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In early preclinical drug development, potential candidates are tested in the

laboratory using isolated cells. These in vitro experiments traditionally involve

cells cultured in a two-dimensional monolayer environment. However, cells

cultured in three-dimensional spheroid systems have been shown to more

closely resemble the functionality and morphology of cells in vivo. While

the increasing usage of hepatic spheroid cultures allows for more relevant

experimentation in a more realistic biological environment, the underlying

physical processes of drug transport, uptake and metabolism contributing

to the spatial distribution of drugs in these spheroids remain poorly under-

stood. The development of a multiscale mathematical modelling framework

describing the spatio-temporal dynamics of drugs in multicellular environ-

ments enables mechanistic insight into the behaviour of these systems.

Here, our analysis of cell membrane permeation and porosity throughout

the spheroid reveals the impact of these properties on drug penetration,

with maximal disparity between zonal metabolism rates occurring for

drugs of intermediate lipophilicity. Our research shows how mathematical

models can be used to simulate the activity and transport of drugs in hepatic

spheroids and in principle any organoid, with the ultimate aim of better

informing experimentalists on how to regulate dosing and culture conditions

to more effectively optimize drug delivery.

1. Introduction
The discovery of potential toxicity in vitro remains an important process in

providing preclinical safety assurances during drug development. However,

conventional two-dimensional in vitro experiments, such as monolayer cell cul-

ture, tend to be poorly predictive of toxicity, and emerging three-dimensional

systems are shown to be more physiologically relevant and predictive of the

in vivo environment [1,2]. Accordingly, three-dimensional cell culture systems

such as multicellular spheroids are increasingly being used in drug development

and hepatic safety assessment [3,4]. Although three-dimensional spheroid

systems offer improvements in terms of physiological relevance and in vivo-

like functionality, the mechanistic interaction between these systems and drugs

is not yet fully understood.

Multiscale in silicomethods can improve the application of three-dimensional

spheroid models to assess the hepatotoxicity of drug candidates [5,6]. Indeed,

mechanistic mathematical modelling of drug metabolism and transport in

three-dimensional microtissues is important for the pharmaceutical industry as
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it facilitates an improved platform for both preclinical drug

development and in vivo extrapolation [7]. This utilization of

mathematical models, devised to tackle pharmacological

research challenges in a systems biology approach, has

become known as part of the evolving field(s) of systems

pharmacology and/or systems toxicology [8,9]. This approach

is a multiscale, multidisciplinary field that employs holistic,

integrative methods in order to enhance the understanding

and prediction of emergent system properties. Moreover, this

methodology is strictly quantitative requiring the integration

of quantitative data and modelling to develop mechanistic

knowledge of the system and reveal pharmacological and

toxicological properties. Consequently, systems pharmacology

models are becoming an increasingly important part of the

toolkit to improve capabilities and drive innovation for

in vitro safety assessment [10–12].

In this study, we have characterized the spatio-temporal

dynamics of drugs in an in vitro hepatic spheroid system by

simulating relevant physical processes in silico. A data-driven,

multiscale, mathematical modelling framework combining

mechanistic information relating to the diffusion, transport

and metabolism of chemical species in a hepatocyte spheroid

is presented. A microscale single-cell model is analysed to

study different transport mechanisms by varying boundary

conditions on the cell membrane. This model is then coupled

to amulticellularmodel developed to evaluate the effects of cel-

lular arrangement and density on the transport and penetration

of drugs, simulating the in vitro microtissue environment.

Such effects include a nonlinear relationship between drug

lipophilicity and spheroid penetration, whereby drug delivery

to the spheroid core is minimized for drugs of intermediate

lipophilicity. The integration of experimental data allows for

the development of realistic geometries and parametrization

of the multiscale model for a range of drugs. Ultimately,

by accurately simulating the processes of drug transport

and metabolism we aim to enhance the understanding of

underlying mechanisms and optimize the use of these

systems in vitro.

2. Material and Methods

2.1. Microscale transport: crossing the cell membrane
To simulate the distribution of drugs throughout a three-

dimensional tissue comprisingmultiple hepatocytes, it is necessary

to determine how drugs penetrate and cross the cell membrane.

This membrane comprises a phospholipid bilayer, providing a

hydrophobic protective barrier for the cell. Consequently, this

chemical barrier property is a key determinant in the effective

permeability of any drug. Many factors affect drug permeability

in tissues such as ionization, aqueous diffusion between lipid

barriers and protein binding, but the partition into the membrane

(determined by lipid solubility) is one of the most important [13].

Highly lipophilic substances can more readily penetrate the

membrane via free diffusion, while relatively hydrophilic sub-

stances (highly soluble in polar solvents such as water or blood)

cannot enter the cell easily and require specific transporters

(figure 1a). The relative role of transporter proteins in intracellular

drug transport is still debated and there remain different views as

to whether passive diffusion or carrier-mediated transport is the

major mechanism [14–18]. For the entirety of this study, we refer

to the two main types of transport: passive diffusion—entering

cells down a concentration gradient directly through the mem-

brane (passive) and carrier-mediated transport—entering cells

via specific transporter proteins embedded in the plasma

membrane (passive or active).

