 2008; Zhu et al., 2013). In agriculture, antibiotics are typi-
cally used in animal husbandry to prevent bacterial infection and pro-
mote growth of livestock (Cheng et al., 2013; Nesme and Simonet,
2015). The incomplete metabolism of antibiotics in animal gut con-
tributes to antibiotics being distributed into the wider environment
through manures (Hao et al., 2008). As current practice drives the se-
lection of ARGs in animals, it is recognized that antibiotic use needs to
be reduced in livestock husbandry (Zhu et al., 2013). However, it is not
known whether manures from farms where antibiotic application is
reduced will lead to a concomitant reduction in the environmental
spread of ARGs. A recent study has shown that manure from both
farmed livestock and wild animals had diverse ARGs (Swift et al.,
2019), suggesting that ARGs also exist in wild animals with no direct
anthropogenic antibiotic input.

The distribution and abundance of ARGs in soils are believed to
increase (Wang et al., 2017; Zhao et al., 2018b) with the use of animal
manures as agricultural fertilizers (Rahman et al., 2018; Zhao et al.,
2018a). Furthermore, this anthropogenic driven introduction of ARGs is
not limited to soils as increased ARG abundance has been found on
crops (Chen et al., 2018; O'Flaherty et al., 2018) used for human con-
sumption (Marshall and Levy, 2011). While there is considerable pub-
lished evidence on ARGs in the environment (Zhu et al., 2017), a hol-
istic view of the complete soil, animal and plant system, is still required.

Earthworms, a key biological component of soils (Bartlett et al.,
2010) have been shown to distribute ARGs through (Kotzerke et al.,
2010). Earthworms also promote the growth of plants through the cy-
cling of nutrient and organic compounds and alteration of the asso-
ciated bacterial communities (Pelosi et al., 2014; Thakuria et al., 2010).

Conditions found in the guts of earthworms are harsh with the
complex chemical and physical conditions exerting a selective pressure
for speciic microorganisms, which in turn has been shown to impact
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the soil microbial community (Hu et al., 2018; Zhang and Schrader,
1993; Zhou et al., 2019a). Notwithstanding this, the composition of
bacterial communities in soil and earthworm guts have been found to
be similar (Drake and Horn, 2007). The role of earthworms in spreading
antibiotic resistance should not be neglected as earthworms can acquire
antibiotics directly from soils (Ding et al., 2019). For example, a recent
study found that the application of sewage sludge and chicken manure
to ields led to an increase in the abundance of ARGs in earthworms
(Ding et al., 2019). However, it is not known how the use of livestock
manure for fertilization afects the earthworm gut microbiome and
subsequently antibiotic resistance in earthworms.

Leaves constitute the majority of aboveground plant biomass and
are known to be inhabited by numerous microorganisms (Vorholt,
2012) as the surface area of leaves can provide a favorable habitat for
microorganisms (Lindow and Brandl, 2003). Multiple factors afect
plant bacterial communities including plant genotype, leaf-age, radia-
tion and nutrient supply (Ikeda et al., 2011; Kadivar and Stapleton,
2003). Rain washing and air movement over deciduous plants provide
the potential for microorganisms adhering to plant leaves to become
mobile (Allen et al., 2010). Several studies have found the existence of
ARGs in the phyllosphere of vegetables (Marti et al., 2013; Wu et al.,
2018) and maize associated with the application of manure and other
organic fertilizers (Chen et al., 2018; Zhang et al., 2019). Once ARGs
are present, bacterial communities in the phyllosphere have been found
to spread ARGs by mutation and horizontal gene transfer, leading the
phyllosphere to be a reservoir of ARGs (Chen et al., 2019). Thus, it is
critical to understand how ARGs spread between soil and the phyllo-
sphere to gain better insight into the distribution of ARGs from crop-
ping systems to the wider environment.