The mathematical representation of microscale drug transport

across a cell membrane can be studied with a simple model con-

sidering the processes governing drug concentration dynamics

in two phases, inside and outside the cell, with a permeable

barrier in between. Once inside the cell, the drug is removed via

metabolism. We assume diffusion occurs at different rates inside

(DI) and outside (DE) the cell, which we initially assume is

spherical of radius R, but relax this assumption in §2.3. The

drug concentration (C ) dynamics inside the cell are given by

the partial differential equation (PDE)

@C

@t
¼ DIr

2C�
VmaxC

Cþ Km
, ð2:1Þ

where Vmax is the maximummetabolic rate and Km represents the

drug concentration at which metabolism is half maximal. Since

there is no flow within the in vitro system, and the dominant

form of removal within the multiscale model is assumed to be

due to intracellular metabolism, we assume that outside the cell

drug transport is governed by diffusion processes only

@C

@t
¼ DEr

2C: ð2:2Þ

For simplicity, we assume that the problem is radially symmetric

and rescale the model with respect to cell radius and internal

diffusion time (such that the cell boundary is now given by r = 1)

to give

@C

@t
¼

1

r2
@

@r
r2
@C

@r

� �

�
VmaxC

Cþ Km
, r � 1 ð2:3Þ

and

@C

@t
¼

D

r2
@

@r
r2
@C

@r

� �

, r . 1, ð2:4Þ

whereD =DE/DI due to rescaling (see supplementarymaterial for

details). We impose the following boundary conditions at the cell

centre (r = 0), for radial symmetry, and a distance away from the

cell (r = rmax)

@C

@r
¼ 0, r ¼ 0 ð2:5Þ

and

C ¼ Crmax , r ¼ rmax, ð2:6Þ

where Crmax is a constant supply term. Assume that the flux at the

cell boundary is equal such that mass is conserved, i.e.

DI
@CI

@r
¼ DE

@CE

@r
, r ¼ 1, ð2:7Þ

where CI and CE are used to distinguish between interior and

exterior drug concentrations at the cell membrane boundary. A

further boundary condition must be specified at the cell mem-

brane boundary in order to solve the coupled PDE system and

investigate the effects of different means of drug transport.

2.1.1. Passive diffusion
The following boundary condition is imposed to describe the

flux of drug into the cell due to passive diffusion:

DI
@CI

@r
¼ DE

@CE

@r
¼ Q(CE � CI), r ¼ 1, ð2:8Þ

where Q is the permeability coefficient. The mathematical model

can be solved numerically in Matlab R2017b. For methodological

details regarding derivations, numerical solutions and simulations

of microscale transport, see the electronic supplementary material.
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The impact of the permeability coefficient, Q, on the steady-

state distribution of drug concentration can be seen in figure 1b

(for temporal dynamics, see electronic supplementary animations).

For low permeability coefficients (Q≪ 1), there is less drug

penetration per unit time and so there is a low steady-state value

inside the cell and a large discontinuity at the cell membrane. As

Q increases, relatively more drug enters the cell per unit time and

in the limit, as Q→∞, the steady-state solutions converge such

that the drug concentration profile is continuous (CE =CI) at the

cell membrane boundary (which now provides no effective barrier

or resistance) and the steady-state profile represents the balance of

supply via diffusion and removal via intracellular metabolism.

2.1.2. Carrier-mediated transport
For drugs whose physico-chemical properties prohibit direct

permeation across the cell membrane, specific transporter proteins

are required that can mediate the transfer process. The reliance

on transporter (or carrier) proteins dictates that the flux is now

saturable with an explicit dependence on the surface area concen-

tration, binding affinities and activity of transporters in the cell

membrane. In this scenario, the boundary condition representing

membrane transport cannot be sufficiently represented by the pas-

sive diffusion condition in equation (2.8) and so we implement a

simple carrier model as applied in other similar physiological

membrane transport models, e.g. Keener & Sneyd [19] and

Wood & Whitaker [20]. This carrier model can be applied

to define the flux boundary condition for the carrier-mediated

transport model scenario

DI
@CI

@r
¼

T0(CE � a1CI)

a2 þ a3CE þ a4CI þ a5CECI
, r ¼ 1, ð2:9Þ

where T0 represents transporter protein concentration on the cell

membrane and α1, α2, α3, α4 and α5 represent algebraic expressions

dependent on kinetic rates in the carrier model such as binding

rates (see electronic supplementarymaterial formore information).

The barrier effect provided by the carrier-mediated transport

of drugs across the cell membrane allows for a discontinuity in

the steady-state profile of the drug concentration distribution

when there is a constant external supply that diffuses towards

a metabolically active cell (as before with the passive diffusion

case with low permeability). Indeed the carrier-mediated trans-

port condition can be reduced to the passive diffusion

condition mathematically with appropriate parametrization

(e.g. T0 =Q, α1,2 = 1, α3,4,5 = 0). Furthermore, the flexibility of the

carrier-mediated condition facilitates the implementation of

implicit active processes whereby the flux of drug can move

uphill against its concentration gradient (e.g. figure 1c). This

can be achieved with appropriate parametrization of the

simple carrier model such that α1 < 1, e.g. when binding
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Figure 1. Modelling transmembrane transport in a single cell. (a) Drug transport schematics across the cell membrane. Two modes of transport are considered,

passive diffusion ( pink substrates/circles) and carrier-mediated transport (green substrates/circles). Drugs that permeate the cell via passive diffusion move down a

concentration gradient directly through the membrane and are limited by their associated permeability coefficient. This coefficient is dependent on the physico-

chemical properties of the drug, and drugs which cross the membrane via this mechanism are typically small and lipophilic. Other drugs may require the action of

specific membrane-bound transporter proteins to enter the cell (carrier-mediated transport). In this study, it is assumed that this mechanism is dependent on carrier

proteins/receptors (depicted in cyan) which can reversibly bind to the substrate and undergo conformational changes to transport the substrate across the mem-

brane. Species within the figure are annotated with symbols related to mathematical models described in the main text and supplementary material. (b) Variation in

the permeability coefficient determines the steady-state concentration profile of drug concentration in a single cell for the passive diffusion transport mechanism.