We hypothesize that there will be overlap in both bacterial com-
munity composition and ARG composition between soil, earthworm
and phyllosphere samples and that the use of reduced antibiotic manure
will lead to a reduced enrichment of the antibiotic resistome, when
compared to conventional manures. Thus, in this study, our aims were
to (1) compare the abundance and diversity of ARGs in microcosms
fertilized with contrasting livestock derived manures (reduced and
conventional antibiotic levels); (2) determine the composition of bac-
terial communities in soil, earthworm gut and phyllosphere; (3) explore
the relationship between bacterial communities, soil properties, ARGs
and mobile genetic elements (MGEs) within the soil-earthworm-phyl-
losphere system.

2. Material and methods

2.1. Soil and manure

Soil was collected from the top 20 cm of an agricultural ield in
Xiamen city, Fujian, China (24°64′N, 118°05′E). The soil type was a
sandy loam and prior to sampling the ield had been planted with let-
tuce. The ield had not been fertilized using manure or any other or-
ganic fertilizer in the previous three years. Plant stubble, roots and soil
macrofauna were removed, and the soil was sieved to 2mm. Manure
was collected from two diferent farms located locally, one representing
manure from reduced antibiotic practice and another representing
manure from conventional practice with typical levels of antibiotic
burden. The concentration of C, N and key antibiotics in the diferent
manures were listed in Table S2. At the completion of the experiment
the physicochemical properties (Total N, total C, C/N ratio, NH4

+-N
Content, NO3

−-N Content, Clay, pH and electric conductivity) of the
soil treated with both manures, and the control soil, were determined
(Table S3). Methods used to determine the physicochemical properties
were described as previously (Ding et al., 2019; Zheng et al., 2019).

2.2. Experimental design

Microcosms (15 cm diam×23 cm height) were constructed from

polyvinyl chloride pipes and illed with 3.5 kg dry weight soil. To bal-
ance the N content between manure treatments, soil was mixed with
either 0.5% reduced antibiotic or 0.57% conventional manure before
being packed into the microcosms. These manure additions led to a N
content of 12.6 g N/m2 which represented standard local agricultural
practices. Soil moisture was adjusted to 60–70% of soil water holding
capacity (WHC) and pre-incubated for 2 weeks (25 °C) before being
planted with lettuce (Degl'Innoocenti et al., 2008; Fang et al., 2015).
Each microcosm was planted with 3 Lactuca sativa seedlings which were
grown in moist perlite for one week prior to transfer to the microcosms.
Fifteen adult earthworms (Eisenia foetida) all of a similar size (5 cm,
0.3–0.5 g) were collected from a ield of a peri-urban farm located at
Ningbo (29°46′N, 121°20′E), China and added to the microcosms (Ding
et al., 2019). Treatments consisted of a control (no fertilizer added to
the microcosms), microcosms fertilized with conventional manure and
microcosms fertilized with reduced antibiotic manure. Four replicate
microcosms per treatment were established and once planted were left
for 65 days. At the end of microcosm experiment, samples were de-
structively collected, lettuce plants were removed, and for each mi-
crocosm the soil was mixed and sub-sampled and 3 earthworms ran-
domly were collected from the remaining soil prior to DNA extraction.

2.3. DNA extraction of soil, earthworm guts and phyllosphere

DNA extraction from Lactuca sativa phyllosphere samples followed
Zhu et al. (2016) with pre-treatment of lettuce leaves according to Zhou
et al. (2019b). Briely, saline solution was iltered through a nylon
gauze to remove large particles and then through a cellulose membrane
(0.22 μm) to capture the bacterial community washed from the leaves.
The cellulose membrane was cut into pieces and used for DNA extrac-
tion. Individual earthworms were washed with sterile deionized water
ive times before dissection. Sterile scissors were used to excise the gut
and intestinal contents collected for DNA extraction. DNA was extracted
from prepared soil, phyllosphere and earthworm gut samples using a
FastDNA Spin Kit for Soil (MP Bio, USA) following the protocol pro-
vided by the manufacturer. A quality check and DNA quantiication was
conducted using a NanoDrop ND 1000 (Thermo Scientiic, Waltham,
MA).