Low permeability results in a discontinuity at the cell membrane ðD ¼ 2, Vmax ¼ 10, Km ¼ 0:5, Crmax ¼ 1Þ. (c) For specific parameter choices within the carrier-
mediated transport model, a steady-state can be reached such that the drug is transported against its concentration gradient, implicitly simulating an active process

ðD ¼ 2, Vmax ¼ 1, Km ¼ 0:5, Crmax ¼ 1, T0 ¼ 1, a1 ¼ 0:5, a2 ¼ 1, a3 ¼ 0, a4 ¼ 0, a5 ¼ 0Þ. Full spatio-temporal dynamics can be found for (b) and (c)
in supplementary animations.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:

20190041

3



affinity/dissociation in the interior is lower/higher than exterior

binding/dissociation.

2.2. Parametrization
For the full multiscale model, describing the transport and

metabolism of drugs in a multicellular in vitro environment, it

is useful to include quantitative, dimensional parameter values

based on experimental data to directly represent the laboratory

scenario for drugs with a range of physico-chemical properties.

Therefore, it is important to identify relevant parameter ranges

for the microscale model before upscaling the problem to the

multicellular/tissue level by introducing hepatic spheroid geo-

metry. There are currently three key processes that determine

drug dynamics in our system and require parametrization: diffu-

sion, metabolism and permeation. For simplicity and more

general applicability, we will focus on the passive diffusion

case and not cover carrier-mediated transport during analysis

of the multicellular model.

2.2.1. Diffusion of small-molecule drugs
Most drugs, and nearly all drugs that cross the cell membrane via

passive diffusion, are categorized as small-molecule drugs. These

are low molecular weight (MW) compounds and comprise most

drugs on the market today [21]. For a sample database of 321 such

drugs [22], we calculated diffusion coefficients based on physical

measurements of weight and density (MW approx. 100–1200 Da;

density approx. 0.6–2.6 g m−3). Thus, we propose the feasible diffu-

sion coefficient range of approximately 5 × 10−10 to 1 × 10−9 m2 s−1

(further information in the electronic supplementary material).

This narrowrange supports theassertion that themaindeterminants

of drug disposition are the ability to translocate across hydrophobic

diffusion barriers (permeability) and chemical transformation

(metabolism), while variations in the aqueous diffusion rate

have only minor effects on overall pharmacokinetics [13].

A representative value of 7.5 × 10−10 m2 s−1 for both DI and DE

will be considered as default for further simulations.

2.2.2. Permeability as a function of lipophilicity
The permeability of a drug transported via passive diffusion is

related to its lipophilicity, a measurable physico-chemical property

that can be used to define our permeability coefficient,Q. Ménochet

et al. [23,24] discovered a log-linear relationship for hepatic uptake

between passive diffusion clearance, Pdiff, and lipophilicity

logPdiff ¼ 0:6316� logD7:4 � 0:3143, ð2:10Þ

where Pdiff has units of μl min−1 10−6 cells and logD7.4 is a partition

coefficientmeasure of lipophilicity at a physiologically relevant pH

(pH 7.4). This relationship allowed us to derive,Q, as a function of

Pdiff, and the radius of the cell, R, by taking into account passive

uptake across the whole-cell membrane of surface area 4πR2:

Q ¼
Pdiff

4pR2
¼

1

106
10(0:6316� logD7:4�0:3143)

4pR2
: ð2:11Þ

For the full derivation, see the supplementary material. logD7.4

values between 1 and 5 are considered within this study to

represent relatively lipophilic, small-molecule drugs (relevant for

passive diffusion), with logD7.4 = 3 as default.

2.2.2. Simplified drug metabolism in hepatocytes
Metabolism represents the principal sink/removal term in our

model and the metabolic rate is likely to vary greatly depending

on the chemical makeup of the drug of study, as well as the quan-

tity and activity of metabolizing enzymes present. Therefore, this

term is likely to have a significant impact on the overall disposition

of drug concentration in a metabolically active in vitro spheroid

system. Metabolic rates are assumed to be independent of space

in the model for simplicity, although zonal variation may exist.

Brown et al. [25] reported kinetic parameters for a range of com-

pounds to predict metabolic clearance by using cryopreserved

human hepatocytes. This publication provided pharmacologically

feasible Vmax (5 × 10−6 to 4.5 × 10−1 mol m−3 s−1) and Km (5 × 10−4

to 1.4 × 10−1 mol m−3) ranges for drugs primarilymetabolized in the

liver and were thus used as conservative guidance for this model

parametrization, given that cells cultured in three-dimensional

often display improved drug metabolism functions. As default,

we consider parameter values of Vmax= 5 × 10−3 mol m−3 s−1 and

Km= 1×10−2mol m−3.

2.3. Macroscale: hepatocyte spheroid geometry
The impact of the hepatic spheroid environment on drug transport

is considered by upscaling our microscale model to consider

multiple discrete cells in a realistic spheroid geometry within an

extracellular space (culture medium). This hepatocyte spheroid

geometry was generated based upon histological staining of hepa-

tic spheroids to provide representative cell sizes, number, and

arrangement thereby replicating the in vitro scenario within the

multiscale mathematical model.

2.3.1. Mathematical description of spheroid geometry
Histological staining of a hepatocyte spheroid revealed the spatial

distribution of the cell nuclei within a section (figure 2a). This

spatial information, as well as the spheroid boundary, was quan-

tified digitally with WebPlotDigitizer [26] and imported into

Matlab. Owing to the abundant expression of extracellular

matrix in the hepatic spheroid histological images, it was not poss-

ible to visualize and/or quantify the location of the hepatocyte

membranes. Therefore, we estimated the location of cell bound-

aries using Voronoi tessellation (figure 2b). Briefly, Voronoi

tessellation involves assigning regions to each nucleus such that

any point in space within that region is closer to that nucleus

than any other. The boundaries of these regions can be deter-

mined by drawing perpendicular bisectors between adjacent

pairs of nuclei. This technique has been shown to provide viable

estimates for the qualitative morphology of cells in a tissue [27].

Cellular ultrastructure was visualized by transmission elec-

tron microscopy (TEM). TEM revealed that the space between

hepatocytes was narrow (approx. 0.1–0.5 µm, figure 2c). These

values are supported by the literature which states intercellular

spaces from 100 nm to the µm scale [28,29]. Furthermore, it

should be noted that fixation methods can shrink such morpho-

logical features [30] and therefore we consider both narrow and

wide intercellular space geometries. This was achieved by con-

tracting the vertices of each model cell towards the cell’s

respective centre of mass by 1% (‘narrow’, approx. 0.2 µm) or

10% (‘wide’, approx. 2 µm) (figure 2d ).

2.3.2. Experimental methods
Primary rat hepatocyte spheroids with an initial seeding density

of 5000 cells were produced using the liquid-overlay technique as

described by Kyffin et al. [31]. After 11 days in culture, the spher-

oids were washed in phosphate-buffered saline, fixed in 4%

paraformaldehyde and subjected to routine histological proces-

sing before staining with haematoxylin or processed for TEM

analysis. For TEM imaging, spheroids were fixed in 3% glutaral-

dehyde and processed as previously described [31]. Ultrathin

(approx. 70–90 nm) sections were examined using an FEI

Tecnai Transmission Electron Microscope at an accelerating

voltage of 80 kV and images taken using a Gatan digital camera.

2.3.3. Numerical simulation
The finite-element simulation software, COMSOL Multiphysics®

5.3, was used to solve the multiscale model PDEs. The
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two-dimensional spheroid slice geometry was imported into

COMSOL and the PDEs were defined as before to calculate the

dynamics of drug concentration, C, for two separate phases

(intracellular, CI, and extracellular, CE):

@CI

@t
¼ DIr

2CI �
VmaxCI

CI þ Km
, C ¼ CI ð2:12Þ

and

@CE

@t
¼ DEr

2CE, C ¼ CE, ð2:13Þ

with boundary conditions at every cell membrane within the

spheroid,

(DIrCI) � n ¼ (DErCE) � n ¼ Q(CE � CI), ð2:14Þ

for the general inward fluxes, where n is the unit normal vector

pointing out of each cell. An illustrative example of the multi-

scale model steady-state with a constant supply of drug at the

outer boundary of the media phase ðCrmax ¼ 500 mMÞ can be

seen in figure 2e, simulated for a drug with physico-chemical

properties based on the default parameter set described above.

Note that permeability Q is related to logD7.4 according to
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Figure 2. The multiscale model including hepatocyte geometry. (a) Histological staining of a hepatocyte spheroid slice indicating the location of cell nuclei (blue).

(b) Voronoi diagram constructed to provide estimates of hepatocyte boundaries (red) based on the location of hepatocyte nuclei (blue). (c) Representative TEM image

of a hepatocyte spheroid showing the size of the space between adjacent cells. The intercellular space is indicated by the red arrows. (d ) Intercellular space was

introduced into the model geometry by contracting the vertices of Voronoi cells (indicated by black arrows) towards the centre of each cell (yellow stars; nuclei in

blue). (e) Steady-state distribution of an example drug (logD7.4= 3 with default parameters and wide intercellular space), formed with a constant supply of 500 µM

at the outer media boundary (disc of radius 750 µm). The drug distribution is denoted by the colour bar, demonstrating that there are lower drug concentrations in

the central hepatocytes. ( f ) A one-dimensional cross-section of the simulation (position indicated by the white line in (e)) signifies the variation of drug concen-

tration inside and outside of the cells within the spheroid structure, as well as the heterogeneity of intracellular drug concentration in different regions of

the spheroid.
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equation (2.11). A one-dimensional cross-section is plotted in

figure 2f for visualization, highlighting the discontinuities

in drug concentration between intra- and intercellular space

and the heterogeneity in drug concentration between cells in

different regions.