2.4. Quantification of ARGs and MGEs

ARGs and MGEs were quantiied using a High-throughput quanti-
tative PCR method as described by Zhou et al. (2019a,b). The reaction
system and primer sets used were as previously reported (Chen et al.,
2018; Zhu et al., 2013). For each sample there were three technical
replicates for every primer set. The threshold cycle was set as 31 to
estimate the success of the ampliication (Su et al., 2015). Ampliication
was only considered successful if all three technical replicates were
positive. Relative and normalized gene copy number were calculated
following the equation reported previously by Zhu et al. (2013).

2.5. Illumina sequencing and data analysis

Primer set 515F/907R was used to target the V4-V5 region of the
16S rRNA gene to determine the structure of the bacterial communities
in soil, earthworm gut and phyllosphere samples (Turner et al., 1999).
Standard PCR conditions followed Chen et al. (2018). Sample pre-
paration for Illumina sequencing followed that previously reported
(Zhu et al., 2018) and each sample had its own unique barcode to
distinguish the sample (Rastogi et al., 2012). A Qubit 3.0 luorimeter
was used to quantify the concentration of the PCR products prior to
sample normalization and pooling. An Illumina Hiseq2500 platform
(Novogene, Tianjing, China) was used to sequence the prepared am-
plicon libraries.

Quantitative Insights Into Microbial Ecology QIIME (version 1.9.1)
(Caporaso et al., 2010b) was used to analyse sequences, with only a
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single OTU sequence discarded. Operational taxonomic unit (OTUs)
similarity was set at 97% and OTU’s determined using UCLUST (Edgar,
2010). One sequence of each OTU was used to align sequences with the
alignment carried out using PyNAST (Caporaso et al., 2010a). The
taxonomic identity and relative abundance of OTUs were assigned
using the Ribosomal Database Project, which holds the Greengenes data
base (Version 13.8) (Langille et al., 2013; McDonald et al., 2012).

2.6. Statistical analysis

Calculations on the raw data for means and standard errors were
conducted in Excel 2016. SPSS (version 21) was used to perform
Analysis of Variance (ANOVA) and Pearson Correlation Coeicient
analysis with tests considered signiicant at P < 0.05. Inverse Simpson
and Shannon index (for ARGs), Canonical Correlation Analysis (CCA),
mantel test, Ordinary Least-Squares (OLS), Variation Partitioning
Analysis (VPA) (Borcard et al., 1992), Procrustes test (Dixon, 2003) and
Principal Coordinate Analysis (PCoA) were performed in R with the
package “vegan” (Oksanen, 2018). Figures were created using
“ggplot2” (Wickham et al., 2018) version 3.1. Bar charts were created
using OriginLab 2018 and Venn charts created using online software
“Venny 2.1.0” (http://bioinfogp.cnb.csic.es/tools/venny/). QIIME was
used to calculate the phylogenetic diversity (PD whole tree analysis) of
bacterial OTUs in soil, earthworm gut and phyllosphere samples.

3. Results

3.1. Composition and diversity of ARGs in soil, earthworm and phyllosphere

Across all soil, earthworm gut and phyllosphere samples, 152 ARGs
and 10 MGEs were detected from the 194 ARGs and 11 MGEs targets
tested using HT-qPCR (Table S1). The number of the major classes of
ARGs (Aminoglycoside, Beta Lactamase, Chloramphenicol, Macrolides,
Lincosamides, and Streptogramin B (MLSB), Multidrug, Tetracycline,
Sulfonamide, Vancomycin and Other unknown) ranged from 22 to 69,
while the number of MGEs (Transposase and integron) ranged from 2 to
5.

The total normalized abundance of ARGs in soil (0.21 copy/cell)
was signiicantly higher than the phyllosphere (0.07 copy/cell) or
earthworm guts (0.12 copy/cell) (P < 0.001, ANOVA). ARG diversity
(Inverse Simpson index) of soil (13.3) and earthworm gut (15.9) was
signiicantly higher than the phyllsophere (5.6) (P < 0.05, ANOVA)
(Fig. S1). The structure of ARGs in soil and earthworm gut samples were
similar, but signiicantly diferent (P < 0.05, PERMANOVA) to those
in phyllosphere samples (Fig. 1). Phyllosphere ARGs were well sepa-
rated into 3 groups, representing control, and the two contrasting
manure treatments (Fig. 1).