3. Results

3.1. Impact of drug permeability on spatio-temporal

distribution throughout spheroid
The diffusion rate of a drug dependsmainly on size, a property

that has minimal variation in small-molecule drugs (a detail

supported byour analysis of over 300 compounds during para-

metrization) and thus has relatively little impact upon drug

distribution when compared with the ability to translocate

across the hydrophobic diffusion barrier of the cell membrane

[13]. This translocation ability is determined by the lipophili-

city of the drug during passive diffusional transfer across

the membrane. Therefore, we consider the impact that drug

permeability (as determined by lipophilicity) has upon the

overall dynamics within the representative in vitro spheroid

system. This analysis is illustrated by simulating the model,

dosed for three example drugs with different permeability

coefficients (corresponding to logD7.4= 1, 3, 5, within the other-

wise default parameter set) via constant supply at the external

boundary and comparing the steady-state spatial distribution

of drug concentration (figure 3). Spatio-temporal dynamics

can be found in supplementary animations.

The results indicate that for highly lipophilic drugs

(logD7.4= 5), the cell membrane does not represent a signifi-

cant barrier to drug penetration and there is relatively little

difference between drug concentrations in cells and the

intercellular space. For relatively lowly lipophilic drugs

(logD7.4= 1), the membranes represent a significant barrier.

Drug concentration is very low within the cells but relatively

high in the intercellular space throughout the spheroid.

However, in the intermediate case (logD7.4= 3), there is a rela-

tively little drug in the spheroid centre, both inside and

outside of the hepatocytes. This is due to the balance between

the overall processes of drug transport towards the spheroid

centre (diffusion, permeability and metabolism), impacting

penetration potential. Overall, it is clear that an increase in

permeability results in higher intracellular drug concen-

tration but there is a nonlinear response in the intercellular

space as permeability is increased, with a potential local

minimum for drugs of intermediate lipophilicity. The same

observations are made for narrow intercellular spaces and

when varying transporter expression in the carrier-mediated

transport model (data not shown). This result highlights

the potential importance of not only permeability but also

intercellular space on overall drug delivery.

3.2. Impact of intercellular dimensions on spatio-

temporal distribution throughout spheroid
Many mathematical models of cellular spheroids consider

geometrical simplifications such as radial symmetry and a

homogeneous continuumof cells. The consideration of a spher-

oid with individual hepatocytes modelled as discrete regions

in space, and accompanying intercellular space, has a visible

impact upon the radial drug concentration profile. This can

be seen most clearly in the case of low permeability

with large fluctuations in the drug concentration between

intra- and intercellular space (figure 3). There is a considerable

range of intercellular gap sizes within spheroids, a feature
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which can be magnified by fixation issues and cell type, with

tumour spheroids notoriously exhibiting higher porosities

[32]. Therefore, it is prudent to also consider the impact of

porosity (gap size) on drug delivery by simulating our model

for both narrow and wide intercellular space geometries, as

well as a model without intercellular space altogether for com-

parison. Steady-state spatial distributions in figure 4 suggest

that intercellular space has a considerable impact on drug

penetration, with increased porosity resulting in higher

drug concentration for the spheroid interior.

3.3. Translating the multiscale model to a simple

continuum model
From figure 4 it is clear that, when using quantitative, measur-

able, microscale parameters, the assumption of a homogeneous

continuumof hepatocytes in the spheroidwill be insufficient for

simulating spatial drug distributions, particularly for wider

intercellular spaces. Therefore, we consider if there are any par-

ameter modifications that can bemade such that the continuum

model can be said to sufficiently replicate the simulations

provided by the more spatially complex discretized model.

Such a model would be highly beneficial for the quantification

of drug dynamics with greater computational efficiency. For

this investigation, we compare the average behaviour of the

full discrete, multiscale, dimensional model (cell-based model)

with the idealized radially symmetric, homogenized sphere

model (continuum model) in two-dimensional (cylindrical

coordinates) given by

@CS

@t
¼

DEff
I

r

@

@r
r
@CS

@r

� �

�
VmaxCS

CS þ Km
, r � RS ð3:1Þ

and

@CO

@t
¼

DE

r

@

@r
r
@CO

@r

� �

, r . RS, ð3:2Þ

where CS and CO represent spheroid and outer drug concen-

trations, respectively, and RS = 135 µm (the average radius

of the hepatocyte sphere slice in figure 2), with boundary

conditions

DEff
I

@CS

@r
¼ 0, r ¼ 0 ð3:3Þ

and

DEff
I

@CS

@r
¼ DE

@CO

@r
¼ QEff(CO � CS), r ¼ RS, ð3:4Þ

for effective parameters DEff
I and QEff which represent the

parameters to bemodified. These parameters are logical targets

for the translation since they determine interior transport via

internal diffusion and translocation across cell membranes in

the cell-based model. Homogenization here can be thought

of as an extreme modification of the spheroid structure such

that we reduce the system to a very large single cell with a

single permeable membrane. The effective parameter values

of the continuum model were optimized to fit the average

behaviour of the cell-based models for both intercellular

space geometries and a physico-chemically relevant range of

permeability coefficients (corresponding to logD7.4= 1, 2, 3, 4,

5). For information regarding parameter optimization, see the

supplementary material.

The required modifications of effective parameters, both

collectively and individually as functions of drug lipophili-

city and intercellular space, are summarized in figure 5, as

well as corresponding error metrics. A combined parameter

change metric in figure 5e is introduced to quantify the rela-

tive amount of modification required for each scenario

(intercellular width and lipophilicity) and defined as

DP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DEff
I �DI

DI

� �2

þ
QEff �Q

Q

� �2
s

: ð3:5Þ

From figure 5, it is clear that ΔP is dominated by relative

changes in the effective permeability coefficient, QEff (compare

figure 5e with figure 5a,b). Permeability must be increased to

account for the intercellular space in the cell-based models (all

lipophilicities), i.e. QEff/Q≥ 1 for all logD7.4 (figure 5b). This

effectively makes the spheroid boundary in the continuum

model more porous (virtually simulating gaps between cells)

and the discontinuity at the spheroid boundary is reduced. It

should be noted that in the dimensional cell-based models,

while DI remains constant throughout all simulations, Q will

change dependent on logD7.4 (recall equations (2.10)–(2.11)).

This is seen in figure 5c,d with absolute changes in QEff and

Q. Permeability must be increased by a greater amount for

wider intercellular spaces to be effectively simulated by the con-

tinuum model (e.g. figure 5d) for all logD7.4. This is expected

due to the increased porosity provided by wider gaps. Finally,

effective permeability must be increased by a greater amount

for low lipophilicities. This can be seen in figure 5b where the

effective permeability QEff decreases towards the dimensional

value Q with increasing lipophilicity, for both gap sizes, in a

monotonic fashion. This reflects the increased discrepancy
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Figure 4. Impact of intercellular space on drug distribution. Spatial distribution of drug concentration within a hepatic spheroid for three different intercellular space

geometries (no spaces (zero porosity, a); narrow spaces (approx. 0.2 µm, b); wide spaces (approx. 2 µm, c)). The figures represent steady-state values after constant
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between transport through cells and transport between cells

found for drugs that are poorly lipid soluble.

In order for the continuum model to effectively simulate

intercellular space, intracellular diffusion must be decreased

for all lipophilicities, i.e. DEff
I , DI for all logD7.4 (figure 5a).

The primary effect of decreasing this parameter in the

model is to increase the gradient of concentrations within

the spheroid. For high lipophilicity and narrow intercellular

spaces, the continuum model can provide a representative

simulation of the cell-based model by reducing DEff
I alone.

This property is observed by comparing the negligible

changes in QEff relative to DEff
I at high lipophilicity and

narrow intercellular spaces. For example, when logD7.4= 4

and 5, DI is decreased by 94 and 86%, while Q is unchanged

(figure 5a,b). Theoretically, given a high enough value of

logD7.4, this behaviour is expected for wide spaces too, but

this is beyond relevant parameter space.

Regardless of lipophilicity, the optimized continuum

model compares better with the cell-based model of narrow

intercellular gaps (figure 5f, solid lines). This is likely due to

the relatively lower amount of fluctuations in the mean

one-dimensional profiles as there is less extracellular space in

general within the spheroid. These fluctuations represent the

local drug concentration variation at the cellular scale due to

discrepancies between intra- and extracellular phases, which

can be very high for drugs that are poorly lipid soluble (e.g.

figure 3 one-dimensional profiles). Prior to any optimization

and rescaling of dimensional parameters to their effective

counterparts ðDI ! DEff
I , Q ! QEffÞ, there was a clear pattern

in the fit quality between the simple continuum model
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approximation and the cell-based models of different sized

intercellular spaces (figure 5f, dashed lines). Generally, the

continuum model fits the narrow spaces better for low

membrane permeability and wider spaces better for high per-

meability. This feature appears to be correlated to the overall

higher intracellular drug concentrations found in spheroids

with wider spaces (since there is proportionally less transport

across metabolizing cells). The (pre-optimized) continuum

model exhibits very low drug concentration within the spher-

oid at low permeability and so fits the narrow-spaced model

better. At higher permeabilities, the continuum model has

relatively high interior concentration and so fits the wide

spaced cell-based model better (electronic supplementary

material, figure S1). This switch in behaviour is likely due to

the continuum model only providing a single barrier to

permeation (spheroid boundary), which, once penetrated,

facilitates drug penetration via diffusion solely.

Interestingly, figure 5e indicates that the cell-based model

with wider intercellular spaces requires more parameter modi-

fication for all drug lipophilicities. Despite the intra-spheroidal

gradients being vastly different between the (pre-optimized)

continuumand narrow cell-basedmodel at high permeabilities

(electronic supplementary material, figure S1), the boundary

intracellular drug concentrations are similar. Therefore, the

continuum model can be optimized via sufficient reduction

in DEff
I while maintaining the original permeability coefficient

(QEff =Q). However, in order to simulate the wide cell-based

model, and account for different concentrations in boundary

cells, a relatively greater change inQEff was required (compare

relative changes in effective parameters at logD7.4= 4 and 5 for

DEff
I and QEff for both models, figure 5a,b).