3.2. Effects of manure on ARGs

In soil, the application of manures signiicantly increased the
abundance of ARGs when compared to the control (P < 0.05, ANOVA)
with conventional manure leading to a greater ARG enrichment (35%
increase) than reduced antibiotic manure (Fig. 2). In contrast to soils,
earthworm guts exposed to the conventional manure treatment had a
higher ARG enrichment than the reduced antibiotic manure treatment
(P < 0.05, ANOVA) but not the control. In the phyllosphere, normal-
ized abundance of ARGs was signiicantly higher in both manure
treatments than the control (P < 0.05, ANOVA) (Fig. 2).

In soil samples treated with conventional antibiotic manure the
abundance of Aminoglycoside resistance genes was signiicantly en-
riched when compared to the control and reduced antibiotic manure
treatments (P < 0.05 ANOVA, Fig. S2). Phyllosphere samples from
both manure treatments had a signiicantly increased abundance of
Beta lactamase resistance genes compared to the control (P < 0.05
ANOVA, Fig. S2). The multidrug gene was signiicantly enriched in the

reduced antibiotic manure treatment in both phyllosphere and soil
(P < 0.05 ANOVA, Fig. S2) and the conventional manure treatment in
soil and earthworm samples (P < 0.05 ANOVA, Fig. S2). Signiicant
enrichment of the MLSB resistance gene class occurred in the conven-
tional manure treatment in both phyllosphere and soil (P < 0.001
ANOVA, Fig. S2). Abundance of Tetracycline resistance genes was en-
riched in the conventional manure treatment in the phyllopshere, soil
and earthworms, while in reduced antibiotic manure samples it was
only enriched in earthworm guts (P < 0.05 ANOVA, Fig. S2).

3.3. Characterization of bacterial communities

A total of 1,440,543 high-quality sequences were detected across all
samples with sequences per sample ranging from 8374 to 61,557. A
total of 36,697 OTUs were obtained using a 97% similarity cutof. Four
dominant phyla Acidobacteria (7.0%), Actinobacteria (10.1%),
Firmicutes (20.5%) and Proteobacteria (48.7%) were observed in all
samples (Fig. 3A).

In soil samples, relative abundance of Acidobacteria and Chlorolexi
increased after application of both manures (P < 0.05, ANOVA) but

Fig. 1. Principal coordinates analysis (PCoA) of ARGs in phyllosphere, soil and
earthworm gut samples (n=36). Diferent colors indicate the diferent habi-
tats. Group (a) represents the control, (b) represents the reduced antibiotic
manure treatment and group (c) represents the conventional manure treatments
of the sampled phyllosphere.

Fig. 2. Normalized abundance of ARGs in phyllosphere, soil and earthworm gut
samples. Diferent letters indicate signiicant diferences between treatments
(control (CK), reduced antibiotic manure (CM) and conventional manure
(DM)), at the P < 0.05 level (Tukey s-b, ANOVA). Error bars are Standard
Errors.
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lowered the relative abundance of Firmicutes (P < 0.05, ANOVA) and
Bacteroidetes (P < 0.001, ANOVA) when compared to the control
(Fig. 3A). In earthworm guts, the relative abundance of Actinobacteria
decreased (P < 0.05, ANOVA) in both manure treatments whereas
Planctomycetes increased under the conventional manure treatment
(P < 0.05, ANOVA, Fig. 3A). In the phyllosphere, Proteobacteria
(96.5%) was the dominant phylum in the control treatment whereas in
the conventional manure treatment Proteobacteria signiicantly de-
creased (P < 0.001, ANOVA) compared to both control and reduced
antibiotic manure treatments.

Similar to ARGs, phyllosphere bacterial communities were clearly
clustered into 3 groups, with phyllosphere separating from soil and
earthworm in dimension 1 and soil separating from earthworm in di-
mension 2 (Fig. 3B). Phylogenetic diversity of bacterial communities
ranked as follows: soil > earthworm > phyllosphere (P < 0.05
ANOVA, Fig. S3). In contrast to ARGs, bacterial communities from soil
and earthworm gut samples also separated from each other (Fig. S4).

3.4. Relationship between bacterial communities, ARGs, MGEs and soil
properties

Samples from soil, earthworm guts and the phyllosphere shared
66% of the detected ARGs and MGEs, with the fewest unique classes of
ARGs in earthworm gut samples (8.7% unique ARGs) and the greatest
in phyllosphere samples (14.9% unique ARGs) (Fig. 4A). A total of 1178
OTUs were shared across samples (Fig. 4B). Soil and earthworm gut
samples shared the most OTUs (32.7% of total OTUs). Phyllosphere
samples had the fewest unique OTUs (7.2% of total OTUs) compared to
soil (34.6% of total OTUs) or earthworm guts (22.7% of total OTUs).
Multidrug gene and Vacomycin genes were the most and least shared
ARGs, respectively (Fig. 4C). At the family level, shared OTUs included
Aeromonadaceae, Bacillaceae, Enterobacteriaceae, Micrococcaceae,
Paenibacillaceae, Phyllobacteriaceae, Pseudomonadaceae, Rhizobia-
ceae (Fig. 4D). Pearson Correlation Coeicient analysis showed that
each detected bacterial family had a strong correlation to diferent
classes of ARGs (Table S4). For example, Aminoglycoside resistance
genes had a signiicant (P < 0.05) positive correlation with Phyllo-
bacteriaceae but a negative correlation with Aeromonadaceae. Beta
lactamase resistance genes had signiicant (P < 0.01) positive corre-
lations with most of the shared OTUs and Chloramphenicol and Van-
comycin resistance genes had positive correlations with Phyllobacter-
iace (P < 0.05). A signiicant negative correlation was found between
Tetracycline resistance genes and Aeromonadaceae (P < 0.01), and
between Tetracycline resistance genes and Rhizobiaceae (P < 0.05)
(Table S4).

A total of 64 shared ARGs and 23 shared OTUs, from all detected
ARGs and OTUs, were selected for Procrustes analysis. A signiicant
correlation was found between the composition of ARGs and bacterial
communities (Procrustes sum of squares M2=0.2882, r= 0.7178,
P < 0.001, 999 free premutation) (Fig. 5A). Canonical Correlation
Analysis (CCA) indicated that ARG composition across all samples was
signiicantly correlated to Proteobactia (P < 0.001 R2=0.8295), Fir-
micutes (P < 0.001 R2=0.4609), Actinobacteria (P < 0.001
R2=0.2949), Acidobacteria (P < 0.001 R2=0.5485) and MGEs
(P=0.011 R2=0.2712) (Fig. S4).

Variation partitioning analysis (VPA) showed that bacterial com-
munities, physicochemical properties and MGEs accounted for 39.4%,
22.0% and 15.1% of the variation in ARG abundance, respectively
(Fig. 5B).

Ordinary least-squares (OLS) regression revealed that MGE abun-
dance was linearly and positively correlated with ARG abundance
(P=0.0001, R2=0.5052) (Fig. 6). Pearson correlation analysis (Table
S6) showed positive and signiicant correlations between MGEs and
Aminoglycoside, MLSB, Multidrug and Tetracycline resistance genes
(P < 0.01) and between MGEs and Vancomycin resistance genes
(P < 0.05). Also, a negative correlation was found between MGEs and
Beta lactamase resistance genes (P < 0.05) while positive correlations
were found between Beta Lactamase resistance genes and ive of the
most dominant microbial families (P < 0.01, Table S4).