3.4. Investigating the impact of permeability on the

dynamic process of drug delivery in different

regions of the spheroid for a bolus dose
Intercellular space has a discernible impact on the spatio-

temporal drug dynamics in the in vitro spheroid environment

and moreover, a nonlinear effect was revealed for local concen-

trations within intercellular space as permeability is increased

(figure 3). Since this phenomenon (i.e. a monotonic decrease

in intracellular drug concentration with decreasing per-

meability, but a non-monotonic response in the intercellular

regions) cannot be described by the simple continuum model,

it is worth considering the potential impact of this feature on

drug penetration. Here, we choose to examine drug delivery

and subsequent effects by calculating the total uptake/

metabolism of the drug in different regions of the spheroid.

To investigate drug delivery via metabolism, we introduce

the following ‘metabolism’ variable, M, with dynamics

@M

@t
¼

VmaxC

Cþ Km
, C ¼ CI, ð3:6Þ

which corresponds to accumulated drug metabolized and is

only relevant inside model cells. Corresponding model simu-

lations are conductedwith a finite bolus dose initially supplied

in the outermedium, uniformly distributed in the extracellular

space outside the spheroid, and zero-flux boundary con-

ditions are imposed on the outer boundary of themedia phase.

Two separate regions are defined, ‘outer’ and ‘inner’, corre-

sponding to cells of comparable size in the outer boundary

layer of the spheroid, (x, y) = (−10 µm, 110 µm), and the

spheroid centre, (x, y) = (0 µm, 0 µm). Simulations are run to

the drug-free steady-state whereby all of the initial dose has

been removed from the system and accumulated in the effec-

tive sink variable, M. For highly lipophilic drugs, the

concentration dynamics are relatively similar between inner

and outer regions as the drug is able to be transported through-

out the spheroid quickly, unrestricted by permeability.

However, the outer cells are exposed to slightly higher concen-

trations and consequently more drug is metabolized in this

region, demonstrated bysimilar rates ofmetabolism (figure 6a).

Simulations of lowly lipophilic drugs require much longer

timespans in order to reach equilibrium due to the reduced

uptake rate at the cellmembranes.However, due to the intercel-

lular transport via diffusion, even centrally located cells receive

relatively high local drug exposure and metabolize at a similar

rate to outer cells (figure 6c). It is the in silicodrugs of intermedi-

ate lipophilicity in this model scenario that exhibits the most

striking discrepancies between inner and outer cells (figure 6b).

The impact of these varying rates of metabolism between drug

lipophilicities and regions of the spheroid can be evaluated

by comparing the total drug metabolized (figure 6d). The

greatest discrepancy in drug uptake between outer and

inner hepatocytes is revealed for drugs of intermediate

permeability (1250% increase from inner to outer cells for

logD7.4 = 4 compared with just +13% for logD7.4 = 1 and

+219% for logD7.4 = 6). Furthermore, outer cells in this case

receive the most drug out of all three cases studies and the

inner cells receive the least (figure 6d). This effect can poten-

tially be exacerbated when carrier-mediated transport kinetics

are modelled at the cell membrane, due to the saturating effects

of this uptake mechanism (arbitrary transporter parametriza-

tion, data not shown). This feature has the potential to

significantly impact experimental design considerations and

in vitro drug efficacy and toxicity evaluation.

4. Discussion
The enhanced sophistication of current cell culture method-

ologies due to increasing advancements in scientific

understanding and technological developments has allowed

for in vitro studies to become more physiologically relevant.

There is a range of different in vitro models that span varying

levels of complexity, reproducibility, high-throughput potential

and cost. Spheroids represent an intermediate experimental

model that allows for increased physiological relevance over

two-dimensional monolayers due to the three-dimensional

environment, as well as more appropriate cell morphology

and functionality while remaining cost-effective, consistent

and easy to use [1]. The subsequent prevalence of liver spher-

oid cultures for studying hepatocyte behaviour in vitro is

evident and represents a key component of drug development

such that drug candidates can be tested for efficacy and toxic

potential in a three-dimensional environment with physiologi-

cal gradients [31,33–35]. Data-driven multiscale mathematical

models provide an ideal platform from which to try and

enhance mechanistic understanding of new biotechnologies

by simulating the underlying physical processes. Additionally,

the development of spatio-temporal data generated by three-

dimensional cell imaging offers tremendous opportunities for

developing, parametrizing and testing multiscale mathemat-

ical models and in response, mathematical modelling can be

successfully used to optimize these developing technologies.
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In this study, we developed a mathematical model of drug

transport andmetabolism in amultiscale spheroid framework,

accounting for microscale processes such as membrane trans-

port kinetics and how they relate to the physico-chemical

properties of a drug, and macroscale features such as the

geometry of a hepatocyte spheroid, informed by imaging

data. Cellular uptake of drugs was modelled by the two

major processes of transport across the cell membrane, passive

diffusion and carrier-mediated transport [17]. The carrier-

mediated transport microscale model was innately more

complex, depending on quantities such as transporter protein

expression, binding kinetics and rates of conformational

change and this complexity allowed for a wider array of

dynamic mechanisms such as enzymatic saturation and

active processes. The extensive parametrization required to

quantify the carrier-mediated transport model depends on

more compound-specific information, and so the passive diffu-

sion case became the main focus of investigations within the

generalized multiscale framework, more relevant for relatively

lipophilic compounds.

The explicit representation of individual hepatocytes

based on imaging data allowed for an investigation into the

effects of including a distinct cell-based geometry in the

model. The model suggests that steady-state intracellular

drug concentrations increase monotonically with increasing

drug lipophilicity. However, a non-monotonic relationship

was revealed between drug lipophilicity and intercellular

drug concentration (figure 3), while the width of the intercel-

lular space further impacted spatial drug distribution

(figure 4). Intercellular space geometry, or spheroid porosity,

is therefore a key physiological feature of the multicellular

structure but is both difficult to accurately quantify and

known to vary widely between cell types. This is particularly

relevant in the case of tumour-derived spheroids, whose mor-

phology tends to be more porous [32], and organoids that are

increasingly being used in efficacy testing for tumour cells

[36]. We, therefore, studied two different average intercellular

widths informed by TEM data and the literature which

suggested a range of 102–103 nm scale, with results varying

due to cell type, tumour phenotype and experimental artefacts

such as fixation [29,30,37].

While it is important to account for intercellular space

within spheroids to correctly model drug delivery, the conse-

quent increase in complexity by modelling this feature

explicitly renders detailed analytic work intractable and deriv-

ing numerical solutions is costly with respect to time and

computational power requirements. Therefore, it is appropriate

to consider the application of simplified models that consider

averaged or homogenized system behaviour and under what

conditions they can provide valid approximations [38]. We

have shown how to approximate the cell-based models using

a simple, symmetric, continuum model by reparametrizing

dimensional parameters to re-scaled effective counterparts.

For relatively narrow intercellular gaps, these approximations

are more accurate and the required parameter changes are

reduced. The differences between the models, due to the expli-

cit representation of intercellular space (porosity) within the

cell-based model, are largely accounted for by increasing the

effective permeability parameter. This increase in the effective

permeability increases the drug transport across the spheroid

boundary in the continuummodel. This is particularly impor-

tant at lower lipophilicities when permeability limitations are
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Figure 6. Impact of drug lipophilicity on uptake and metabolism in different regions of the spheroid. Metabolism rates are plotted against time as a result
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maximized. For higher lipophilicities and narrow intercellular

space, the spatially averaged dynamics of the cell-basedmodel

can be effectively simulated with the symmetric continuum

model by appropriate reductions in the effective internal diffu-

sion parameter only. Further work is required to determine the

impact of spatially varying quantities that might exist within a

spheroid such as intercellular space or transporters that vary

zonally [39], and how these might compare between conti-

nuum models and cell-based models. Metabolic rates are also

known to vary in space throughout multicellular structures

due to gradients in environmental factors such as oxygen

and glucose [40]. Alternative model simplifications that

might expedite analysis can be made by careful consideration

of potentially redundantmodel complexities such as intracellu-

lar diffusion, which may be neglected in some scenarios.

The model currently neglects any intracellular binding of the

drug for simplicity, focusing on the dominant mechanisms of

transport and removal (metabolism) that drive the spatio-

temporal dynamics. However, for specific future applications

of the model, intracellular binding could be considered by

ascertaining the relevant fraction unbound for a particular

drug, as this will lower the rate of metabolism for those

drugs which bind strongly to intracellular proteins and

nuclear structures.

The discovery of an apparent local minimum in drug

penetration, whereby intercellular concentrations are lower

for intermediate membrane permeation, motivated an investi-

gation into corresponding effects on drug delivery, uptake and

metabolism in spheroid centres for a bolus dose (figure 6). The

results of this investigation indicated that, indeed, it is feasible

to observe minimal drug uptake at the spheroid centre for

drugs of intermediate lipophilic properties (with the majority

of the drug being metabolized at the outer regions). These

mechanistic insights and modelling results have potential

impact for the dosing of spheroid systems in vitro as well as

relevance for analogous in vivo systems such as avascular

tumours. It is not necessarily sufficient to assume that increas-

ing a chemical’s lipid solubility will enhance its metabolism at

the spheroid centre. Lowly lipid soluble drugs may require a

much longer time in culture but ultimately metabolize the

drug more uniformly throughout the spheroid. Accounting

for reduced penetration due to the intermediate lipophilic

property may be alleviated somewhat by increasing the dose,

but this could have potentially toxic consequences from over-

dosing cells at the spheroid boundary. Other experimental

design options include manipulating permeability (by chemi-

cal modification or intervention, but this could potentially

further increase the divergent amounts of drug being metab-

olized in different regions of the spheroid) or using smaller

spheroids. These investigations could be conducted within

the in silico framework, in the first instance, to guide strategy.

The implications of drug delivery characteristics based on per-

meability parameters could potentially be translated to

targeting delivery in tissues of multiple cell types expressed

zonally. For example, targeting the central zone of a spheroid

that contains cells of a different phenotype (e.g. cancerous/

hypoxic) may be aided by manipulating these properties

regarding permeability, i.e. making certain that the per-

meability is either relatively high or relatively low to ensure

delivery to the spheroid centre. Validation of these in silico

investigations could involve emerging technologies such as

MALDI (matrix-assisted laser desorption/ionization)-mass

spectrometry imaging, which provide label-free mass spectro-

metric detection within tissue sections [41]. This detection

methodology is rapidly being developed to provide a quanti-

tative measure of drug penetration within a tissue/spheroid

at different time-points that could potentially be compared

with our model. The combination of mathematical modelling

with experimental imaging provides a convenient in silico

testing toolkit to optimize the use of three-dimensional cell

culture systems in the laboratory and maximize the potential

of spheroid models aiding drug discovery, toxicity testing

and dose optimization.
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