Total nitrogen (P < 0.05), total carbon (P < 0.05), C:N ratio
(P < 0.05) and pH (P < 0.01) had positive and signiicant correla-
tions with ARGs (Pearson correlation analysis, Table S5), whereas NO3-
N concentrations (P < 0.01) and clay content had a negative correla-
tion (P < 0.05) with ARGs.

4. Discussion

4.1. Antibiotic resistome in the soil, earthworm and phyllosphere

Previous studies have found a correlation between ARGs found in
the phyllosphere of arable corps such as maize, brassica and lettuce and
those in associated soils, as well as between soils and the guts of
earthworms (Ding et al., 2019; Zhu et al., 2016). This study has built on
these indings by exploring the distribution of ARGs between three
habitats (soil, guts of earthworms and the phyllosphere) from a single
(soil-earthworm-phyllosphere) system.

Lactuca sativa was chosen for this study as it is a globally used salad
vegetable (Baslam et al., 2013) and consequently a potentially im-
portant pathway of ARGs to humans. The composition of ARGs in the
phyllosphere of Lactuca sativa difered to those in soil and earthworm

Fig. 3. (A) Percentage of dominant phyla (> 1%) in all samples. Acidobacteria, Actinobacteria, Bacteroidetes, Chlorolexi, Crenarchaeota, Firmicutes,
Gemmatimonade, Nitrospirae, Planctomycetes, Proteobacteria are considered the dominated phylum in all samples and treatments: control (CK), reduced antibiotic
manure (CM), conventional manure (DM), phyllosphere (P), soil (S) and the earthworm gut (E). (B) Principal coordinates analysis (PCoA) of OTUs in phyllosphere,
soil and earthworm gut samples.
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guts, however ARGs were similar between soil and earthworm gut
samples. Soil and earthworm guts samples also had a higher diversity of
ARGs than that in phyllosphere samples (P < 0.05 ANOVA). These
results were not unexpected as when compared to soils the phyllosphere
represents a temporally variable and oligotrophic habitat (Vorholt,
2012). Additionally, the phylogenetic diversity of bacterial commu-
nities in earthworm’s guts was signiicantly lower than that in soil
(P < 0.05 ANOVA), which was consistent with previous studies (Zhou
et al., 2019a). The number of unique ARGs between soil, earthworm
and phyllosphere samples accounted for 9.9%, 8.7% and 14.9% of total
ARGs in each of these groups, respectively. Whereas, unique OTUs
(> 1%) represented 7.2%, 34.5% and 22.7% of the total OTUs in each
sample group, which suggests that the level of shared OTUs is con-
siderable.

Although diferences in both ARG and OTU composition were found
in soil, earthworm guts and the phyllosphere, the number of shared
ARGs and OTUs was still considerable (66% and 36%, respectively).
The strong correlation between shared ARGs and OTUs (r= 0.7178,
P < 0.001 Mantel test) indicated that samples with similar ARG pro-
iles also had similar OTU proiles. Movement of microbiota (OTUs)
may play an important role in determining the movement of ARGs
between habitats (Zhu et al., 2017) and these results suggest a possible
pathway for ARGs to move between soil, earthworm guts and the
phyllosphere. It has been reported that phyllosphere and soil bacterial
communities can be similar (Afzal et al., 2014; Beattie and Lindow,
1999; Fang et al., 2015), and this similarity may be a result of the
movement of microorganisms between these two habitats. Further-
more, airborne bacteria may also afect the bacterial structure of

Fig. 4. Venn diagram showing shared ARGs (A) and shared OTUs (B) at the family level among phyllosphere, soil and earthworm gut samples. The percentage of each
class of ARGs (C) and shared OTUs (D) at the family level are listed in the pie-charts. Aeromonadaceae, Bacillaceae, Enterobacteriaceae, Micrococcaceae,
Paenibacillaceae, Phyllobacteriaceae, Pseudomonadaceae, Rhizobiaceae are shared OTUs detected across the three habitats. There are nine classes of antibiotic:
Aminoglycoside, Beta Lactamase, Chloramphenicol, MLSB, Multidrug, Tetracycline, Sulfonamide, Vancomycin, Other unknown and MGEs that are shared between
habitats.

Fig. 5. (A) Procrustes analysis between shared OTUs and shared ARGs among phyllosphere, soil and earthworm gut samples after organic fertilization (Procrustes
sum of squares M2=0.2882, r=0.7178, P < 0.001, 999 free premutation). Triangles and circles represent OTUs and ARGs respectively. (B) Variation partitioning
analysis (VPA) showing that the contribution of bacterial communities, MGEs and physicochemical properties to changes in ARGs are 39.4%, 15.1% and 22.0%
respectively. The coeicient of these three factors is 7.5%. Unexplained factors represent 16% of the total variance.
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phyllosphere and soil (Bulgarelli et al., 2013). Water movement
through rainfall or irrigation and air motion due to wind action as well
as leaf fall due to senescence may lead to the movement of bacterial
communities between the phyllosphere and soil and have a con-
comitant impact on the low of ARGs (Vorholt, 2012; Williams and
Marco, 2014). There is therefore potential for ARGs to disperse into the
belowground soil food chain. It is well established that ingestion of soil
by earthworms drives dispersion of bacteria (Drake and Horn, 2007)
and strong correlations have been found between bacterial commu-
nities in soil and earthworm guts (Horn et al., 2003; Parle, 1963).

4.2. Effects of manures on ARGs

The addition of pig manure to soil led to an enrichment of ARGs
across soil, earthworm guts and the phyllosphere. In contrast with
previous studies that focused on either the phyllosphere and soil (Fang
et al., 2015; Wang et al., 2015) or soil biota and soil (Ding et al., 2019),
this study found that ARGs increased simultaneously across all three of
these habitats after manure application. Since the potential correlation
among soil, gut of earthworm and phyllosphere, the results indicated
the manure application may afect not only the ARGs of soil itself, but
also the soil-related circumstances by movement of microorganisms.
Besides, the manure fertilizations may accelerate the distribution of
ARGs into environment through agriculture activities, which should
blame to human activities (Marti et al., 2013).

Human activities have been considered responsible for the move-
ment of ARGs both into and across the environments (Zhu et al., 2017).
Conventional manure enriched the abundance of ARGs across all sam-
ples whereas reduced antibiotic manure only enriched ARGs in soils
and the phyllosphere (P < 0.05, ANOVA). This is consistent with
previous studies that described enrichment of ARGs in soil and phyl-
losphere habitats through organic fertilizer amendment to soils (Kumar
et al., 2005; Udikovic-Kolic et al., 2014). While reduced antibiotic
manure increased the abundance of ARGs compared to the phyllo-
sphere and soil controls, conventional manure enriched ARGs to a
greater extent than reduced antibiotic manure in soil and earthworm
gut samples (P < 0.05, ANOVA). Therefore, reducing the antibiotic
burden, by using manure with a reduced antibiotic burden rather than
conventional manure, may lower the enrichment of the resistome in
both soils and earthworms though a risk of ARG dispersal remains. Such
risk could be mitigated by the use of composting as a pretreatment of
organic fertilizers in order to remove residual antibiotics. Combining
the application of manures with non-animal derived organic amend-
ments such as compost and biochar may also mitigate the increases in
the antibiotic resistome (Cui et al., 2016; Dolliver et al., 2008; Su et al.,
2015; Teixido et al., 2013).

5. Conclusions

This study used a HT-qPCR approach to concurrently quantify re-
sistome proiles in soil, earthworm gut and phyllosphere samples.
Although ARG and OTU proiles difered between soil, earthworm guts
and the phyllosphere, a proportion of ARGs and OTUs were shared.
Application of conventional manure (current antibiotic practice) in-
creased ARG abundance compared to manure with a reduced antibiotic
burden in both soil and earthworm guts. Bacterial communities, the
physicochemical properties of soil and MGEs were main drivers of ARG
proiles, suggesting that a complex mix of factors support the dispersal
and subsequent distribution of ARGs.
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